# Arithmetic conditions for the existence of $G_2$ -instantons over twisted connected sums

Thomas Walpuski

2019-10-08

#### Abstract

Extending earlier work in [Wal16] this article introduces an arithmetic condition which guarantees the existence of  $G_2$ -instantons over twisted connected sums. By brute-force search a significant number of solutions of this condition can be found. This yields many new examples of  $G_2$ -instantons and, in particular, the first examples of irreducible, unobstructed  $G_2$ -instantons on **P**U(r)-bundles for  $r \neq 2$ .

# 1 Introduction

The first few examples examples of irreducible unobstructed  $G_2$ -instantons on SO(3)-bundles where constructed in [Wal13]. These examples are defined over  $G_2$ -manifolds constructed by Joyce [Joy96a; Joy96b] by resolving flat  $G_2$ -orbifolds. By far the most fruitful method for constructing  $G_2$ -manifolds to date is the twisted connected sum construction [Kov03; KL11; CHNP13; CHNP15]. While there is a gluing theorem to produce  $G_2$ -instantons over twisted connected sums [SW15], so far there are only two examples of  $G_2$ -instantons constructed using this theorem in the literature [Wal16; MNS17]. This article slightly extends the work in [Wal16] and shows that the ideas developed there can, in fact, be used to produce a rather large number of  $G_2$ -instantons.

After reviewing (a special case of) the twisted connected sum construction in Section 2, an arithmetic condition for the existence of  $G_2$ -instantons is given and proved in Section 3. Solutions to this arithmetic condition can be found by a simple brute-force search algorithm outlined in Section 4. A concrete implementation in SAGE/PYTHON of this algorithm (with a quite restricted search scope) finds 299 solutions of the aforementioned arithmetic condition. This yields, in particular, the first examples of irreducible, unobstructed  $G_2$ -instantons on PU(r)-bundles with  $r \neq 2$ . Further statistics regarding these can be found in Section 5.

# 2 Twisted connected sums from Fano 3-folds

### 2.1 The twisted connected sum construction

**Definition 2.1** (Corti, Haskins, Nordström, and Pacini [CHNP13, Definition 5.1]). A **building block** is a smooth projective 3–fold *Z* together with a projective morphism  $\pi : Z \to \mathbf{P}^1$  such that the following hold:

- 1. The anticanonical class  $-K_Z \in H^2(Z)$  is primitive.
- 2.  $\Sigma := \pi^*(\infty)$  is a smooth *K*3 surface and  $\Sigma \sim -K_Z$ .

**Definition 2.2.** A framing of a building block  $(Z, \Sigma)$  consists of a hyperkähler structure  $\boldsymbol{\omega} = (\omega_I, \omega_J, \omega_K)$  on  $\Sigma$  such that  $\omega_J + i\omega_K$  is of type (2, 0) as well as a Kähler class on Z whose restriction to  $\Sigma$  is  $[\omega_I]$ .

Given a framed building block  $(Z, \Sigma, \omega)$ , using the work of Haskins, Hein, and Nordström [HHN15], we can make  $V := Z \setminus \Sigma$  into an asymptotically cylindrical (ACyl) Calabi–Yau 3–fold with asymptotic cross-section  $S^1 \times \Sigma$ ; hence,  $Y := S^1 \times V$  is an ACyl  $G_2$ -manifold with asymptotic cross-section  $T^2 \times \Sigma$ .

**Definition 2.3.** A matching of pair of framed building blocks  $(Z_{\pm}, \pi_{\pm}, \omega_{\pm})$  is a hyperkähler rotation  $\mathfrak{r}: \Sigma_{+} \to \Sigma_{-}$ , i.e., a diffeomorphism such that

$$\mathfrak{r}^*\omega_{I,-} = \omega_{J,+}, \quad \mathfrak{r}^*\omega_{J,-} = \omega_{I,+} \quad \text{and} \quad \mathfrak{r}^*\omega_{K,-} = -\omega_{K,+}.$$

Given a matched pair of framed building blocks  $(Z_{\pm}, \pi_{\pm}, \omega_{\pm}; \mathfrak{r})$ , the twisted connected sum construction produces a simply-connected compact 7–manifold Y together with a family of torsion-free  $G_2$ -structures { $\phi_T : T \gg 1$ } by gluing truncations of  $Y_{\pm}$  along their boundaries via interchanging the circle factors and  $\mathfrak{r}$ . Denote by  $\Upsilon : H^{\text{ev}}(Z_+) \times_{H^{\text{ev}}(\Sigma_+)} H^{\text{ev}}(Z_-) \to H^{\text{ev}}(Y)$  the splicing map defined in [CHNP<sub>15</sub>, Definition 4.15].

### 2.2 Building blocks from Fano 3-folds

**Proposition 2.4** ([Kovo3, Proposition 6.42; CHNP15, Proposition 3.17]). Let W be a Fano 3–fold and let  $|\Sigma_0, \Sigma_\infty| \in |-K_W|$  be anti-canonical pencil such that  $\Sigma_\infty$  is a smooth K3 surface and the base locus C is a smooth curve. Set

$$Z := \operatorname{Bl}_C W$$

and denote by  $\pi: Z \to \mathbf{P}^1$  the map induced by the pencil  $|\Sigma_0, \Sigma_{\infty}|$ . In this situation the following hold:

- 1.  $\pi: Z \rightarrow \mathbf{P}^1$  is a building block and
- 2. the inclusion  $\Sigma_{\infty} \subset W$  induces an isomorphism  $\pi^*(\infty) \cong \Sigma_{\infty}$ .

Definition 2.5. A building block arising from Proposition 2.4 is said to be of Fano type.

*Remark* 2.6. Let *W* be a Fano 3–fold whose anticanonical bundle  $-K_W$  is very ample. By Bertini's theorem, the adjunction formula, and the Lefschetz hyperplane theorem a general anti-canonical divisor is a smooth K<sub>3</sub> surface  $\Sigma_{\infty}$ . A further application of Bertini's theorem shows that having chosen  $\Sigma_{\infty}$  one can always find  $\Sigma_0$  such that the base locus of  $|\Sigma_0, \Sigma_{\infty}|$  is smooth. Moreover, for a general  $\Sigma_0$  the morphism  $\pi$  has only finitely many singular fibres and the singular fibres have only ordinary double point singularities; see [Voio7, Corollary 2.10].

#### 2.3 Matching Fano 3-folds

**Definition 2.7.** The **Picard lattice** of a smooth complex 3-fold W is Pic(W) equipped with the quadratic form

$$x \otimes y \mapsto x \cdot y \cdot (-K_W)$$

**Definition 2.8.** Let *N* be a lattice. An *N*-marking of a Fano 3-fold *W* is an isometry  $h: N \rightarrow \text{Pic}(W)$ . A pair of *N*-marked Fano 3-folds  $(W_1, h_1)$  and  $(W_2, h_2)$  are **deformation equivalent** if there is a proper holomorphic submersion  $\pi: X \rightarrow \Delta$  from a complex manifold to the unit disc in C such that  $W_1$  and  $W_2$  both occur as fibers of  $\pi$  and parallel transport induces the isometry  $h_1^{-1}h_2$ . An *N*-marked deformation type of Fano 3-folds is a maximal set  $\mathcal{W}$  of *N*-marked Fano 3-folds such that every pair of elements of  $\mathcal{W}$  are deformation equivalent.

**Definition 2.9.** Let  $N_{\pm}$  and  $N_0$  be non-degenerate lattices and let  $i_{\pm} \colon N_0 \hookrightarrow N_{\pm}$  be embeddings. An **orthogonal pushout** of  $i_+$  and  $i_-$  is a lattice N together with embeddings  $j_{\pm} \colon N_{\pm} \hookrightarrow N$  such that the diagram



is commutative,

$$j_{\pm}(N_{\pm}) \cap j_{-}(N_{-}) = i_{\pm}j_{\pm}(N_{0}), \quad N = j_{\pm}(N_{\pm}) + j_{-}(N_{-}), \text{ and } j_{\pm}(N_{\pm})^{\perp} \subset j_{\mp}(N_{\mp}).$$

Situation 2.10. Let  $r_{\pm}, r_0 \in \mathbb{N}$  with  $r_+ + r_- - r_0 \leq 11$ . Let  $N_{\pm}$  be lattices of signature  $(1, r_{\pm} - 1)$ , let  $N_0$  be a lattice of signature  $(0, r_0)$ , let  $i_{\pm} \colon N_0 \hookrightarrow N_{\pm}$  be primitive embeddings, and let  $(N, j_+, j_-)$  be an orthogonal pushout of  $i_+$  and  $i_-$ . Let  $\operatorname{Amp}_{\pm} \subset N_{\pm} \otimes_{\mathbb{Z}} \mathbb{R}$  be open cones. Let  $\mathcal{W}_{\pm}$  be  $N_{\pm}$ -marked deformation types of Fano 3-folds such that for every  $(W_{\pm}, h_{\pm}) \in \mathcal{W}$ :

- 1.  $-K_{W_{\pm}}$  is very ample,
- 2.  $h_{\pm}^{-1}(Amp_{\pm})$  is contained in the ample cone of  $W_{\pm}$ , and
- 3. Amp<sub>±</sub>  $\cap$   $(i_{\pm}(N_0) \otimes_{\mathbb{Z}} \mathbb{R})^{\perp} \neq \emptyset$ .

