Arithmetic conditions for the existence of G_2 –instantons over twisted connected sums

Thomas Walpuski

2019-10-08

Abstract

Extending earlier work in [\[Wal16\]](#page-23-0) this article introduces an arithmetic condition which guarantees the existence of G_2 –instantons over twisted connected sums. By brute-force search a significant number of solutions of this condition can be found. This yields many new examples of G_2 –instantons and, in particular, the first examples of irreducible, unobstructed G_2 –instantons on PU(*r*)–bundles for $r \neq 2$.

1 Introduction

The first few examples examples of irreducible unobstructed G_2 –instantons on SO(3)–bundles where constructed in [\[Wal13\]](#page-23-1). These examples are defined over G_2 –manifolds constructed by Joyce [\[Joy96a;](#page-21-0) [Joy96b\]](#page-22-0) by resolving flat G_2 –orbifolds. By far the most fruitful method for constructing G_2 -manifolds to date is the twisted connected sum construction [Kovo3; [KL11;](#page-22-2) [CHNP13;](#page-21-1) [CHNP15\]](#page-21-2). While there is a gluing theorem to produce G_2 –instantons over twisted connected sums [SW₁₅], so far there are only two examples of G_2 –instantons constructed using this theorem in the literature [\[Wal16;](#page-23-0) [MNS17\]](#page-22-4). This article slightly extends the work in [\[Wal16\]](#page-23-0) and shows that the ideas developed there can, in fact, be used to produce a rather large number of G_2 –instantons.

After reviewing (a special case of) the twisted connected sum construction in [Section 2,](#page-1-0) an arithmetic condition for the existence of G_2 –instantons is given and proved in [Section 3.](#page-3-0) Solutions to this arithmetic condition can be found by a simple brute-force search algorithm outlined in [Section 4.](#page-7-0) A concrete implementation in SAGE/PYTHON of this algorithm (with a quite restricted search scope) finds 299 solutions of the aforementioned arithmetic condition. This yields, in particular, the first examples of irreducible, unobstructed G_2 –instantons on PU(r)–bundles with $r \neq 2$. Further statistics regarding these can be found in [Section 5.](#page-9-0)

2 Twisted connected sums from Fano 3–folds

2.1 The twisted connected sum construction

Definition 2.1 (Corti, Haskins, Nordström, and Pacini [\[CHNP13,](#page-21-1) Definition 5.1]). A building block is a smooth projective 3–fold Z together with a projective morphism $\pi: Z \to \mathbf{P}^1$ such that the following hold: following hold:

- 1. The anticanonical class $-K_Z \in H^2(Z)$ is primitive.
- 2. Σ := $\pi^*(\infty)$ is a smooth K3 surface and Σ ~ -K_Z.

Definition 2.2. A framing of a building block (Z, Σ) consists of a hyperkähler structure $\omega =$ $(\omega_I, \omega_J, \omega_K)$ on Σ such that $\omega_J + i\omega_K$ is of type $(2, 0)$ as well as a Kähler class on Z whose restriction
to Σ is $[\omega_J]$ to Σ is $[\omega_I]$.

Given a framed building block (Z, Σ, ω) , using the work of Haskins, Hein, and Nordström [\[HHN15\]](#page-21-3), we can make $V = Z\Sigma$ into an asymptotically cylindrical (ACyl) Calabi–Yau 3–fold with asymptotic cross-section $S^1 \times \Sigma$; hence, $Y := S^1 \times V$ is an ACyl G_2 –manifold with asymptotic cross-section $T^2 \times \Sigma$ cross-section $T^2 \times \Sigma$.

Definition 2.3. A matching of pair of framed building blocks (Z_+, π_+, ω_+) is a hyperkähler rotation $r: \Sigma_+ \to \Sigma_-,$ i.e., a diffeomorphism such that

$$
\mathbf{r}^* \omega_{I,-} = \omega_{J,+}, \quad \mathbf{r}^* \omega_{J,-} = \omega_{I,+} \quad \text{and} \quad \mathbf{r}^* \omega_{K,-} = -\omega_{K,+}.
$$

Given a matched pair of framed building blocks ($Z_{\pm}, \pi_{\pm}, \omega_{\pm}$; r), the twisted connected sum construction produces a simply-connected compact 7–manifold Y together with a family of torsion-free G_2 -structures $\{\phi_T : T \gg 1\}$ by gluing truncations of Y_+ along their boundaries via interchanging the circle factors and r. Denote by $\Upsilon: H^{ev}(Z_+) \times_{H^{ev}(\Sigma_+)} H^{ev}(Z_-) \to H^{ev}(Y)$ the splicing man defined in $\lceil \text{CHNP}_{\Sigma} \rceil$ Definition 4.15 splicing map defined in $[CHNP₁₅, Definition 4.15]$.

2.2 Building blocks from Fano 3–folds

Proposition 2.4 ([Kovo3, Proposition 6.42; [CHNP15,](#page-21-2) Proposition 3.17]). Let W be a Fano 3-fold and let $|\Sigma_0, \Sigma_\infty| \in |-K_W|$ be anti-canonical pencil such that Σ_∞ is a smooth K3 surface and the base locus C is a smooth curve. Set

$$
Z \coloneqq \mathrm{Bl}_C \, W
$$

and denote by $\pi: Z \to \mathbf{P}^1$ the map induced by the pencil $|\Sigma_0, \Sigma_{\infty}|$. In this situation the following hold: hold:

- 1. $\pi: Z \to \mathbf{P}^1$ is a building block and
- z. the inclusion $\Sigma_{\infty} \subset W$ induces an isomorphism $\pi^*(\infty) \cong \Sigma_{\infty}$.

Definition 2.5. A building block arising from [Proposition 2.4](#page-1-1) is said to be of **Fano type.**

Remark 2.6. Let W be a Fano 3–fold whose anticanonical bundle $-K_W$ is very ample. By Bertini's theorem, the adjunction formula, and the Lefschetz hyperplane theorem a general anti-canonical divisor is a smooth K₃ surface Σ_{∞} . A further application of Bertini's theorem shows that having chosen Σ_{∞} one can always find Σ_0 such that the base locus of $|\Sigma_0, \Sigma_{\infty}|$ is smooth. Moreover, for a general Σ_0 the morphism π has only finitely many singular fibres and the singular fibres have only ordinary double point singularities; see [\[Voi07,](#page-23-2) Corollary 2.10].

2.3 Matching Fano 3–folds

Definition 2.7. The Picard lattice of a smooth complex 3-fold W is $Pic(W)$ equipped with the quadratic form

$$
x\otimes y\mapsto x\cdot y\cdot(-K_W).
$$

Definition 2.8. Let N be a lattice. An N–marking of a Fano 3–fold W is an isometry $h: N \rightarrow$ Pic(W). A pair of N–marked Fano 3–folds (W_1, h_1) and (W_2, h_2) are deformation equivalent if there is a proper holomorphic submersion $\pi: X \to \Delta$ from a complex manifold to the unit disc in C such that W_1 and W_2 both occur as fibers of π and parallel transport induces the isometry $h_1^{-1}h_2$.
An M-**marked deformation type** of Eano 3-folds is a maximal set \mathcal{W} of M-marked Eano 3-folds An N–marked deformation type of Fano 3–folds is a maximal set ^W of N–marked Fano 3–folds such that every pair of elements of W are deformation equivalent.

Definition 2.9. Let N_+ and N_0 be non-degenerate lattices and let $i_+ : N_0 \hookrightarrow N_+$ be embeddings. An orthogonal pushout of i_+ and i_- is a lattice N together with embeddings j_{\pm} : $N_{\pm} \hookrightarrow N$ such that the diagram

is commutative,

$$
j_+(N_+) \cap j_-(N_-) = i_{\pm}j_{\pm}(N_0)
$$
, $N = j_+(N_+) + j_-(N_-)$, and $j_{\pm}(N_{\pm})^{\perp} \subset j_{\mp}(N_{\mp})$.

Situation 2.10. Let $r_{\pm}, r_0 \in N$ with $r_+ + r_- - r_0 \le 11$. Let N_{\pm} be lattices of signature $(1, r_{\pm} - 1)$, let N_0 be a lattice of signature $(0, r_0)$, let $i_±$: N_0 \hookrightarrow $N_±$ be primitive embeddings, and let (N, j_+, j_-) be an orthogonal pushout of i₊ and i₋. Let Amp₊ ⊂ N_± \otimes _Z R be open cones. Let \mathcal{W}_\pm be N_±-marked deformation types of Fano 3–folds such that for every $(W_{\pm}, h_{\pm}) \in \mathcal{W}$:

- 1. $-K_{W_{\pm}}$ is very ample,
- 2. $h_{\pm}^{-1}(\text{Amp}_{\pm})$ is contained in the ample cone of W_{\pm} , and
- 3. Amp_± \cap $(i_{\pm}(N_0) \otimes_{\mathbb{Z}} \mathbb{R})^{\perp} \neq \emptyset$.

Proposition 2.11. Assume [Situation 2.10.](#page-2-0) For every $H_{\pm} \in \text{Amp}_{\pm} \cap (i_{\pm}(N_0) \otimes_{\mathbb{Z}} \mathbb{R})^{\perp}$ and $\varepsilon > 0$, there exist $(W - h_{\pm}) \in \mathcal{W}$ smooth K_2 surfaces $\sum_{\pm} \in]-K_{xx}]}$ hyperkähler structures $\omega^{\pm} = (\$ exist ($W_±$, $h_±$) ∈ $W_±$, smooth K3 surfaces $\Sigma_± ∈ |-K_{W_±}|$, hyperkähler structures $ω^± = (ω^+$
on Σ and a hyperkähler rotation Σ_+ (Σ_+ ω) \Rightarrow (Σ_- ω) such that \mathcal{L}_{max} ± Ĭ \mathcal{L}_{max} $\frac{1}{K}$ on Σ_{+} , and a hyperkähler rotation $\mathfrak{r}: (\Sigma_{+}, \omega_{+}) \to (\Sigma_{-}, \omega_{-})$ such that:

- 1. the restriction maps res_{\pm} : $Pic(W_{\pm}) \rightarrow Pic(\Sigma_{\pm})$ are isomorphisms,
- 2. the diagram

$$
N_0 \longrightarrow \text{Pic}(W_+) \xrightarrow{\text{res}_+} \text{Pic}(\Sigma_+)
$$

$$
N_0 \downarrow_{\Gamma_*}
$$

$$
Pic(W_-) \xrightarrow{\text{res}_-} \text{Pic}(\Sigma_-)
$$

is commutative, and

3. the distance between $\mathbf{R}h_{\pm}(H_{\pm})$ and $\mathbf{R}[\omega_I^{\pm}]$ in $\mathbf{P}H^2(\Sigma_{\pm},\mathbf{R})$ is at most ε .

Proof. Therefore, [\[CHNP15,](#page-21-2) Proposition 6.18] applies. By [Moĭ67, Theorem 7.5] for very general $\Sigma_{\pm} \in -K_{W_{\pm}}$ the conclusion [\(1\)](#page-3-1) holds. By [\[Nik79,](#page-22-6) Theorem 1.12.4 and Corollary 1.12.3], N embeds
primitively into the K2 lattice. Therefore, the framing and hyperkähler rotation can thus be primitively into the K3 lattice. Therefore, the framing and hyperkähler rotation can thus be obtained from $[CHNP₁₅, Proposition 6.18]$ and [\(2\)](#page-3-2) holds by construction. The observation that in this construction one may assume [\(3\)](#page-3-3) is due to $[MNS17,$ Proposition 2.6].

Choosing further anticanonical divisors as in [Proposition 2.4](#page-1-1) one obtains a matched pair of framed building blocks $(Z_{\pm}, \pi_{\pm}, \omega_{\pm}; r)$ which can be feed into the twisted connected sum construction.

3 An existence theorem for G_2 -instantons

Theorem 3.1. Assume [Situation 2.10.](#page-2-0) Let

$$
H_{\pm} \in \text{Amp}_{\pm} \cap i_{\pm}(N_0)^{\perp} \quad \text{and} \quad v = (r, B, s) \in \{2, 3, \ldots\} \times N_0 \times \mathbb{Z}
$$

such that the following hold:

- 1. $B^2 = 2(rs 1),$
- 2. the r and the divisibility of B are coprime, r and s are coprime; and
- 3. for every non-zero $x \in N_+$ perpendicular to H_+

$$
x^2 < -\frac{1}{2}r^2(r^2 - 1).
$$

In this situation there is a matched pair of framed building blocks $(Z_{\pm}, \pi_{\pm}, \omega_{\pm}; r)$ obtained from [Proposition 2.11](#page-3-4) and for $T \gg 1$ the corresponding twisted connected sum carries an irreducible and unobstructed G_2 -instanton on a non-trivial $PU(r)$ -bundle.

3.1 A gluing theorem for G_2 -instantons over twisted connected sums

Theorem 3.2 (Sá Earp and Walpuski [SW₁₅, Theorem 1.3 and Remark 1.7]). Let $(Z_{\pm}, \pi_{\pm}, \omega_{\pm}; r)$ be a matched pair of framed building blocks. Set $\Sigma_{\pm} := \pi_{\pm}^*(\infty)$. Denote by Y the compact 7–manifold and
by $\{\phi_{\mathbf{x}} : \mathcal{I} \gg 1\}$ the family of torsion-free G_e-structures obtained from the twisted connected sum by $\{\phi_T : T \gg 1\}$ the family of torsion-free G_2 -structures obtained from the twisted connected sum construction. Let $\mathscr{E}_\pm \to Z_\pm$ be a pair of rank r holomorphic vector bundles such that the following hold:

- 1. $c_1(\mathscr{E}_+|_{\Sigma_+}) = \mathfrak{r}^* c_1(\mathscr{E}_-|_{\Sigma_-})$ and $c_2(\mathscr{E}_+|_{\Sigma_+}) = \mathfrak{r}^* c_2(\mathscr{E}_-|_{\Sigma_-}).$
- 2. $\mathscr{E}_{\pm} |_{\Sigma_{\pm}}$ is μ -stable with respect to $\omega_{I,\pm}$ and rigid, i.e.,

$$
H^1(\Sigma_{\pm}, \mathcal{E}nd_0(\mathcal{E}_{\pm}|_{\Sigma_{\pm}})) = 0.
$$

3. \mathscr{E}_\pm is infinitesimally rigid:

$$
H^1(Z_{\pm}, \mathcal{E}nd_0(\mathcal{E}_{\pm})) = 0.
$$

In this situation exists a $U(r)$ –bundle E over Y with

 $c_1(E) = \Upsilon(c_1(\mathcal{E}_+), c_1(\mathcal{E}_-))$ and $c_2(E) = \Upsilon(c_2(\mathcal{E}_+), c_2(\mathcal{E}_-)).$

and a family of connections $\{A_T : T \gg 1\}$ on the associated PU(r)-bundle with A_T being an irreducible unobstructed G_2 –instanton over (Y, ϕ_T) .