**Proposition 2.11.** Assume Situation 2.10. For every  $H_{\pm} \in \operatorname{Amp}_{\pm} \cap (i_{\pm}(N_0) \otimes_{\mathbb{Z}} \mathbb{R})^{\perp}$  and  $\varepsilon > 0$ , there exist  $(W_{\pm}, h_{\pm}) \in \mathcal{W}_{\pm}$ , smooth K3 surfaces  $\Sigma_{\pm} \in |-K_{W_{\pm}}|$ , hyperkähler structures  $\omega^{\pm} = (\omega_I^{\pm}, \omega_J^{\pm}, \omega_K^{\pm})$  on  $\Sigma_{\pm}$ , and a hyperkähler rotation  $\mathfrak{r}: (\Sigma_+, \omega_+) \to (\Sigma_-, \omega_-)$  such that:

- 1. the restriction maps  $\operatorname{res}_{\pm}$ :  $\operatorname{Pic}(W_{\pm}) \to \operatorname{Pic}(\Sigma_{\pm})$  are isomorphisms,
- 2. the diagram

$$N_{0} \xrightarrow{h_{+}} \operatorname{Pic}(W_{+}) \xrightarrow{\operatorname{res}_{+}} \operatorname{Pic}(\Sigma_{+})$$

$$\downarrow^{r_{*}}$$

$$h_{+} \xrightarrow{\operatorname{Pic}(W_{-})} \xrightarrow{\operatorname{res}_{-}} \operatorname{Pic}(\Sigma_{-})$$

is commutative, and

3. the distance between  $\mathbf{Rh}_{\pm}(H_{\pm})$  and  $\mathbf{R}[\omega_{I}^{\pm}]$  in  $\mathbf{PH}^{2}(\Sigma_{\pm}, \mathbf{R})$  is at most  $\varepsilon$ .

*Proof.* Therefore, [CHNP15, Proposition 6.18] applies. By [Moĭ67, Theorem 7.5] for very general  $\Sigma_{\pm} \in -K_{W_{\pm}}$  the conclusion (1) holds. By [Nik79, Theorem 1.12.4 and Corollary 1.12.3], *N* embeds primitively into the K3 lattice. Therefore, the framing and hyperkähler rotation can thus be obtained from [CHNP15, Proposition 6.18] and (2) holds by construction. The observation that in this construction one may assume (3) is due to [MNS17, Proposition 2.6].

Choosing further anticanonical divisors as in Proposition 2.4 one obtains a matched pair of framed building blocks  $(Z_{\pm}, \pi_{\pm}, \omega_{\pm}; \mathfrak{r})$  which can be feed into the twisted connected sum construction.

### **3** An existence theorem for *G*<sub>2</sub>-instantons

Theorem 3.1. Assume Situation 2.10. Let

$$H_{\pm} \in \operatorname{Amp}_{+} \cap i_{\pm}(N_{0})^{\perp}$$
 and  $v = (r, B, s) \in \{2, 3, \ldots\} \times N_{0} \times \mathbb{Z}$ 

such that the following hold:

- 1.  $B^2 = 2(rs 1)$ ,
- 2. the r and the divisibility of B are coprime, r and s are coprime; and
- *3.* for every non-zero  $x \in N_{\pm}$  perpendicular to  $H_{\pm}$

$$x^2 < -\frac{1}{2}r^2(r^2 - 1).$$

In this situation there is a matched pair of framed building blocks  $(Z_{\pm}, \pi_{\pm}, \omega_{\pm}; \mathfrak{r})$  obtained from Proposition 2.11 and for  $T \gg 1$  the corresponding twisted connected sum carries an irreducible and unobstructed  $G_2$ -instanton on a non-trivial PU(r)-bundle.

#### 3.1 A gluing theorem for $G_2$ -instantons over twisted connected sums

**Theorem 3.2** (Sá Earp and Walpuski [SW15, Theorem 1.3 and Remark 1.7]). Let  $(Z_{\pm}, \pi_{\pm}, \omega_{\pm}; \mathfrak{r})$  be a matched pair of framed building blocks. Set  $\Sigma_{\pm} := \pi_{\pm}^*(\infty)$ . Denote by Y the compact 7-manifold and by  $\{\phi_T : T \gg 1\}$  the family of torsion-free  $G_2$ -structures obtained from the twisted connected sum construction. Let  $\mathscr{C}_{\pm} \to Z_{\pm}$  be a pair of rank r holomorphic vector bundles such that the following hold:

- 1.  $c_1(\mathscr{C}_+|_{\Sigma_+}) = \mathfrak{r}^*c_1(\mathscr{C}_-|_{\Sigma_-})$  and  $c_2(\mathscr{C}_+|_{\Sigma_+}) = \mathfrak{r}^*c_2(\mathscr{C}_-|_{\Sigma_-})$ .
- 2.  $\mathscr{C}_{\pm}|_{\Sigma_{\pm}}$  is  $\mu$ -stable with respect to  $\omega_{I,\pm}$  and rigid, i.e.,

 $H^1(\Sigma_{\pm}, \mathscr{E}\mathrm{nd}_0(\mathscr{E}_{\pm}|_{\Sigma_{\pm}})) = 0.$ 

3.  $\mathscr{E}_{\pm}$  is infinitesimally rigid:

 $H^1(Z_{\pm}, \mathscr{E}\mathrm{nd}_0(\mathscr{E}_{\pm})) = 0.$ 

In this situation exists a U(r)-bundle E over Y with

 $c_1(E) = \Upsilon(c_1(\mathscr{C}_+), c_1(\mathscr{C}_-))$  and  $c_2(E) = \Upsilon(c_2(\mathscr{C}_+), c_2(\mathscr{C}_-)).$ 

and a family of connections  $\{A_T : T \gg 1\}$  on the associated PU(r)-bundle with  $A_T$  being an irreducible unobstructed  $G_2$ -instanton over  $(Y, \phi_T)$ .

### 3.2 Relative moduli spaces of sheaves

**Definition 3.3.** Let  $\pi \colon Z \to \mathbf{P}^1$  be a building block. Define  $\mathbf{M} \colon \mathbf{Sch}_{\mathbf{P}^1}^{\mathrm{op}} \to \mathbf{Set}$ , the **relative moduli functor** of coherent sheaves on *Z*, as follows:

- Let *S* be  $\mathbb{P}^1$ -scheme. Two such sheaves  $\mathscr{E}$  and  $\mathscr{F}$  over  $Z \times_{\mathbb{P}^1} S$  are consider to be equivalent if there exists a line bundle over *S* such that  $\mathscr{E}$  and  $\mathscr{F} \otimes \mathscr{L}$  are isomorphic. We define  $\mathbb{M}(S)$  the be the set of equivalence classes of *S*-flat coherent sheaves on  $Z \times_{\mathbb{P}^1} S$ .
- Given a morphism  $f: S \to T$  of  $\mathbb{P}^1$ -schemes, set

$$\mathbf{M}(f)[\mathscr{C}] \coloneqq [f^*\mathscr{C}].$$

**Definition 3.4.** Let  $\pi: Z \to \mathbf{P}^1$  be a building block. Let  $\bullet$  denote an open condition on coherent sheaves on the fibers of  $\pi$ . Denote by  $\mathbf{M}_{\bullet}$  the open subfunctor of  $\mathbf{M}$  defined by

 $\mathbf{M}_{\bigstar}(S) \coloneqq \{ [\mathscr{C}] \in \mathbf{M}(S) : \text{for every } b \in S \text{ the fiber } \mathscr{C} \otimes_{\mathscr{O}_S} \mathbf{C}(b) \text{ satisfies } \clubsuit \}.$ 

We say that  $M_{\bullet}$  is **representable** if there exists a  $P^1$ -scheme  $M_{\bullet}$  together with a natural isomorphism

$$\phi$$
: Hom<sub>P1</sub>( $\cdot, M_{\bullet}$ )  $\cong$  M<sub>•</sub>( $\cdot$ ).

In this case we call  $M_{\bullet}$  the relative moduli space of coherent sheaves on Z satisfying  $\bullet$ . A universal sheaf over  $Z \times_{P^1} M_{\bullet}$  is a sheaf in the equivalence class  $\phi(\operatorname{id}_{M_{\bullet}}) \in \mathbf{M}_{\bullet}(M_{\bullet})$ .

*Remark* 3.5. Typical examples of representable subfunctors of **M** arise by imposing stability conditions [Mar78; Mar77; Sim94]. However, these are not the only examples; see, e.g., Drézet [Dréo8].

Suppose that  $M = M_{\bullet}$  is a relative moduli space of coherent sheaves on Z with universal sheaf  $\mathscr{U}$ . Being a  $\mathbf{P}^1$ -scheme, M comes with a morphism  $\varpi \colon M \to \mathbf{P}^1$ . A morphism  $\mathbf{P}^1 \to M$  of  $\mathbf{P}^1$ -schemes is simply a morphism  $s \colon \mathbf{P}^1 \to M$  with  $\varpi \circ s = \mathrm{id}_{\mathbf{P}^1}$ , that is, a section of  $\varpi$ . By construction any such section yields a coherent sheaf  $(\mathrm{id}_Z \times_{\mathbf{P}^1} s)^* \mathscr{U}$  on Z.

**Proposition 3.6.** Let  $\pi: Z \to \mathbf{P}^1$  be a building block and let A be a  $\pi$ -ample line bundle. Let  $\upsilon = (r, B, s) \in \mathbf{N}_0 \times H^2(Z) \times \mathbf{Z}$ . Suppose that r and s are coprime. Denote by  $\mathbf{A}_{A,\upsilon}$  the condition for a sheaf  $\mathscr{C}$  on a fiber of  $\pi^{-1}(b)$  to be Gieseker stable with respect to A and satisfy

 $\operatorname{rk} \mathscr{E} = r$ ,  $c_1(\mathscr{E}) = B|_{\pi^{-1}(b)}$ , and  $\chi(\mathscr{E}) = r + s$ .

Denote by  $M_{A,v}$  the open subfunctor of **M** corresponding to  $\mathbf{A}_{A,v}$ . This functor is representable by a projective  $\mathbf{P}^1$ -scheme  $M = M_{A,v}$ .

*Proof of Proposition 3.6.* Since *r* and  $\chi$  are coprime, if  $\mathscr{C}$  is Gieseker semistable, then it is Gieseker stable. Therefore,  $\mathbf{M}_{H,v}$  agrees with with the relative moduli functor of Gieseker semistable sheaves on *Z* with Mukai vector *v*. Simpson [Sim94, Section 1] proved that this functor is universally corepresented by a proper and separated  $\mathbf{P}^1$ -scheme  $M_{H,v}$ . Since *r* and  $\chi$  are coprime, it follows from [HL10, Corollary 4.6.7] that  $M_{H,v}$  carries a universal sheaf and thus represents  $\mathbf{M}_{H,v}$ .

#### 3.3 Sheaves on K3 surfaces

**Definition 3.7.** Let  $\Sigma$  be a K<sub>3</sub> surface. The **Mukai lattice** of  $\Sigma$  is  $\tilde{H}(Z) = \mathbb{Z} \oplus H^2(\Sigma, \mathbb{Z}) \oplus \mathbb{Z}$  with the quadratic form given by

$$(r, B, s)^2 = B^2 - 2rs.$$

Let  $\mathscr{E}$  be a coherent sheaf on  $\Sigma$ . The **Mukai vector** is defined by

$$v(\mathscr{E}) \coloneqq (\mathrm{rk}(\mathscr{E}), c_1(\mathscr{E}), \chi(\mathscr{E}) - \mathrm{rk}(\mathscr{E})) \in \mathbf{N}_0 \oplus H^{1,1}(\Sigma, \mathbf{Z}) \oplus \mathbf{Z} \subset \tilde{H}(\Sigma).$$

**Proposition 3.8** ([HL10, Corollary 6.1.5]). For every coherent sheaf  $\mathscr{C}$  on a K3 surface

$$\dim \operatorname{Ext}^{1}(\mathscr{C}, \mathscr{C}) = 2 \dim H^{0}(\mathscr{C}\operatorname{nd}(\mathscr{C})) - v(\mathscr{C})^{2}.$$

**Theorem 3.9** ([Huy15, Theorem 10.2.7]). Let  $(\Sigma, A)$  be a polarized smooth K3 surface. For every Mukai vector  $v = (r, B, s) \in \mathbb{N} \oplus H^{1,1}(\Sigma, \mathbb{Z}) \oplus \mathbb{Z}$  with  $v^2 \ge -2$  and r and s coprime there exists a Gieseker stable sheaf  $\mathscr{C}$  over  $\Sigma$  with

$$v(\mathscr{E}) = v.$$

**Theorem 3.10** (Mukai [Muk87, Proposition 3.3 and Corollaries 3.5 and 3.6] and Thomas [Thooo, Theorem 4.5]). Let  $(\Sigma, A)$  be a polarised K3 surface with at worst RDP singularities. If  $\mathcal{C}$  is a Gieseker stable sheaf with

$$v(\mathscr{C})^2 = -2,$$

then it is locally free and any other Gieseker semistable sheaf with the same Mukai vector is isomorphic to  $\mathcal{C}$ . In particular, the moduli space of Gieseker stable sheaves with Mukai vector  $v(\mathcal{C})$  is a reduced point.

**Proposition 3.11.** Let  $(\Sigma, A)$  be a polarized smooth K3 surface and let  $\mathcal{C}$  be a Gieseker stable sheaf on  $\Sigma$ . If  $\operatorname{rk} \mathcal{C}$  and the divisibility of  $c_1(\mathcal{C})$  are coprime and for every non-zero  $x \in H^{1,1}(\Sigma, \mathbb{Z})$  perpendicular to  $c_1(A)$ 

(3.12) 
$$x^{2} < -\frac{1}{4} (\operatorname{rk} \mathscr{C})^{2} (2 (\operatorname{rk} \mathscr{C})^{2} + v(\mathscr{C})^{2}),$$

then  $\mathscr{E}$  is  $\mu$ -stable.

*Proof.* Since  $\mathscr{C}$  is Gieseker stable, it is  $\mu$ -semistable. Suppose  $\mathscr{F}$  were a destabilizing sheaf, that is, a torsion-free subsheaf  $\mathscr{F} \subset \mathscr{C}$  with  $0 < \operatorname{rk}(\mathscr{F}) < \operatorname{rk} \mathscr{C}$  and  $\mu(\mathscr{F}) = \mu(\mathscr{C})$ . Set

$$x \coloneqq \operatorname{rk} \mathscr{C} \cdot c_1(\mathscr{F}) - \operatorname{rk} \mathscr{F} \cdot c_1(\mathscr{C}).$$

This expression is non-zero because  $\operatorname{rk} \mathscr{C}$  and the divisibility of  $c_1(\mathscr{C})$  are coprime. Since

$$x \cdot c_1(A) = \operatorname{rk} \mathscr{C} \cdot \operatorname{rk} \mathscr{F} \cdot (\mu(\mathscr{F}) - \mu(\mathscr{C})) = 0,$$

x satisfies (3.12).

Define the discriminant of  $\mathcal E$  by

$$\Delta(\mathscr{E}) := 2 \operatorname{rk} \mathscr{E} \cdot c_2(\mathscr{E}) - (\operatorname{rk} \mathscr{E} - 1)c_1(\mathscr{E})^2.$$

According to [HL10, Theorem 4.C.3]

$$-\frac{1}{4}(\operatorname{rk} \mathscr{C})^2 \Delta(\mathscr{C}) \leqslant x^2.$$

By Hirzebruch–Riemann–Roch  $\Delta(\mathscr{C})$  can be rewritten as

$$\Delta(\mathscr{E}) = \upsilon(\mathscr{E})^2 + 2(\operatorname{rk} \mathscr{E})^2$$

leading to a contradiction x satisfying (3.12).

#### 3.4 Proof of Theorem 3.1

Choose  $\varepsilon \ll 1$  and construct  $(Z_{\pm}, \pi_{\pm}, \omega_{\pm}; \mathfrak{r})$  accordingly via Proposition 2.11. By Remark 2.6 it can be arranged that  $\pi_{\pm}$  has only finitely many singular fibres and the singular fibres have only ordinary double point singularities.

By slight abuse of notation identify  $\operatorname{Pic}(W_{\pm})$  and  $\pi_{\pm}^* \operatorname{Pic}(W_{\pm}) \subset \operatorname{Pic}(Z_{\pm})$ . In particular, identify  $H_{\pm}$  with the corresponding  $\pi_{\pm}$ -ample line bundle on  $Z_{\pm}$ . Set  $v_{\pm} := (r, h_{\pm}i_{\pm}(B), s)$ . By Proposition 3.6, the open subfunctor of  $\mathbf{M}$  corresponding to  $\mathbf{a}_{H_{\pm},v_{\pm}}$  is representable by a projective  $\mathbf{P}^1$ -scheme  $\varpi_{\pm} : M_{\pm} \to \mathbf{P}^1$ . Choose a universal sheaf  $\mathcal{U}_{\pm}$  over  $Z_{\pm} \times_{P^1} M_{\pm}$ . It follows from Theorem 3.9 and Theorem 3.10 that  $M_{\pm} = \mathbf{P}^1$  and  $\varpi_{\pm} = \operatorname{id}_{P^1}$ . Therefore,  $\mathcal{U}_{\pm}$  is a sheaf over  $Z_{\pm}$ . By Theorem 3.10, the restriction of  $\mathcal{U}_{\pm}$  to every fiber of  $\pi_{\pm}$  is locally free; hence, by [Sim94, Lemma 1.27],  $\mathcal{U}_{\pm}$  is locally free.