3.2 Relative moduli spaces of sheaves

Definition 3.3. Let $\pi: Z \to \mathbf{P}^1$ be a building block. Define $\mathbf{M}: Sch_{\mathbf{P}^1}^{\mathrm{op}} \to Set$, the relative moduli
functor of coherent sheaves on Z, as follows: functor of coherent sheaves on Z, as follows:

- Let S be P^1 -scheme. Two such sheaves $\mathcal C$ and $\mathcal F$ over $Z \times_{P^1} S$ are consider to be equivalent if there exists a line bundle over S such that $\mathcal C$ and $\mathcal F \otimes \mathcal C$ are isomorphic. We define $M(S)$ if there exists a line bundle over S such that \mathscr{E} and $\mathscr{F} \otimes \mathscr{L}$ are isomorphic. We define $M(S)$ the be the set of equivalence classes of *S*–flat coherent sheaves on *Z* \times _{P¹} *S*.
- Given a morphism $f: S \to T$ of \mathbf{P}^1 –schemes, set

$$
\mathbf{M}(f)[\mathscr{E}] \coloneqq [f^*\mathscr{E}].
$$

Definition 3.4. Let $\pi: Z \to \mathbf{P}^1$ be a building block. Let \bullet denote an open condition on coherent shows on the fibers of π . Denote by M, the open subfunctor of M defined by sheaves on the fibers of π . Denote by M_{\ast} the open subfunctor of M defined by

 $M_{\clubsuit}(S) := \{ [\mathscr{E}] \in M(S) : \text{for every } b \in S \text{ the fiber } \mathscr{E} \otimes_{\mathscr{O}_S} C(b) \text{ satisfies } \clubsuit \}.$

We say that M_{\clubsuit} is representable if there exists a P^1 –scheme M_{\clubsuit} together with a natural isomorphism

$$
\phi: \text{ Hom}_{\mathbf{P}^1}(\cdot, M_{\clubsuit}) \cong \mathbf{M}_{\clubsuit}(\cdot).
$$

In this case we call M_{\bullet} the relative moduli space of coherent sheaves on Z satisfying \bullet . A universal sheaf over $Z \times_{P^1} M_{\clubsuit}$ is a sheaf in the equivalence class $\phi(\mathrm{id}_{M_{\clubsuit}}) \in M_{\clubsuit}(M_{\clubsuit}).$

Remark 3.5. Typical examples of representable subfunctors of M arise by imposing stability conditions [\[Mar78;](#page-22-7) [Mar77;](#page-22-8) [Sim94\]](#page-22-9). However, these are not the only examples; see, e.g., Drézet [\[Dré08\]](#page-21-4).

Suppose that $M = M_{\bullet}$ is a relative moduli space of coherent sheaves on Z with universal sheaf U. Being a P^1 -scheme, M comes with a morphism $\varpi: M \to P^1$. A morphism $P^1 \to M$
of P^1 -schemes is simply a morphism $S: P^1 \to M$ with $\varpi \circ s = id$. that is a section of ϖ . By of P^1 -schemes is simply a morphism $s: P^1 \to M$ with $\varpi \circ s = id_{P^1}$, that is, a section of ϖ . By construction any such section vialds a coherent sheaf (id $\pi \times \varpi$)* \mathscr{U} on Z construction any such section yields a coherent sheaf $(\mathrm{id}_Z \times_{\mathbf{P}^1} s)^* \mathcal{U}$ on Z.

Proposition 3.6. Let $\pi: Z \to \mathbf{P}^1$ be a building block and let A be a π -ample line bundle. Let $\pi: Z \to \mathbf{P}^1$ be a building block and let A be a π -ample line bundle. Let $v = (r, B, s) \in N_0 \times H^2(Z) \times Z$. Suppose that r and s are coprime. Denote by $\clubsuit_{A, v}$ the condition for a sheaf \mathcal{E} on a fiber of $\pi^{-1}(h)$ to be Gieseker stable with respect to A and satisfy sheaf $\mathscr E$ on a fiber of $\pi^{-1}(b)$ to be Gieseker stable with respect to A and satisfy

 $\text{rk}\,\mathscr{E}=r, \quad c_1(\mathscr{E})=B|_{\pi^{-1}(b)}, \quad \text{and} \quad \chi(\mathscr{E})=r+s.$

Denote by $M_{A,v}$ the open subfunctor of M corresponding to $\clubsuit_{A,v}$. This functor is representable by a projective P^1 –scheme $M = M_{A,\,v}$.

Proof of [Proposition 3.6.](#page-5-0) Since r and χ are coprime, if $\mathscr E$ is Gieseker semistable, then it is Gieseker stable. Therefore, $M_{H,v}$ agrees with with the relative moduli functor of Gieseker semistable sheaves on Z with Mukai vector v . Simpson [\[Sim94,](#page-22-9) Section 1] proved that this functor is universally corepresented by a proper and separated P^1 –scheme $M_{H,\,v}$. Since r and χ are coprime, it follows
from [HJ 10, Corollary 4.6.7] that $M_{H,\,v}$ carries a universal sheaf and thus represents $M_{H,\,v}$ from [\[HL10,](#page-21-5) Corollary 4.6.7] that $M_{H,v}$ carries a universal sheaf and thus represents $M_{H,v}$. \square

3.3 Sheaves on K3 surfaces

Definition 3.7. Let Σ be a K3 surface. The **Mukai lattice** of Σ is $\tilde{H}(Z) = \mathbb{Z} \oplus H^2(\Sigma, \mathbb{Z}) \oplus \mathbb{Z}$ with the quadratic form given by quadratic form given by

$$
(r, B, s)^2 = B^2 - 2rs.
$$

Let $\mathscr E$ be a coherent sheaf on Σ . The Mukai vector is defined by

$$
v(\mathscr{E}) \coloneqq (\mathrm{rk}(\mathscr{E}), c_1(\mathscr{E}), \chi(\mathscr{E}) - \mathrm{rk}(\mathscr{E})) \in \mathbf{N}_0 \oplus H^{1,1}(\Sigma, \mathbf{Z}) \oplus \mathbf{Z} \subset \tilde{H}(\Sigma).
$$

Proposition 3.8 ([\[HL10,](#page-21-5) Corollary 6.1.5]). For every coherent sheaf \mathscr{E} on a K3 surface

$$
\dim \operatorname{Ext}^1(\mathscr{E}, \mathscr{E}) = 2 \dim H^0(\mathscr{E}nd(\mathscr{E})) - v(\mathscr{E})^2.
$$

Theorem 3.9 ([\[Huy15,](#page-21-6) Theorem 10.2.7]). Let (Σ, A) be a polarized smooth K3 surface. For every Mukai vector $v = (r, B, s) \in \mathbb{N} \oplus H^{1,1}(\Sigma, \mathbb{Z}) \oplus \mathbb{Z}$ with $v^2 \ge -2$ and r and s coprime there exists a Giosakar stable sheaf \mathscr{L} over Σ with Gieseker stable sheaf $\mathscr E$ over Σ with

$$
v(\mathscr{E})=v.
$$

Theorem 3.10 (Mukai [\[Muk87,](#page-22-10) Proposition 3.3 and Corollaries 3.5 and 3.6] and Thomas [\[Tho00,](#page-22-11) Theorem 4.5]). Let (Σ, A) be a polarised K3 surface with at worst RDP singularities. If $\mathscr E$ is a Gieseker stable sheaf with

$$
v(\mathscr{E})^2=-2,
$$

then it is locally free and any other Gieseker semistable sheaf with the same Mukai vector is isomorphic to $\mathscr E$. In particular, the moduli space of Gieseker stable sheaves with Mukai vector $v(\mathscr E)$ is a reduced point.