It remains to show that Theorem 3.2 applies with  $\mathscr{C}_{\pm} = \mathscr{U}_{\pm}$ . Hypothesis (1) holds by construction. By Proposition 3.11,  $\mathscr{U}_{\pm}|_{\pi_{\pm}^{*}(\infty)}$  is  $\mu$ -stable with respect to  $H_{\pm}$ . Since  $\mathbf{R}h_{\pm}(H_{\pm})$  and  $\mathbf{R}[\omega_{I}^{\pm}]$  have distance at most  $\varepsilon$  and  $\varepsilon \ll 1$  it also is  $\mu$ -stable with respect to  $\omega_{I}^{\pm}$ . By construction for every  $b \in \mathbf{P}^{1}$ ,  $H^{1}(\pi_{\pm}^{-1}(b), \mathscr{E}\mathrm{nd}_{0}(\mathscr{U}_{\pm})) = 0$ ; hence, by Grothendieck's spectral sequence,  $H^{1}(Z_{\pm}, \mathscr{E}\mathrm{nd}_{0}(\mathscr{U}_{\pm})) = 0$ . This shows that hypothesis (3) holds as well.  $\Box$ 

### 4 How to find examples?

#### 4.1 Constructing orthogonal pushouts

Let  $N_{\pm}$  and  $N_0$  be non-degenerate lattices and let  $i_{\pm} \colon N_0 \hookrightarrow N_{\pm}$  be primitive embeddings. If there exists a pushout of  $i_+$  and  $i_-$ , then it is unique up to isomorphism. The following procedure constructs the orthogonal pushout if it does exist.

Choose bases  $H_1^{\pm}, \ldots, H_{\rho_{\pm}}^{\pm}$  of  $N_{\pm}, B_1, \ldots, B_{\rho_0}$  of  $N_0$ , and  $B_{\rho_0+1}^{\pm}, \ldots, B_{\rho_{\pm}}^{\pm}$  of  $N_0^{\perp} \subset N_{\pm}$ . The vectors  $i_{\pm}(B_1), \ldots, i_{\pm}(B_{\rho_0}), B_{\rho_0+1}^{\pm}, \ldots, B_{\rho_{\pm}}^{\pm}$  span a sublattice of  $N^{\pm}$ . Identifying this lattice with  $\mathbb{Z}^{\rho_{\pm}}$  the quadratic form is encoded in an integral matrix of the form

$$\begin{pmatrix} q_0 & 0 \\ 0 & q_{\pm} \end{pmatrix}$$

with  $q_0 \in \mathbb{Z}^{\rho_0 \times \rho_0}$  and  $q_{\pm} \in \mathbb{Z}^{(\rho_{\pm} - \rho_0) \times (\rho_{\pm} - \rho_0)}$ . Define  $T_{\pm} \in \mathbb{Z}^{\rho_{\pm} \times \rho_{\pm}}$  by

$$\begin{pmatrix} i_{\pm}(B_1) & \cdots & i_{\pm}(B_{\rho_0}) & B_{\rho_0+1}^{\pm} & \cdots & B_{\rho_{\pm}}^{\pm} \end{pmatrix} = \begin{pmatrix} H_1^{\pm} & \cdots & H_{\rho_{\pm}}^{\pm} \end{pmatrix} T_{\pm}.$$

The columns of the *rational* matrix  $T_{\pm}^{-1} \in \mathbb{Q}^{\rho_{\pm} \times \rho_{\pm}}$  represent the basis vectors of  $N_{\pm}$ . This gives a presentation of  $N_{\pm}$  as an overlattice of  $\mathbb{Z}^{\rho_{\pm}}$  with the above quadratic form.

Define inclusions  $j_{\pm} \colon \mathbf{Q}^{\rho_{\pm}} \hookrightarrow \mathbf{Q}^r$  by

$$j_+(x_1, \dots, x_{\rho_+}) \coloneqq (x_1, \dots, x_{\rho_+}, 0, \dots, 0)$$
 and  
 $j_-(x_1, \dots, x_{\rho_-}) \coloneqq (x_1, \dots, x_{\rho_0}, 0, \dots, 0, x_{\rho_0+1}, \dots, x_{\rho_-}).$ 

Denote by *N* the subgroup of  $\mathbb{Q}^r$  generated by the images the columns of  $T_+^{-1}$  and  $T_-^{-1}$  under  $j_+$  and  $j_-$ . The matrix

$$egin{pmatrix} q_0 & 0 & 0 \ 0 & q_+ & 0 \ 0 & 0 & q_- \end{pmatrix}$$

defines a *rational* quadratic form on *N*. If this quadratic form takes values in the integers, then *N* is a lattice and together with the primitive embeddings  $j_{\pm} \colon N_{\pm} \hookrightarrow N$  forms a orthogonal pushout of  $i_+$  and  $i_-$ . Whether the quadratic form is integral or not is easily checked by computing the products between the images of the columns of  $T_+^{-1}$  under  $j_+$  and the images of the columns of  $T_-^{-1}$  under  $j_-$ .

### 4.2 Finding input for Theorem 3.1

The deformation types of Fano 3–folds have been classified by Mori and Mukai [MM81]. Appendix B lists all deformation types of Fano 3–folds W with  $\rho := \operatorname{rk}\operatorname{Pic}(W) \in \{2,3\}$ . The entries of this list are labeled by  $\#_n^{\rho}$ . For each  $\#_n^{\rho}$  the Picard lattice  $\operatorname{Pic}(W)$  is given in terms of a concrete basis  $H_1, \ldots, H_{\rho}$  of  $\operatorname{Pic}(W)$  such that the interior of the cone

$$\mathbf{R}_{+}H_{1} + \cdots + \mathbf{R}_{+}H_{\rho}$$

is contained in the ample cone of *W*. All of the entries in Appendix B except to listed in Appendix C have very ample anticanonical bundle.

Equipped with this data one can try to find examples of the input required for Theorem 3.1 by executing the following steps:

- o. Let  $r \in \{2, 3, ...\}$ . Pick two entries in Appendix B except those listed in Appendix C and denote the corresponding lattices by  $N_{\pm}$ .
- 1. Try to find a pair vectors  $B_{\pm} \in N_{\pm}$  such that:
  - (a)  $B_+^2 = B_-^2$ ,

(b) 
$$s \coloneqq \frac{B_+^2 + 2}{2r} \in \mathbb{Z}$$
,

- (c) the r and the divisibility of B are coprime, and r and s are coprime.
- Suppose a suitable pair B<sub>±</sub> has been found. Try to find H<sub>±</sub> ∈ B<sup>⊥</sup><sub>±</sub> whose representation in terms of H<sup>±</sup><sub>1</sub>,..., H<sup>±</sup><sub>ρ<sub>+</sub></sub> has positive coefficients.
- 3. Suppose suitable  $H_{\pm}$  have been found. Compute the maximal integer represented by the quadratic form on  $H_{\pm}^{\perp}$ . Check that this value is less than  $-\frac{1}{2}r^2(r^2-1)$ .
- 4. Suppose that the check in the last step has been passed. Denote by  $N_0$  the rank one lattice with quadratic form  $(B_+^2)$  and by  $i_{\pm} \colon N_0 \to N_{\pm}$  the primitive embedding defined by  $B_{\pm}$ . Check that the orthogonal pushout of  $i_+$  and  $i_-$  exists.

If this final check also passes, then the data found in the process gives the input required for Theorem 3.1.

Steps (1) and (2) can be carried out by a brute-force search. Step (3) is a trivial task if  $\rho_{\pm} = 2$ . If  $\rho_{\pm} = 3$ , then it can be efficiently carried out as follows. Choose some basis of  $H_{\pm}^{\perp}$  and write the quadratic form as  $-ax^2 - bxy - cy^2$ . Using Gauss–Lagrange's algorithm one may assume that the quadratic form is reduced; that is:  $1 \le a \le c$ ,  $|b| \le a$ , and if a = c, then  $b \ge 0$ . The maximal integer represented by the quadratic form is then -a. In general, (3) can be carried out efficiently using the algorithm from [ER01]. Finally, step (4) can be carried out using the procedure from Section 4.1. All of this is easily implemented in a computer program. A concrete implementation in SAGE/PYTHON is available at https://walpu.ski/Research/ArithmeticG2InstantonsTCS.zip.