Proposition 3.11. Let (Σ, A) be a polarized smooth K3 surface and let $\mathscr E$ be a Gieseker stable sheaf on Σ . If $rk\mathcal{E}$ and the divisibility of $c_1(\mathcal{E})$ are coprime and for every non-zero $x \in H^{1,1}(\Sigma, \mathbb{Z})$ perpendicular to $c_1(\Lambda)$ to $c_1(A)$

(3.12)
$$
x^{2} < -\frac{1}{4} (\text{rk}\,\mathscr{E})^{2} (2(\text{rk}\,\mathscr{E})^{2} + \upsilon(\mathscr{E})^{2}),
$$

then $\mathscr E$ is μ -stable.

Proof. Since $\mathscr E$ is Gieseker stable, it is μ –semistable. Suppose $\mathscr F$ were a destabilizing sheaf, that is, a torsion-free subsheaf $\mathcal{F} \subset \mathcal{E}$ with $0 < \text{rk}(\mathcal{F}) < \text{rk}\,\mathcal{E}$ and $\mu(\mathcal{F}) = \mu(\mathcal{E})$. Set

$$
x \coloneqq \mathrm{rk} \mathscr{E} \cdot c_1(\mathscr{F}) - \mathrm{rk} \mathscr{F} \cdot c_1(\mathscr{E}).
$$

This expression is non-zero because rk $\mathscr E$ and the divisibility of $c_1(\mathscr E)$ are coprime. Since

$$
x \cdot c_1(A) = \text{rk}\,\mathscr{E} \cdot \text{rk}\,\mathscr{F} \cdot (\mu(\mathscr{F}) - \mu(\mathscr{E})) = 0,
$$

 x satisfies (3.12) .

Define the discriminant of $\mathscr E$ by

$$
\Delta(\mathscr{E}) \coloneqq 2 \operatorname{rk} \mathscr{E} \cdot c_2(\mathscr{E}) - (\operatorname{rk} \mathscr{E} - 1)c_1(\mathscr{E})^2.
$$

According to [\[HL10,](#page-21-5) Theorem 4.C.3]

$$
-\frac{1}{4}(\text{rk}\,\mathcal{E})^2\Delta(\mathcal{E})\leq x^2.
$$

By Hirzebruch–Riemann–Roch ∆(E) can be rewritten as

$$
\Delta(\mathscr{E}) = v(\mathscr{E})^2 + 2(\text{rk}\,\mathscr{E})^2
$$

leading to a contradiction x satisfying (3.12) .

3.4 Proof of [Theorem 3.1](#page-3-5)

Choose $\varepsilon \ll 1$ and construct $(Z_{\pm}, \pi_{\pm}, \omega_{\pm}; r)$ accordingly via [Proposition 2.11.](#page-3-4) By [Remark 2.6](#page-2-1) it can be arranged that π_{\pm} has only finitely many singular fibres and the singular fibres have only ordinary double point singularities.

By slight abuse of notation identify $Pic(W_{\pm})$ and $\pi_{\pm}^{*} Pic(W_{\pm}) \subset Pic(Z_{\pm})$. In particular, identify with the corresponding π_{\pm} cample line bundle on Z . Set v_{\pm} is (E) , ∞ , E_{\pm} D_{\pm} conosition a 6. H_+ with the corresponding π_+ –ample line bundle on Z_+ . Set $v_+ := (r, h_+i_+(B), s)$. By [Proposition 3.6,](#page-5-0) the open subfunctor of M corresponding to \clubsuit_{H_+,v_\pm} is representable by a projective P^1 -scheme ω_{\pm} : $M_{\pm} \rightarrow P^{1}$. Choose a universal sheaf \mathcal{U}_{\pm} over $Z_{\pm} \times_{P^{1}} M_{\pm}$. It follows from [Theorem 3.9](#page-5-1) and
Theorem 3.10 that $M_{\pm} = P^{1}$ and $\Omega_{\pm} = id_{\pm}$. Therefore \mathcal{U}_{\pm} is a sheaf over Z_{\pm} By T [Theorem 3.10](#page-6-1) that $M_{\pm} = \mathbf{P}^1$ and $\omega_{\pm} = \text{id}_{\mathbf{P}^1}$. Therefore, \mathcal{U}_{\pm} is a sheaf over Z_{\pm} . By [Theorem 3.10,](#page-6-1) the restriction of \mathcal{U}_{\pm} to every fiber of π_{\pm} is locally free; hence, by [Simo4, restriction of \mathcal{U}_+ to every fiber of π_+ is locally free; hence, by [\[Sim94,](#page-22-9) Lemma 1.27], \mathcal{U}_+ is locally free.

It remains to show that [Theorem 3.2](#page-4-0) applies with $\mathcal{E}_\pm = \mathcal{U}_\pm$. Hypothesis [\(1\)](#page-4-1) holds by construction. By [Proposition 3.11,](#page-6-2) $\mathcal{U}_{\pm}|_{\pi_{\pm}^{*}(\infty)}$ is μ -stable with respect to H_{\pm} . Since $\mathbf{R}h_{\pm}(H_{\pm})$ and $\mathbf{R}[\omega_{I}^{\pm}]$ have distance
at most s and s $\ll 1$ it also is μ -stable with respect to ω^{\pm} . B at most ε and $\varepsilon \ll 1$ it also is μ -stable with respect to ω_I^{\pm} . By construction for every $b \in \mathbf{P}^1$,
 $H^1(\pi^{-1}(h) \mathcal{L}nd_{\varepsilon}(2l)) = 0$; hance by Crothandiack's spectral sequence $H^1(Z, \mathcal{L}nd_{\varepsilon}(2l)) = 0$. $\mathcal{I}(\pi_{\pm}^{-1}(b),\mathcal{E}nd_0(\mathcal{U}_{\pm})) = 0$; hence, by Grothendieck's spectral sequence, $H^1(Z_{\pm},\mathcal{E}nd_0(\mathcal{U}_{\pm})) = 0$. This shows that hypothesis [\(3\)](#page-4-2) holds as well.

4 How to find examples?

4.1 Constructing orthogonal pushouts

Let N_{\pm} and N_0 be non-degenerate lattices and let i_{\pm} : $N_0 \leftrightarrow N_{\pm}$ be primitive embeddings. If there exists a pushout of i_+ and i_- , then it is unique up to isomorphism. The following procedure constructs the orthogonal pushout if it does exist.