# 5 Examples found by brute-force search

The brute-force search with scope for  $B_{\pm}$  and  $H_{\pm}$  restricted to  $\{-20, \ldots, 20\}^{\rho} \subset \mathbb{Z}^{\rho}$  yields 299 instances of the input required for Theorem 3.1. Table ?? gives more detailed statistics regarding these. In this table r refers to the rank of the bundle and  ${}_{n_1}^{\rho_1} \#_{n_2}^{\rho_2}$  means that the matching pair of building blocks come from the Fano 3–folds listed as  $\#_{n_1}^{\rho_1}$  and  $\#_{n_2}^{\rho_2}$  in Appendix B. Repeated occurrences of  ${}_{n_1}^{\rho_1} \#_{n_2}^{\rho_2}$  indicate multiple possible choices for  $B_{\pm}$ . The first entry in Table ?? ( ${}_{13}^2 \#_{14}^2$ ) recovers the example from [Wal16]. The other entries are all new. in particular, this yields the first examples of irreducible, unobstructed  $G_2$ -instantons on PU(r)-bundles with  $r \neq 2$ . It should be pointed the rank 7 examples are distinct from the Levi-Civita connection on the underlying  $G_2$ -manifolds. To see this observe that on a  $G_2$ -manifold ( $Y, \phi$ ) the 3–form  $\delta$  defines an element of  $\Omega^1(TY, \operatorname{End}(TY))$  which is a non-trivial infinitesimal deformation of the Levi-Civita connection. Therefore, the latter cannot be rigid/unobstructed.

### A How to compute Picard lattices?

The data in Appendix B has been computed using the following well-known results.

**Proposition A.1** (Divisors). Let X be a smooth complex 4–fold, L a line bundle over X, and W a divisor in X. Denote by  $i: W \to X$  the inclusion. The anticanonical bundle of W is given by

$$-K_W = -i^*(K_X + L).$$

The map  $i^*$ :  $Pic(X) \rightarrow Pic(W)$  is an isomorphism of abelian groups and for every  $A, B \in Pic(X)$ 

$$i^*A \cdot i^*B \cdot (-K_W) = A \cdot B \cdot L \cdot (-K_X - L).$$

If  $A \in \text{Pic}(X)$  is nef, then so is  $i^*A$ .

| r  | $B^2$ | matching pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2  | -30   | $2 #^{2}_{14} *^{2}_{14} *^{3}_{13} *^{2}_{25} *^{3}_{13} *^{2}_{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3  |
|    | -110  | $2^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-}$ $4^{-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 |
|    | -270  | <sup>2</sup> <sup>4</sup> <sup>2</sup> <sup>2</sup> <sup>4</sup> <sup>3</sup> <sup>2</sup> <sup>4</sup> <sup>3</sup> <sup>2</sup> <sup>4</sup> <sup>3</sup> <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3  |
|    | -510  | $3^{+}_{+3}$ $3^{+}_{+3}$ $3^{+}_{+3}$ $3^{+}_{+16}$<br>8 <sup>+</sup> 16 <sup>,</sup> 8 <sup>+</sup> 16 <sup>,</sup> 15 <sup>+</sup> 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3  |
|    | -750  | 2 #2 2 #3 2 #3  13 #14, 13 #25, 13 #25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3  |
|    | -990  | $^{3}_{16} + ^{3}_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1  |
|    | -2750 | <sup>3</sup> # <sup>3</sup><br>16 <sup>#</sup> 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1  |
| 3  | -224  | $2^{+3}_{-7}$ $2^{+3}_{-3}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$ $2^{+3}_{-7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14 |
|    | -440  | ${}^{2}_{16} {}^{3}_{21}, {}^{2}_{16} {}^{3}_{24}, {}^{3}_{10} {}^{3}_{21}, {}^{3}_{10} {}^{3}_{24}, {}^{3}_{10} {}^{3}_{21}, {}^{3}_{10} {}^{3}_{24}, {}^{3}_{16} {}^{3}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_{21}, {}^{3}_{16} {}^{4}_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 |
|    | -896  | ${}^{2}_{7}{}^{3}_{3}, {}^{2}_{7}{}^{3}_{3}, {}^{2}_{7}{}^{3}_{5}, {}^{2}_{7}{}^{4}_{11}, {}^{2}_{7}{}^{4}_{17}, {}^{2}_{7}{}^{4}_{17}, {}^{2}_{7}{}^{4}_{30}, {}^{2}_{2}{}^{4}_{30}, {}^{2}_{2}{}^{4}_{3}, {}^{2}_{2}{}^{4}_{3}, {}^{2}_{2}{}^{4}_{5}, {}^{2}_{2}{}^{4}_{11}, {}^{2}_{2}{}^{4}_{11}, {}^{2}_{2}{}^{4}_{17}, {}^{2}_{2}{}^{4}_{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14 |
|    | -1088 | ${}^2_{9} {}^3_{28}, {}^2_{27} {}^4_{28}, {}^3_{8} {}^4_{28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3  |
|    | -1760 | $^{3}_{16} \#^{3}_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1  |
|    | -2750 | $^{3}_{16} \#^{3}_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1  |
| 4  | -90   | ${}^3_{10}{}^{\#3}_{22}, {}^3_{10}{}^{\#3}_{22}, {}^3_{10}{}^{\#3}_{26}, {}^3_{10}{}^{\#3}_{22}, {}^3_{10}{}^{\#3}_{22}, {}^3_{10}{}^{\#3}_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6  |
| 5  | -112  | ${}^3_{4}{}^3_{5}, {}^3_{5}{}^4_{5}, {}^3_{5}{}^4_{5}, {}^3_{5}{}^4_{5}, {}^3_{11}, {}^3_{17}, {}^3_{29}, {}^3_{29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8  |
|    | -272  | ${}^3_{2} {}^{\#3}_{8}, {}^3_{2} {}^{\#1}_{15}, {}^3_{2} {}^{\#3}_{8}, {}^3_{2} {}^{\#3}_{15}, {}^3_{8} {}^{\#3}_{28}, {}^3_{15} {}^{\#3}_{28}, {}^3_{15} {}^{\#3}_{28}, {}^3_{15} {}^{\#3}_{28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8  |
| 6  | -2750 | $^{3}_{16} + ^{3}_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1  |
| 7  | -16   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36 |
|    | -324  | $ \begin{array}{c} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {}^{3} {$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 |
|    | -576  | $ \begin{array}{c} 3&3&7&7&7&7&12\\ 3&4&3&3&4&3&3&3&3&3\\ 3&4&3&3&4&3&3&4&3\\ 3&1&7&1&3&27&13&31,17&17&17&27&7&17&31,27&27&27&31,3&1&31\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3\\ 1&1&1&3&3&1&3&3&4&3&3&4&3&3&4&3\\ 1&1&1&3&3&1&3&3&4&3&3&4&3&3&4&3\\ 1&1&1&3&3&1&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3\\ 3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3\\ 3&4&3&3&4&3&4&3&4&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&3&4&3&$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45 |
|    | -1024 | $\begin{array}{c} 27^{\#}27,\ 27^{\#}28,\ 27^{\#}31,\ 28^{\#}28,\ 28^{\#}31,\ 31^{\#}31\\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{\#}3,\ 3^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36 |
|    | -1444 | $ \begin{array}{c} 3 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28 |
| 8  | -306  | 31''31<br>3 # 3 3 # 3 3 # 3<br>4 # 5 4 5 # 5 3 5 # 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3  |
| 13 | -990  | 14 " 15" 15" 22" 15 " 26<br>3 #3<br>- #3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1  |
| 10 | -1224 | 16 <sup>°°</sup> 21<br>3 #3<br>- #4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1  |
| 17 | -36   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 |
| _, | -784  | $3 \ 3^{\prime} \ 3 \ 12^{\prime} \ 3^{\prime} \ 13^{\prime} \ 3^{\prime} \ 3^$ | 6  |
|    | -1600 | 5 5' 5 1/5 51' 1/1/1/51' 51 51 $3 43 3 43 3 43 3 43 3 43 3 43 3 43 3 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6  |
| 19 | -306  | 5 5 5 1/ 5 51 1/ 1/ 1/ 51 51<br>3 #3<br>14 <sup>#</sup> 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1  |
|    |       | 1J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |



Figure 1

**Proposition A.2** (Branched double covers). Let W be a smooth complex 3–fold, let L be a line bundle over W, and let  $\pi: \tilde{W} \to W$  be a double cover branched over a divisor in |2L|. The anticanonical bundle of  $\tilde{W}$  is given by

$$-K_{\tilde{W}} = -\pi^*(K_W + L).$$

The map  $\pi$ :  $\operatorname{Pic}(W) \to \operatorname{Pic}(\tilde{W})$  is an isomorphism of abelian groups and for every  $A, B \in \operatorname{Pic}(W)$ 

 $\pi^* A \cdot \pi^* B \cdot -K_{\tilde{W}} = 2A \cdot B \cdot (-K_W - L).$ 

If  $A \in Pic(W)$  is nef, then so is  $\pi^*A$ .

**Definition A.3.** Let *X* be a complex manifold and let *L* be a line bundle over *X*, and let  $Z \subset X$  be a smooth complex submanifold. Denote by  $\mathscr{I}_Z$  the ideal sheaf of *Z*. The submanifold *Z* is said to be **cut-out by sections of** *L* if  $L \otimes \mathscr{I}_Z$  is globally generated; that is: for every  $x \in Z$  there is a neighborhood *U* of *x* such that every section of *L* defined over *U* and which vanishes on *Z* extends to a global section of *L* vanishing on *Z*.