Choose bases H_1^{\pm}
cors *i* (*B*) *i* ($\begin{array}{c} 1, \ldots, H \\ (R) \quad R \end{array}$ ± p_{\pm}^{\pm} of N_{\pm} , B_1, \ldots, B_{ρ_0} of N_0 , and $B^{\pm}_{\rho_0+1}, \ldots, B_{\rho_0+1}$
 B^{\pm} span a sublattice of N^{\pm} Identifying ± $\frac{1}{\rho_{\pm}}$ of $N_0^{\perp} \subset N_{\pm}$. The vectors $i_{\pm}(B_1), \ldots, i_{\pm}(B_{\rho_0}), B^{\pm}_{\rho_0+1}, \ldots, B$
the quadratic form is encoded in an int ± $\frac{1}{\rho_{\pm}}$ span a sublattice of N^{\pm} . Identifying this lattice with $Z^{\rho_{\pm}}$ the quadratic form is encoded in an integral matrix of the form

$$
\begin{pmatrix} q_0 & 0 \\ 0 & q_{\pm} \end{pmatrix}
$$

with $q_0 \in Z^{\rho_0 \times \rho_0}$ and $q_{\pm} \in Z^{(\rho_{\pm} - \rho_0) \times (\rho_{\pm} - \rho_0)}$. Define $T_{\pm} \in Z^{\rho_{\pm} \times \rho_{\pm}}$ by

$$
\left(i_{\pm}(B_1) \cdots i_{\pm}(B_{\rho_0}) \quad B^{\pm}_{\rho_0+1} \cdots B^{\pm}_{\rho_{\pm}}\right) = \left(H_1^{\pm} \cdots H_{\rho_{\pm}}^{\pm}\right)T_{\pm}.
$$

The columns of the *rational* matrix $T_{\pm}^{-1} \in Q^{\rho_{\pm} \times \rho_{\pm}}$ represent the basis vectors of N_{\pm} . This gives a presentation of N_{\pm} as an overlattice of $Z^{\rho_{\pm}}$ with the above quadratic form presentation of N_{\pm} as an overlattice of $Z^{\rho_{\pm}}$ with the above quadratic form.
Define inclusions $i : \mathbf{Q}^{\rho_{\pm}} \leftrightarrow \mathbf{Q}^r$ by

Define inclusions j_{\pm} : $Q^{\rho_{\pm}} \hookrightarrow Q^r$ by

$$
j_{+}(x_{1},...,x_{\rho_{+}}) := (x_{1},...,x_{\rho_{+}},0,...,0) \text{ and}
$$

$$
j_{-}(x_{1},...,x_{\rho_{-}}) := (x_{1},...,x_{\rho_{0}},0,...,0,x_{\rho_{0}+1},...,x_{\rho_{-}}).
$$

Denote by N the subgroup of Q^r generated by the images the columns of T_+^{-1} and T_-^{-1} under j_+
and i . The matrix and $j_$. The matrix

$$
\begin{pmatrix} q_0 & 0 & 0 \\ 0 & q_+ & 0 \\ 0 & 0 & q_- \end{pmatrix}
$$

« defines a *rational* quadratic form on N. If this quadratic form takes values in the integers, then N
is a lattice and together with the primitive embeddings $i + N \leftrightarrow N$ forms a orthogonal pushout is a lattice and together with the primitive embeddings $j_{\pm} : N_{\pm} \hookrightarrow N$ forms a orthogonal pushout of ⁱ⁺ and ⁱ−. Whether the quadratic form is integral or not is easily checked by computing the products between the images of the columns of T_+^{-1} under j_+ and the images of the columns of T_-^{-1} under j_+ i^{-1} under *j*₋.

4.2 Finding input for [Theorem 3.1](#page-3-5)

The deformation types of Fano 3–folds have been classified by Mori and Mukai [$MMS1$]. [Appendix B](#page-13-0) lists all deformation types of Fano 3–folds W with $\rho := \text{rk Pic}(W) \in \{2, 3\}$. The entries of this list are labeled by $\#_{n}^{\rho}$. For each $\#_{n}^{\rho}$ the Picard lattice Pic(W) is given in terms of a concrete basis H_{n} . H_1, \ldots, H_ρ of Pic(W) such that the interior of the cone

$$
\mathbf{R}_{+}H_1 + \cdots + \mathbf{R}_{+}H_{\rho}
$$

is contained in the ample cone of W. All of the entries in [Appendix B](#page-13-0) except to listed in [Appendix C](#page-20-0) have very ample anticanonical bundle.

Equipped with this data one can try to find examples of the input required for Theorem 3.1 by executing the following steps:

- o. Let $r \in \{2, 3, \ldots\}$. Pick two entries in [Appendix B](#page-13-0) except those listed in [Appendix C](#page-20-0) and denote the corresponding lattices by N_{\pm} .
- 1. Try to find a pair vectors $B_{\pm} \in N_{\pm}$ such that:
	- (a) $B_+^2 = B_-^2$,

(b)
$$
s := \frac{B_+^2 + 2}{2r} \in \mathbb{Z}
$$
,

- (c) the *r* and the divisibility of *B* are coprime, and *r* and *s* are coprime.
- 2. Suppose a suitable pair B_{\pm} has been found. Try to find $H_{\pm} \in B_{\pm}^{\perp}$ whose representation in terms of H^{\pm} and H^{\pm} has positive coefficients terms of H_1^{\pm} $1, \ldots, H$ ± $\frac{1}{\rho_{\pm}}$ has positive coefficients.
- 3. Suppose suitable H_{\pm} have been found. Compute the maximal integer represented by the quadratic form on H_{\pm}^{\perp} . Check that this value is less than $-\frac{1}{2}$ 2^{\prime} $^{2}(r^{2}-1).$
- 4. Suppose that the check in the last step has been passed. Denote by N_0 the rank one lattice with quadratic form (B_+^2) and by $i_{\pm} : N_0 \to N_{\pm}$ the primitive embedding defined by B_{\pm} .
Check that the orthogonal pushout of i_{\pm} and i_{\pm} exists Check that the orthogonal pushout of i_{+} and i_{-} exists.

If this final check also passes, then the data found in the process gives the input required for [Theorem 3.1.](#page-3-5)

Steps [\(1\)](#page-8-0) and [\(2\)](#page-8-1) can be carried out by a brute-force search. Step [\(3\)](#page-8-2) is a trivial task if $\rho_+ = 2$. If $\rho_{\pm} = 3$, then it can be efficiently carried out as follows. Choose some basis of H_{\pm}^{\perp} and write the quadratic form as $-ax^2 - bxy - cu^2$. Using Gauss-Lagrange's algorithm one may assume that the quadratic form as $-ax^2 - bxy - cy^2$. Using Gauss–Lagrange's algorithm one may assume that the quadratic form is reduced: that is: $1 \le a \le c$. [b] $\le a$ and if $a = c$ then $b > 0$. The maximal integer quadratic form is reduced; that is: $1 \le a \le c$, $|b| \le a$, and if $a = c$, then $b \ge 0$. The maximal integer represented by the quadratic form is then $-a$. In general, (3) can be carried out efficiently using the algorithm from [\[ER01\]](#page-21-7). Finally, step (4) can be carried out using the procedure from [Section 4.1.](#page-7-1) All of this is easily implemented in a computer program. A concrete implementation in Sage/Python is available at <https://walpu.ski/Research/ArithmeticG2InstantonsTCS.zip>.

5 Examples found by brute-force search

The brute-force search with scope for B_{\pm} and H_{\pm} restricted to $\{-20, \ldots, 20\}^{\rho} \subset \mathbb{Z}^{\rho}$ yields 299
instances of the input required for Theorem 2.1 Table 22 gives more detailed statistics regarding instances of the input required for [Theorem 3.1.](#page-3-5) [Table](#page-10-0) ?? gives more detailed statistics regarding these. In this table r refers to the rank of the bundle and $_{n_1\#p_2}^{p_1\#p_2}$ means that the matching pair
of building blocks come from the Eano 3-folds listed as $\#^{p_1}$ and $\#^{p_2}$ in Appendix B. Beneated of building blocks come from the Fano 3–folds listed as $\mu_{n_1}^{\rho_1}$ and $\mu_{n_2}^{\rho_2}$ in [Appendix B.](#page-13-0) Repeated occurrences of $\rho_1 \# \rho_2$ indicate multiple possible choices for B_{\pm} . The first entry in [Table](#page-10-0) ?? $({}^2_1 {}^4_3 {}^4_1 {}^4_4)$
recovers the example from [Wal16]. The other entries are all new in particular, this vields recovers the example from [\[Wal16\]](#page-23-0). The other entries are all new. in particular, this yields the first examples of irreducible, unobstructed G_2 –instantons on PU(*r*)–bundles with $r \neq 2$. It should be pointed the rank 7 examples are distinct from the Levi-Civita connection on the underlying G_2 –manifolds. To see this observe that on a G_2 –manifold (Y, ϕ) the 3–form δ defines an element of $\Omega^1(TY, End(TY))$ which is a non-trivial infinitesimal deformation of the Levi-Civita connection.
Therefore, the latter cannot be rigid/unobstructed Therefore, the latter cannot be rigid/unobstructed.

A How to compute Picard lattices?

The data in [Appendix B](#page-13-0) has been computed using the following well-known results.

Proposition A.1 (Divisors). Let X be a smooth complex 4 -fold, L a line bundle over X, and W a divisor in X. Denote by i: $W \to X$ the inclusion. The anticanonical bundle of W is given by

$$
-K_W = -i^*(K_X + L).
$$

The map i^* : $Pic(X) \to Pic(W)$ is an isomorphism of abelian groups and for every $A, B \in Pic(X)$

$$
i^*A \cdot i^*B \cdot (-K_W) = A \cdot B \cdot L \cdot (-K_X - L).
$$

If $A \in Pic(X)$ is nef, then so is i*A.

L.

Figure 1

Proposition A.2 (Branched double covers). Let W be a smooth complex 3 -fold, let L be a line bundle over W, and let $\pi: \tilde{W} \to W$ be a double cover branched over a divisor in [2L]. The anticanonical bundle of \tilde{W} is given by

$$
-K_{\tilde{W}} = -\pi^*(K_W + L).
$$

The map π : Pic(W) \rightarrow Pic(W) is an isomorphism of abelian groups and for every $A, B \in Pic(W)$

* $A \cdot \pi^* B \cdot -K_{\tilde{W}} = 2A \cdot B \cdot (-K_W - L).$

If $A \in Pic(W)$ is nef, then so is $\pi^* A$.

Definition A.3. Let X be a complex manifold and let L be a line bundle over X, and let $Z \subset X$ be a smooth complex submanifold. Denote by \mathcal{I}_Z the ideal sheaf of Z. The submanifold Z is said to be cut-out by sections of L if $L \otimes \mathcal{I}_Z$ is globally generated; that is: for every $x \in Z$ there is a neighborhood U of x such that every section of L defined over U and which vanishes on Z extends to a global section of L vanishing on Z .

Proposition A.4 (Blow-up in a point [\[CN14,](#page-21-8) Lemma 4.5; [EH16,](#page-21-9) Section 13.6]). Let W be a smooth complex 3–fold and let $\pi: \tilde{W} \to W$ be the blow-up of W in a point x. Denote by E the exceptional divisor. The anticanonical bundle of \tilde{W} is given by

$$
-K_{\tilde{W}} = -\pi^* K_W - 2E.
$$

As abelian groups $Pic(\tilde{W}) = \pi^* Pic(W) \oplus \langle E \rangle$ and for every $A, B \in Pic(W)$

$$
\pi^* A \cdot \pi^* B \cdot (-K_{\tilde{W}}) = A \cdot B \cdot (-K_W), \quad \pi^* A \cdot E \cdot (-K_{\tilde{W}}) = 0, \quad \text{and} \quad E \cdot E \cdot (-K_{\tilde{W}}) = -2.
$$

If $A \in Pic(W)$ is nef, then so is π^*A . If $\{x\}$ is cut-out be sections of L, then $\pi^*L - E$ is nef.

Proposition A.5 (Blow-up in a smooth curve [\[CN14,](#page-21-8) Lemma 4.5; [EH16,](#page-21-9) Section 13.6]). Let W be a smooth complex 3–fold and let $\pi: \tilde{W} \to W$ be the blow-up of W in a smooth curve C. Denote by E the exceptional divisor. The anticanonical bundle of \tilde{W} is given by

$$
-K_{\tilde{W}} = -\pi^* K_W - E.
$$

As abelian groups $Pic(\tilde{W}) = \pi^* Pic(W) \oplus \langle E \rangle$ and for every $A, B \in Pic(W)$

* $A \cdot \pi^*B \cdot (-K_{\tilde{W}}) = A \cdot B \cdot (-K_W), \quad \pi^*A \cdot E \cdot (-K_{\tilde{W}}) = \deg_A(C), \quad \text{and} \quad E \cdot E \cdot (-K_{\tilde{W}}) = -\chi(C).$ If $A \in Pic(W)$ is nef, then so is π^*A . If C is cut-out be sections of L, then $\pi^*L - E$ is nef.

Proposition A.6 ($\lbrack \text{GH94}, \text{p. 606} \rbrack$; [EH16,](#page-21-9) Theorem 9.6]). Let X be a smooth n-fold and let E be a holomorphic vector bundle over X of rank r. Denote by $\pi: PE \to X$ the P^{r-1} -bundle associated with E and denote by $\mathcal{O}_{\mathbb{P}^r}(1)$ the dual of the tautological line bundle over \mathbf{P}^r . The anticanonical bundle E and denote by $\mathcal{O}_{PE}(1)$ the dual of the tautological line bundle over PE. The anticanonical bundle of PE is given by

 $-K_{PE} = -\pi^* K_X + \det E + r \mathcal{O}_{PE}(1).$

(PE) is a H^{}(X)-algebra generated by $h = c_1(\mathcal{O}_{PE}(1))$ subject to the relation

$$
h^{r} + c_{1}(E)h^{r-1} + c_{2}(E)h^{r-2} + \cdots + c_{r}(E) = 0.
$$

In particular, Pic(PE) = π^* Pic(X) \oplus $\langle \mathcal{O}_{PE}(1) \rangle$. Moreover, if $A \in Pic(X)$ is nef, then so is π^*A and if F^* is a direct sum of nef line bundles, then $\mathcal{O}_{PE}(1)$ is nef * is a direct sum of nef line bundles, then $\mathcal{O}_{\texttt{PE}}(1)$ is nef.

B Data for Fano 3–folds

The following list contains descriptions of a number of Fano 3–folds W together with generators *H*₁, [.](#page-13-1) . . , *H_r* of Pic(*W*), the intersection form on *N* = Pic(*W*), and −*K_W*. These generators are chosen such that the cone $R_+H_1 + \cdots R_+H_r$ is contained in the nef cone $\overline{Amp}(W)$ of *W*.¹ The entry #[*]* chosen such that the cone $\mathbb{R}_+H_1 + \cdots + \mathbb{R}_+H_r$ is contained in the nef cone $\overline{Amp}(W)$ of W^1 . The entry $\#_{n}^{r}$ concerns the Fano 3–fold $W = W_{n}^{r}$ with rk Pic(W) = r appearing as the nth entry of the corresponding table in UPoo, Chapter 121. This data has been computed using the tools discussed corresponding table in [\[IP99,](#page-21-11) Chapter 12]. This data has been computed using the tools discussed in [Appendix A.](#page-9-1) V_d for $d = 1, \ldots, 5$ refers to the del Pezzo Fano 3-fold of degree d that is a Fano 3–fold with Pic(V_d) = $\langle -\frac{1}{2}K_{V_d} \rangle$ and $-K_d^3 = 8 \cdot d$.