**Proposition A.4** (Blow-up in a point [CN14, Lemma 4.5; EH16, Section 13.6]). Let W be a smooth complex 3–fold and let  $\pi: \tilde{W} \to W$  be the blow-up of W in a point x. Denote by E the exceptional divisor. The anticanonical bundle of  $\tilde{W}$  is given by

$$-K_{\tilde{W}} = -\pi^* K_W - 2E$$

As abelian groups  $\operatorname{Pic}(\tilde{W}) = \pi^* \operatorname{Pic}(W) \oplus \langle E \rangle$  and for every  $A, B \in \operatorname{Pic}(W)$ 

 $\pi^*A \cdot \pi^*B \cdot (-K_{\tilde{W}}) = A \cdot B \cdot (-K_W), \quad \pi^*A \cdot E \cdot (-K_{\tilde{W}}) = 0, \quad and \quad E \cdot E \cdot (-K_{\tilde{W}}) = -2.$ 

If  $A \in Pic(W)$  is nef, then so is  $\pi^*A$ . If  $\{x\}$  is cut-out be sections of L, then  $\pi^*L - E$  is nef.

**Proposition A.5** (Blow-up in a smooth curve [CN14, Lemma 4.5; EH16, Section 13.6]). Let W be a smooth complex 3–fold and let  $\pi : \tilde{W} \to W$  be the blow-up of W in a smooth curve C. Denote by E the exceptional divisor. The anticanonical bundle of  $\tilde{W}$  is given by

$$-K_{\tilde{W}} = -\pi^* K_W - E.$$

As abelian groups  $\operatorname{Pic}(\tilde{W}) = \pi^* \operatorname{Pic}(W) \oplus \langle E \rangle$  and for every  $A, B \in \operatorname{Pic}(W)$ 

$$\pi^*A \cdot \pi^*B \cdot (-K_{\tilde{W}}) = A \cdot B \cdot (-K_W), \quad \pi^*A \cdot E \cdot (-K_{\tilde{W}}) = \deg_A(C), \quad and \quad E \cdot E \cdot (-K_{\tilde{W}}) = -\chi(C).$$

If  $A \in Pic(W)$  is nef, then so is  $\pi^*A$ . If C is cut-out be sections of L, then  $\pi^*L - E$  is nef.

**Proposition A.6** ([GH94, p. 606; EH16, Theorem 9.6]). Let X be a smooth n-fold and let E be a holomorphic vector bundle over X of rank r. Denote by  $\pi : \mathbf{PE} \to X$  the  $\mathbf{P}^{r-1}$ -bundle associated with E and denote by  $\mathcal{O}_{\mathbf{PE}}(1)$  the dual of the tautological line bundle over **PE**. The anticanonical bundle of **PE** is given by

 $-K_{\mathbf{P}E} = -\pi^* K_X + \det E + r\mathcal{O}_{\mathbf{P}E}(1).$ 

 $H^*(\mathbf{P}E)$  is a  $H^*(X)$ -algebra generated by  $h = c_1(\mathcal{O}_{\mathbf{P}E}(1))$  subject to the relation

$$h^{r} + c_{1}(E)h^{r-1} + c_{2}(E)h^{r-2} + \cdots + c_{r}(E) = 0.$$

In particular,  $\operatorname{Pic}(\operatorname{PE}) = \pi^* \operatorname{Pic}(X) \oplus \langle \mathcal{O}_{\operatorname{PE}}(1) \rangle$ . Moreover, if  $A \in \operatorname{Pic}(X)$  is nef, then so is  $\pi^*A$  and if  $E^*$  is a direct sum of nef line bundles, then  $\mathcal{O}_{\operatorname{PE}}(1)$  is nef.

# **B** Data for Fano 3-folds

The following list contains descriptions of a number of Fano 3–folds W together with generators  $H_1, \ldots, H_r$  of Pic(W), the intersection form on N = Pic(W), and  $-K_W$ . These generators are chosen such that the cone  $\mathbb{R}_+H_1 + \cdots + \mathbb{R}_+H_r$  is contained in the nef cone  $\overline{Amp}(W)$  of W.<sup>1</sup> The entry  $\#_n^r$  concerns the Fano 3–fold  $W = W_n^r$  with rk Pic(W) = r appearing as the *n*th entry of the corresponding table in [IP99, Chapter 12]. This data has been computed using the tools discussed in Appendix A.  $V_d$  for  $d = 1, \ldots, 5$  refers to the del Pezzo Fano 3–fold of degree d that is a Fano 3–fold with  $Pic(V_d) = \langle -\frac{1}{2}K_{V_d} \rangle$  and  $-K_d^3 = 8 \cdot d$ .

|                             | description                                                                                                                                                                                                                                | basis of $Pic(W)$                                                                                                      | N                                              | $-K_W$                               |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------|
| # <sup>2</sup> <sub>1</sub> | <i>W</i> is the blow-up of <i>V</i> <sub>1</sub> in an elliptic curve which is the intersection of two divisors in $ -\frac{1}{2}K_{V_1} $ .                                                                                               | $\pi^*(-\frac{1}{2}K_{V_1}), \pi^*(-\frac{1}{2}K_{V_1}) - E$                                                           | $\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$ | $\begin{pmatrix} 1\\1 \end{pmatrix}$ |
| $\#_{2}^{2}$                | <i>W</i> is a double cover of $\mathbf{P}^1 \times \mathbf{P}^2$ branched over a divisor of bidegree (2, 4).                                                                                                                               | $\pi^* \mathscr{O}_{\mathbf{P}^1 	imes \mathbf{P}^2}(1,0), \ \pi^* \mathscr{O}_{\mathbf{P}^1 	imes \mathbf{P}^2}(0,1)$ | $\begin{pmatrix} 0 & 2 \\ 2 & 2 \end{pmatrix}$ | $\begin{pmatrix} 1\\1 \end{pmatrix}$ |
| # <sup>2</sup> <sub>3</sub> | <i>W</i> is the blow-up of $V_2$ in an elliptic curve which is an intersection of two divisors in $ -\frac{1}{2}K_{V_2} $ .                                                                                                                | $\pi^*(-\frac{1}{2}K_{V_2}), \pi^*(-\frac{1}{2}K_{V_2}) - E$                                                           | $\begin{pmatrix} 4 & 2 \\ 2 & 0 \end{pmatrix}$ | $\begin{pmatrix} 1\\1 \end{pmatrix}$ |
| $\#_{4}^{2}$                | $W$ is the blow-up of $\mathbf{P}^3$ in an intersection of two cubic hypersurfaces.                                                                                                                                                        | $\pi^* \mathcal{O}_{\mathbf{P}^3}(1), 3\pi^* \mathcal{O}_{\mathbf{P}^3}(1) - E$                                        | $\begin{pmatrix} 4 & 3 \\ 3 & 0 \end{pmatrix}$ | $\begin{pmatrix} 1\\1 \end{pmatrix}$ |
| # <sup>2</sup> <sub>5</sub> | W is the blow up of $V_3 \subset \mathbf{P}^4$<br>along the intersection of<br>two hyperplane divisors.                                                                                                                                    | $\pi^*(-\frac{1}{2}K_{V_3}), \pi^*(-\frac{1}{2}K_{V_3}) - E$                                                           | $\begin{pmatrix} 6 & 3 \\ 3 & 0 \end{pmatrix}$ | $\begin{pmatrix} 1\\1 \end{pmatrix}$ |
| # <sup>2</sup> <sub>6</sub> | <i>W</i> is a divisor in $\mathbf{P}^2 \times \mathbf{P}^2$ of<br>bidegree (2, 2) or a double<br>cover of $W_{32}^2$ (a divisor in<br>$\mathbf{P}^2 \times \mathbf{P}^2$ of bidegree (1, 1))<br>branched over an<br>anticanonical divisor. | $i^* \mathcal{O}_{\mathbf{P}^2 \times \mathbf{P}^2}(1,0), i^* \mathcal{O}_{\mathbf{P}^2 \times \mathbf{P}^2}(0,1)$     | $\begin{pmatrix} 2 & 4 \\ 4 & 2 \end{pmatrix}$ | $\begin{pmatrix} 1\\1 \end{pmatrix}$ |

<sup>&</sup>lt;sup>1</sup> This inclusion may be strict. Indeed, there are a few of instances where  $-K_W$  is not contained in the former cone.

| W is the blow-up of a quadric hypersurface $Q$ in $\mathbf{P}^4$ in the intersection of two quadrics.                                                                                                                                         | $\pi^*(-\frac{1}{3}K_Q)^1, \pi^*(-\frac{1}{3}K_Q) - E$                          | $\begin{pmatrix} 6 & 4 \\ 4 & 0 \end{pmatrix}$ | $\begin{pmatrix} 1\\1 \end{pmatrix}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------|
| <i>W</i> is a double cover of $W_{35}^2$<br>( <i>V</i> <sub>7</sub> )) branched over a curve<br>in $ -K_{V_7} $ whose intersection<br>with the exceptional divisor<br>in <i>V</i> <sub>7</sub> is either smooth or<br>reduced but not smooth. | the pull-backs of the generators of $Pic(V_7)$ as stated below                  | $\begin{pmatrix} 2 & 4 \\ 4 & 4 \end{pmatrix}$ | $\begin{pmatrix} 1\\1 \end{pmatrix}$ |
| <i>W</i> is the blow-up of $\mathbf{P}^3$ along a curve of degree 7 and genus 5 which is an intersection of a family of cubic hypersurfaces.                                                                                                  | $\pi^* \mathcal{O}_{\mathbf{P}^3}(1),  \pi^* \mathcal{O}_{\mathbf{P}^3}(3) - E$ | $\begin{pmatrix} 4 & 5 \\ 5 & 2 \end{pmatrix}$ | $\begin{pmatrix} 1\\1 \end{pmatrix}$ |
| W is the blow-up of $V_4 \subset \mathbf{P}^5$<br>in an elliptic curve which is<br>the intersection of two<br>hyperplane sections.                                                                                                            | $\pi^*(-\frac{1}{2}K_{V_4}), \pi^*(-\frac{1}{2}K_{V_4}) - E$                    | $\begin{pmatrix} 8 & 4 \\ 4 & 0 \end{pmatrix}$ | $\begin{pmatrix} 1\\1 \end{pmatrix}$ |
| <i>W</i> is the blow-up of $V_3 \subset \mathbf{P}^4$ along a line.                                                                                                                                                                           | $\pi^*(-\frac{1}{2}K_{V_3}), \pi^*(-\frac{1}{2}K_{V_3}) - E$                    | $\begin{pmatrix} 6 & 5 \\ 5 & 2 \end{pmatrix}$ | $\begin{pmatrix} 1\\1 \end{pmatrix}$ |
| <i>W</i> is the blow-up of $\mathbf{P}^3$ along a curve of degree 6 and genus 3 which is an intersection of a family of cubic hypersurfaces.                                                                                                  | $\pi^* \mathcal{O}_{\mathbf{P}^3}(1),  \pi^* \mathcal{O}_{\mathbf{P}^3}(3) - E$ | $\begin{pmatrix} 4 & 6 \\ 6 & 4 \end{pmatrix}$ | $\begin{pmatrix} 1\\1 \end{pmatrix}$ |
| W is the blow-up of a quadric $Q \subset \mathbf{P}^4$ along a curve of degree 6 and genus 2.                                                                                                                                                 | $\pi^*(-\frac{1}{3}K_Q), \pi^*(-\frac{2}{3}K_Q) - E$                            | $\begin{pmatrix} 6 & 6 \\ 6 & 2 \end{pmatrix}$ | $\begin{pmatrix} 1\\1 \end{pmatrix}$ |
| <i>W</i> is the blow-up of $V_5 \subset \mathbf{P}^9$<br>in an elliptic curve which is<br>the intersection of two<br>hyperplane sections.                                                                                                     | $\pi^*(-\frac{1}{2}K_{V_5}), \pi^*(-\frac{1}{2}K_{V_5}) - E$                    | $\begin{pmatrix} 10 & 5\\ 5 & 0 \end{pmatrix}$ | $\begin{pmatrix} 1\\1 \end{pmatrix}$ |

 $\#_{7}^{2}$ 

 $\#_{8}^{2}$ 

 $\#_{9}^{2}$ 

 $\#^2_{10}$ 

 $\#^2_{11}$ 

 $\#^2_{12}$ 

 $\#^2_{13}$ 

 $\#^2_{14}$ 

|                              |                                                                                                                                                                                                                                                          |                                                                                                                        |                                                 | ( )                                    |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------|
| # <sup>2</sup> <sub>15</sub> | <i>W</i> is the blow-up of $\mathbf{P}^3$<br>along the intersection of a<br>quadric <i>A</i> and a cubic <i>B</i><br>such that <i>A</i> is either smooth<br>or reduced but not smooth.                                                                   | $\pi^* \mathcal{O}_{\mathbf{P}^3}(1), \pi^* \mathcal{O}_{\mathbf{P}^3}(3) - E$                                         | $\begin{pmatrix} 4 & 6 \\ 6 & 6 \end{pmatrix}$  | $\begin{pmatrix} 1\\1 \end{pmatrix}$   |
| $\#^2_{16}$                  | $W$ is the blow-up of $V_4$ in a conic.                                                                                                                                                                                                                  | $\pi^*(-\frac{1}{2}K_{V_4}), \pi^*(-\frac{1}{2}K_{V_5}) - E$                                                           | $\begin{pmatrix} 8 & 6 \\ 6 & 2 \end{pmatrix}$  | $\begin{pmatrix} 1\\1 \end{pmatrix}$   |
| # <sup>2</sup> <sub>17</sub> | W is the blow-up of a quadric $Q \subset \mathbf{P}^4$ in a an elliptic curve of degree 5.                                                                                                                                                               | $\pi^*(-\tfrac{1}{3}K_Q),  \pi^*(-\tfrac{2}{3}K_Q) - E$                                                                | $\begin{pmatrix} 6 & 7 \\ 7 & 4 \end{pmatrix}$  | $\begin{pmatrix} 1\\1 \end{pmatrix}$   |
| # <sup>2</sup> <sub>18</sub> | <i>W</i> is a double cover of $\mathbf{P}^1 \times \mathbf{P}^2$ branched over a divisor of bidegree (2, 2).                                                                                                                                             | $\pi^* \mathcal{O}_{\mathbf{P}^1 	imes \mathbf{P}^2}(1,0), \ \pi^* \mathcal{O}_{\mathbf{P}^1 	imes \mathbf{P}^2}(0,1)$ | $\begin{pmatrix} 0 & 4 \\ 4 & 2 \end{pmatrix}$  | $\begin{pmatrix} 1\\2 \end{pmatrix}$   |
| $\#^2_{19}$                  | $W$ is the blow-up of $V_4$ along a line.                                                                                                                                                                                                                | $\pi^*(-\frac{1}{2}K_{V_4}), \pi^*(-\frac{1}{2}K_{V_4}) - E$                                                           | $\begin{pmatrix} 8 & 7 \\ 7 & 4 \end{pmatrix}$  | $\begin{pmatrix} 1\\1 \end{pmatrix}$   |
| $\#^2_{20}$                  | <i>W</i> is the blow-up of $V_5 \subset \mathbf{P}^5$ along a twisted cubic.                                                                                                                                                                             | $\pi^*(-\frac{1}{2}K_{V_5}), \pi^*(-\frac{1}{2}K_{V_5}) - E$                                                           | $\begin{pmatrix} 10 & 7 \\ 7 & 2 \end{pmatrix}$ | $\begin{pmatrix} 1\\1 \end{pmatrix}$   |
| $\#_{21}^2$                  | W is the blow-up of a quadric $Q \subset \mathbf{P}^4$ along a twisted quartic.                                                                                                                                                                          | $\pi^*(-\frac{1}{3}K_Q), \pi^*(-\frac{2}{3}K_Q) - E$                                                                   | $\begin{pmatrix} 6 & 8 \\ 8 & 6 \end{pmatrix}$  | $\begin{pmatrix} 1\\1 \end{pmatrix}$   |
| $\#_{22}^2$                  | <i>W</i> is the blow-up of $V_5 \subset \mathbf{P}^6$ along a conic.                                                                                                                                                                                     | $\pi^*(-\frac{1}{2}K_{V_5}), \pi^*(-\frac{1}{2}K_{V_5}) - E$                                                           | $\begin{pmatrix} 10 & 8 \\ 8 & 4 \end{pmatrix}$ | $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ |
| # <sup>2</sup> <sub>23</sub> | <i>W</i> is the blow-up of a<br>quadric $Q \subset \mathbf{P}^4$ along the<br>intersection of two divisors<br>$A \in  i^* \mathcal{O}_{\mathbf{P}^4}(1) $ and<br>$B \in  i^* \mathcal{O}_{\mathbf{P}^4}(2) $ with <i>A</i> either<br>smooth or singular. | $\pi^*(-\frac{1}{3}K_Q),  \pi^*(-\frac{2}{3}K_Q) - E$                                                                  | $\begin{pmatrix} 6 & 8 \\ 8 & 8 \end{pmatrix}$  | $\begin{pmatrix} 1\\1 \end{pmatrix}$   |
| $\#^2_{24}$                  | <i>W</i> is a divisor in $\mathbf{P}^2 \times \mathbf{P}^2$ of bidegree (1, 2).                                                                                                                                                                          | $\pi^* \mathscr{O}_{\mathbf{P}^2 	imes \mathbf{P}^2}(1,0), \ \pi^* \mathscr{O}_{\mathbf{P}^2 	imes \mathbf{P}^2}(0,1)$ | $\begin{pmatrix} 2 & 5 \\ 5 & 2 \end{pmatrix}$  | $\begin{pmatrix} 2\\1 \end{pmatrix}$   |
| $\#^2_{25}$                  | <i>W</i> is the blow-up of $\mathbf{P}^3$ in an elliptic curve which is the intersection of two quadrics.                                                                                                                                                | $\pi^* \mathcal{O}_{\mathbf{P}^3}(1),  \pi^* \mathcal{O}_{\mathbf{P}^3}(2) - E$                                        | $\begin{pmatrix} 4 & 4 \\ 4 & 0 \end{pmatrix}$  | $\begin{pmatrix} 2\\1 \end{pmatrix}$   |
| $\#^2_{26}$                  | <i>W</i> is the blow-up of $V_5 \subset \mathbf{P}^5$ in a line.                                                                                                                                                                                         | $\pi^*(-\frac{1}{2}K_{V_5}), \pi^*(-\frac{1}{2}K_{V_5}) - E$                                                           | $\begin{pmatrix} 10 & 9 \\ 9 & 6 \end{pmatrix}$ | $\begin{pmatrix} 1\\1 \end{pmatrix}$   |