¹ This inclusion may be strict. Indeed, there are a few of instances where $-K_W$ is not contained in the former cone.

 $^{42}_{7}$

 $^{42}_{8}$

 $^{42}_{9}$

 $^{+2}_{+1}$

 $^{+2}_{+1}$

 $^{+2}_{+1}$

 $^{+2}_{+1}$

 $^{+2}_{+1}$

2.

 W is

 W is

C Fano 3–folds whose ample anticanonical bundle is not very ample

According to $[IP_{99}$, Theorem 2.4.5, Theorem 2.1.16, and the Remarks preceeding Section 12.3] if W is a Fano 3 with $-K_W$ is not very ample, then W is one of the following:

- 1. a double cover of \mathbf{P}^3 branched along a divisor of degree 6,
- 2. a double cover of a quadric branched along a divisor of degree 8,
- 3. V_1 , a double cover of $C \subset \mathbf{P}^6$, a cone over the Veronese surface in \mathbf{P}^5 , branched along a cubic hypersurface in C not passing through the vertex or a hypersurface of degree 6 in the cubic hypersurface in C not passing through the vertex, or a hypersurface of degree 6 in the weighted projective space $P(1, 1, 1, 2, 3)$,
- 4. the blow-up of V_1 along an elliptic curve which is an intersection of two divisors in $|-\frac{1}{2}K_{V_1}|$,
- 5. a double cover of $\mathbf{P}^1 \times \mathbf{P}^2$ branched along a divisor of bidegree $(2, 4)$,
- 6. the blow-up of V_2 along an elliptic curve which is an intersection of two divisors in $\left[-\frac{1}{2}K_{V_2}\right]$
(*K*, is a double cover of \mathbb{R}^3 branched along divisor of degree 4) $(V_2$ is a double cover of \mathbf{P}^3 branched along divisor of degree 4),
- 7. $\mathbf{P}^1 \times S_2$, or

8. $P^1 \times S_1$.

Here S_ℓ is a del Pezzo surface of degree ℓ . The double cover of a quadric branched along a divisor of degree 8 can be deformed to a quartic in \mathbf{P}^3 , for which $-K_W$ is, of course, very ample.

References

- [CHNP13] A. Corti, M. Haskins, J. Nordström, and T. Pacini. Asymptotically cylindrical Calabi-Yau 3–folds from weak Fano 3–folds. Geometry and Topology 17.4 (2013), pp. 1955–2059. doi: [10.2140/gt.2013.17.1955.](https://doi.org/10.2140/gt.2013.17.1955) MR: [3109862.](http://www.ams.org/mathscinet-getitem?mr=MR3109862) Zbl: [1273.14081](http://zbmath.org/?q=an:1273.14081) (cit. on pp. [1,](#page-0-0) [2\)](#page-1-2)
- [CHNP15] A. Corti, M. Haskins, J. Nordström, and T. Pacini. G_2 -manifolds and associative submanifolds via semi-Fano 3–folds. Duke Mathematical Journal 164.10 (2015), pp. 1971– 2092. DOI: [10.1215/00127094-3120743.](https://doi.org/10.1215/00127094-3120743) MR: [3369307.](http://www.ams.org/mathscinet-getitem?mr=MR3369307) Zbl: [06486366](http://zbmath.org/?q=an:06486366) (cit. on pp. [1,](#page-0-0) [2,](#page-1-2) [4\)](#page-3-6)
- [CN₁₄] D. Crowley and J. Nordström. *Exotic G*₂–manifolds. 2014. arXiv: [1411.0656](http://arxiv.org/abs/1411.0656) (cit. on p. [13\)](#page-12-0)
- [Dréo8] J.-M. Drézet. Exotic fine moduli spaces of coherent sheaves. Algebraic cycles, sheaves, shtukas, and moduli. Trends in Mathematics. 2008, pp. 21-32. DOI: $10.1007/978-3-$ [7643-8537-8_2.](https://doi.org/10.1007/978-3-7643-8537-8_2) MR: [2402691](http://www.ams.org/mathscinet-getitem?mr=MR2402691) (cit. on p. [6\)](#page-5-2)
- [EH16] D. Eisenbud and J. Harris. 3264 and all that: a second sourse in algebraic geometry. 2016. Zbl: [1341.14001](http://zbmath.org/?q=an:1341.14001) (cit. on p. [13\)](#page-12-0)
- [ER01] F. Eisenbrand and G. Rote. Fast reduction of ternary quadratic forms. Cryptography and lattices. 1st international conference, CaLC 2001, Providence, RI, USA, March 29–30, 2001. Revised papers. 2001, pp. 32–44. Zbl: [1006.11080](http://zbmath.org/?q=an:1006.11080) (cit. on p. [10\)](#page-9-2)
- [GH94] P. Griffiths and J. Harris. Principles of algebraic geometry. Wiley Classics Library. Reprint of the 1978 original. New York, 1994, pp. xiv+813. MR: [1288523](http://www.ams.org/mathscinet-getitem?mr=MR1288523) (cit. on p. [13\)](#page-12-0)
- [HHN15] M. Haskins, H.-J. Hein, and J. Nordström. Asymptotically cylindrical Calabi–Yau manifolds. Journal of Differential Geometry 101.2 (2015), pp. 213-265. DOI: 10.4310/jdg/1442364651 MR: [3399097.](http://www.ams.org/mathscinet-getitem?mr=MR3399097) Zbl: [1332.32028](http://zbmath.org/?q=an:1332.32028) (cit. on p. [2\)](#page-1-2)
- [HL10] D. Huybrechts and M. Lehn. The geometry of moduli spaces of sheaves. Second. Cambridge Mathematical Library. 2010, pp. xviii+325. DOI: [10.1017/CBO9780511711985.](https://doi.org/10.1017/CBO9780511711985) MR: [2665168.](http://www.ams.org/mathscinet-getitem?mr=MR2665168) Zbl: [1206.14027](http://zbmath.org/?q=an:1206.14027) (cit. on pp. [6,](#page-5-2) [7\)](#page-6-3)
- [Huy15] D. Huybrechts. Lectures on K_3 surfaces. 2015 (cit. on p. [6\)](#page-5-2)
- [IP99] V. A. Iskovskih and Yu. G. Prokhorov. Fano varieties. Algebraic geometry, V. Vol. 47. Encyclopaedia Math. Sci. 1999, pp. 1–247. MR: [1668579](http://www.ams.org/mathscinet-getitem?mr=MR1668579) (cit. on pp. [14,](#page-13-2) [21\)](#page-20-1)

[Joy96a] D. D. Joyce. Compact Riemannian 7-manifolds with holonomy G_2 . I. Journal of $\text{Differential Geometry }$ 43.2 (1996), pp. 291-328. DOI: [10.4310/jdg/1214458109.](https://doi.org/10.4310/jdg/1214458109) MR: [MR1424428.](http://www.ams.org/mathscinet-getitem?mr=MRMR1424428) Zbl: [0861.53022](http://zbmath.org/?q=an:0861.53022) (cit. on p. [1\)](#page-0-0)

- [Joy96b] D. D. Joyce. Compact Riemannian 7–manifolds with holonomy G_2 . II. Journal of $Differential Geometry$ 43.2 (1996), pp. 329-375. DOI: [10.4310/jdg/1214458110.](https://doi.org/10.4310/jdg/1214458110) MR: [MR1424428.](http://www.ams.org/mathscinet-getitem?mr=MRMR1424428) Zbl: [0861.53023](http://zbmath.org/?q=an:0861.53023) (cit. on p. [1\)](#page-0-0)
- [KL11] A. Kovalev and N.-H. Lee. K3 surfaces with non-symplectic involution and compact irreducible G_2 -manifolds. Mathematical Proceedings of the Cambridge Philosophical Society 151.2 (2011), pp. 193–218. DOI: [10.1017/S030500411100003X.](https://doi.org/10.1017/S030500411100003X) MR: [2823130.](http://www.ams.org/mathscinet-getitem?mr=MR2823130) Zbl: [1228.53064](http://zbmath.org/?q=an:1228.53064) (cit. on p. [1\)](#page-0-0)
- [Kov03] A. Kovalev. Twisted connected sums and special Riemannian holonomy. Journal für die Reine und Angewandte Mathematik 565 (2003), pp. 125-160. DOI: [10.1515/crll.2003.097.](https://doi.org/10.1515/crll.2003.097) MR: [MR2024648.](http://www.ams.org/mathscinet-getitem?mr=MRMR2024648) Zbl: [1043.53041](http://zbmath.org/?q=an:1043.53041) (cit. on pp. [1,](#page-0-0) [2\)](#page-1-2)
- [Mar77] M. Maruyama. Moduli of stable sheaves. I. J. Math. Kyoto Univ. 17.1 (1977), pp. 91–126. MR: [0450271.](http://www.ams.org/mathscinet-getitem?mr=MR0450271) Zbl: [0374.14002](http://zbmath.org/?q=an:0374.14002) (cit. on p. [6\)](#page-5-2)
- [Mar78] M. Maruyama. Moduli of stable sheaves. II. J. Math. Kyoto Univ. 18.3 (1978), pp. 557–614. MR: [509499.](http://www.ams.org/mathscinet-getitem?mr=MR509499) Zbl: [0395.14006](http://zbmath.org/?q=an:0395.14006) (cit. on p. [6\)](#page-5-2)
- [MM81] S. Mori and S. Mukai. Classification of Fano 3-folds with $B_2 \ge 2$. Manuscripta Math. 36.2 (1981), pp. 147–162. doi: [10.1007/BF01170131.](https://doi.org/10.1007/BF01170131) MR: [641971.](http://www.ams.org/mathscinet-getitem?mr=MR641971) Zbl: [0478.14033](http://zbmath.org/?q=an:0478.14033) (cit. on p. [9\)](#page-8-4)
- [MNS17] G. Menet, J. Nordström, and H. N. Sá Earp. Construction of G_2 -instantons via twisted connected sums. 2017. arXiv: [1510.03836](http://arxiv.org/abs/1510.03836) (cit. on pp. [1,](#page-0-0) [4\)](#page-3-6)
- [Moĭ67] B. G. Moĭšezon. Algebraic homology classes on algebraic varieties. Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), pp. 225–268. MR: [0213351.](http://www.ams.org/mathscinet-getitem?mr=MR0213351) Zbl: [0162.52503](http://zbmath.org/?q=an:0162.52503) (cit. on p. [4\)](#page-3-6)
- [Muk87] S. Mukai. On the moduli space of bundles on K3 surfaces. I. Vector bundles on algebraic varieties (Bombay, 1984). Vol. 11. Tata Inst. Fund. Res. Stud. Math. 1987, pp. 341–413. MR: [893604](http://www.ams.org/mathscinet-getitem?mr=MR893604) (cit. on p. [7\)](#page-6-3)
- [Nik79] V. V. Nikulin. *Integer symmetric bilinear forms and some of their geometric applications.* Izv. Akad. Nauk SSSR Ser. Mat. 43.1 (1979), pp. 111–177, 238. MR: [525944.](http://www.ams.org/mathscinet-getitem?mr=MR525944) Zbl: [0408.10011](http://zbmath.org/?q=an:0408.10011) (cit. on $p. 4$)
- [Sim94] C. T. Simpson. Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes Études Sci. Publ. Math. 79 (1994), pp. 47–129. MR: [1307297.](http://www.ams.org/mathscinet-getitem?mr=MR1307297) Zbl: [0891.14005.](http://zbmath.org/?q=an:0891.14005) ^{*II*} (cit. on pp. [6,](#page-5-2) [8\)](#page-7-2)
- $[SW15]$ H. N. Sá Earp and T. Walpuski. G_2 -instantons over twisted connected sums. Geometry and Topology 19.3 (2015), pp. 1263-1285. DOI: [10.2140/gt.2015.19.1263.](https://doi.org/10.2140/gt.2015.19.1263) arXiv: [1310.7933.](http://arxiv.org/abs/1310.7933) MR: [3352236.](http://www.ams.org/mathscinet-getitem?mr=MR3352236) Zbl: [06441803.](http://zbmath.org/?q=an:06441803) \circ (cit. on pp. [1,](#page-0-0) [5\)](#page-4-3)
- [Thooo] R. P. Thomas. A holomorphic Casson invariant for Calabi–Yau 3–folds, and bundles on K3 fibrations. Journal of Differential Geometry 54.2 (2000), pp. 367-438. MR: [1818182.](http://www.ams.org/mathscinet-getitem?mr=MR1818182) Zbl: $1034.14015.$ (cit. on p. [7\)](#page-6-3)
- [Voi07] C. Voisin. Hodge theory and complex algebraic geometry. II. Vol. 77. Cambridge Studies in Advanced Mathematics. Translated from the French by Leila Schneps. 2007, pp. x+351. MR: [2449178.](http://www.ams.org/mathscinet-getitem?mr=MR2449178) Zbl: [1129.14020](http://zbmath.org/?q=an:1129.14020) (cit. on p. [3\)](#page-2-2)
- [Wal13] T. Walpuski. G_2 -instantons on generalised Kummer constructions. Geometry and Topology 17.4 (2013), pp. 2345-2388. DOI: [10.2140/gt.2013.17.2345.](https://doi.org/10.2140/gt.2013.17.2345) arXiv: [1109.6609.](http://arxiv.org/abs/1109.6609) MR: [3110581.](http://www.ams.org/mathscinet-getitem?mr=MR3110581) Zbl: [1278.53051.](http://zbmath.org/?q=an:1278.53051) ^{*n*} (cit. on p. [1\)](#page-0-0)
- [Wal16] T. Walpuski. G_2 -instantons over twisted connected sums: an example. Mathematical Research Letters 23.2 (2016), pp. 529-544. DOI: [10.4310/MRL.2016.v23.n2.a11.](https://doi.org/10.4310/MRL.2016.v23.n2.a11) arXiv: [1505.01080.](http://arxiv.org/abs/1505.01080) MR: [3512897.](http://www.ams.org/mathscinet-getitem?mr=MR3512897) Zbl: [06609380.](http://zbmath.org/?q=an:06609380) ^{*II*} (cit. on pp. [1,](#page-0-0) [10\)](#page-9-2)