| $\#^2_{27}$                  | <i>W</i> is the blow-up of $\mathbf{P}^3$ in a twisted cubic.                                                                                                                                                                                                                       | $\pi^* \mathcal{O}_{\mathbf{P}^3}(1), \pi^* \mathcal{O}_{\mathbf{P}^3}(2) - E$                                                                                                                                                                                                                     | $\begin{pmatrix} 4 & 5 \\ 5 & 2 \end{pmatrix}$                      | $\begin{pmatrix} 2\\1 \end{pmatrix}$    |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------|
| $\#^2_{28}$                  | <i>W</i> is the blow-up of $\mathbf{P}^3$ in a plane cubic.                                                                                                                                                                                                                         | $\pi^* \mathcal{O}_{\mathbf{P}^3}(1), \pi^* \mathcal{O}_{\mathbf{P}^3}(3) - E$                                                                                                                                                                                                                     | $\begin{pmatrix} 4 & 9 \\ 9 & 18 \end{pmatrix}$                     | $\begin{pmatrix} 1\\1 \end{pmatrix}$    |
| # <sup>2</sup> <sub>29</sub> | W is the blow-up of a quadric $Q \subset \mathbf{P}^4$ in a conic (the interection of two hyperplanes).                                                                                                                                                                             | $\pi^*(-\frac{1}{3}K_Q), \pi^*(-\frac{1}{3}K_Q) - E$                                                                                                                                                                                                                                               | $\begin{pmatrix} 6 & 4 \\ 4 & 0 \end{pmatrix}$                      | $\begin{pmatrix} 2\\1 \end{pmatrix}$    |
| $\#_{30}^2$                  | <i>W</i> is the blow-up of $\mathbf{P}^3$ in a conic.                                                                                                                                                                                                                               | $\pi^* \mathcal{O}_{\mathbf{P}^3}(1), \pi^* \mathcal{O}_{\mathbf{P}^3}(2) - E$                                                                                                                                                                                                                     | $\begin{pmatrix} 4 & 6 \\ 6 & 6 \end{pmatrix}$                      | $\begin{pmatrix} 2\\1 \end{pmatrix}$    |
| $\#^2_{31}$                  | $W$ is the blow-up of a quadric $Q \subset \mathbf{P}^4$ in a line.                                                                                                                                                                                                                 | $\pi^*(-\frac{1}{3}K_Q), \pi^*(-\frac{1}{3}K_Q) - E$                                                                                                                                                                                                                                               | $\begin{pmatrix} 6 & 5 \\ 5 & 2 \end{pmatrix}$                      | $\begin{pmatrix} 2\\1 \end{pmatrix}$    |
| $\#^2_{32}$                  | W is a divisor in $\mathbf{P}^2 \times \mathbf{P}^2$ of bidegree (1, 1).                                                                                                                                                                                                            | $i^* \mathcal{O}_{\mathbf{P}^2 \times \mathbf{P}^2}(1,0), i^* \mathcal{O}_{\mathbf{P}^2 \times \mathbf{P}^2}(0,1)$                                                                                                                                                                                 | $\begin{pmatrix} 2 & 4 \\ 4 & 2 \end{pmatrix}$                      | $\begin{pmatrix} 2\\2 \end{pmatrix}$    |
| $\#^2_{33}$                  | <i>W</i> is the blow-up of <b>P</b> <sup>3</sup> along a line.                                                                                                                                                                                                                      | $\pi^* \mathcal{O}_{\mathbf{P}^3}(1),  \pi^* \mathcal{O}_{\mathbf{P}^3}(1) - E$                                                                                                                                                                                                                    | $\begin{pmatrix} 4 & 3 \\ 3 & 0 \end{pmatrix}$                      | $\begin{pmatrix} 3\\1 \end{pmatrix}$    |
| $\#^2_{34}$                  | $W$ is $\mathbf{P}^1 \times \mathbf{P}^2$ .                                                                                                                                                                                                                                         | $egin{array}{l} \pi * \mathscr{O}_{\mathbf{P}^1 	imes \mathbf{P}^2}(1,0), \ \pi * \mathscr{O}_{\mathbf{P}^1 	imes \mathbf{P}^2}(0,1) \end{array}$                                                                                                                                                  | $\begin{pmatrix} 0 & 3 \\ 3 & 2 \end{pmatrix}$                      | $\begin{pmatrix} 2\\ 3 \end{pmatrix}$   |
| # <sup>2</sup> <sub>35</sub> | <i>W</i> is the blow-up of $\mathbf{P}^3$ in a point and also denoted by $V_7$ .                                                                                                                                                                                                    | $\pi^* \mathcal{O}_{\mathbf{P}^3}(1), \pi^* \mathcal{O}_{\mathbf{P}^3}(1) - E$                                                                                                                                                                                                                     | $\begin{pmatrix} 4 & 4 \\ 4 & 2 \end{pmatrix}$                      | $\begin{pmatrix} 2\\2 \end{pmatrix}$    |
| $\#^2_{36}$                  | <i>W</i> is <b>P</b> <i>E</i> with<br>$E := \mathcal{O}_{\mathbf{P}_2} \oplus \mathcal{O}_{\mathbf{P}_2}(-2).$                                                                                                                                                                      | $\pi^* \mathscr{O}_{\mathbf{P}^2}(1),  \mathscr{O}_{\mathbf{P} E}(1)$                                                                                                                                                                                                                              | $\begin{pmatrix} 2 & 5 \\ 5 & 10 \end{pmatrix}$                     | $\begin{pmatrix} 1\\2 \end{pmatrix}$    |
| # <sup>3</sup> <sub>1</sub>  | <i>W</i> is a double cover of $\mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^1$ branched over a divisor of tridegree (2, 2, 2).                                                                                                                                                | $ \begin{aligned} &\pi^* \mathscr{O}_{\mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^1}(1, 0, 0), \\ &\pi^* \mathscr{O}_{\mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^1}(0, 1, 0), \\ &\pi^* \mathscr{O}_{\mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^1}(0, 0, 1) \end{aligned} $ | $\begin{pmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$ | $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ |
| # <sup>3</sup> <sub>2</sub>  | <i>W</i> is a divisor in<br>$ \mathcal{O}_{\mathbf{P}E}(2) \otimes \pi^* \mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^1}(2,3) $ in<br><i>PE</i> with<br>$E := \mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^1} \oplus \mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^1}(1,1)^{\oplus 2}.$ | $\pi^* \mathscr{O}_{\mathbf{P}^1 	imes \mathbf{P}^1}(1, 0), \ \pi^* \mathscr{O}_{\mathbf{P}^1 	imes \mathbf{P}^1}(0, 1), \ \mathscr{O}_{\mathbf{P}E}(1) \otimes \pi^* \mathscr{O}_{\mathbf{P}^1 	imes \mathbf{P}^1}(1, 1)$                                                                         | $\begin{pmatrix} 0 & 2 & 3 \\ 2 & 0 & 4 \\ 3 & 4 & 8 \end{pmatrix}$ | $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ |
| # <sup>3</sup> <sub>3</sub>  | <i>W</i> is a divisor in $\mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^2$<br>of tridegree (1, 1, 2).                                                                                                                                                                          | $egin{aligned} &i^*\pi^*\mathscr{O}_{\mathbf{P}^1	imes\mathbf{P}^1	imes\mathbf{P}^2}(1,0,0),\ &i^*\pi^*\mathscr{O}_{\mathbf{P}^1	imes\mathbf{P}^1	imes\mathbf{P}^2}(0,1,0),\ &i^*\pi^*\mathscr{O}_{\mathbf{P}^1	imes\mathbf{P}^1	imes\mathbf{P}^2}(0,0,1) \end{aligned}$                           | $\begin{pmatrix} 0 & 2 & 3 \\ 2 & 0 & 3 \\ 3 & 3 & 2 \end{pmatrix}$ | $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ |

| $\#_{4}^{3}$                | <i>W</i> is the blow-up of $W_{18}^2$ (a double cover of $\mathbf{P}^1 \times \mathbf{P}^2$                                                                                                                                                                                                                                                                                                                   | $\pi^* \mathscr{O}_{\mathbf{P}^1 	imes \mathbf{P}^2}(1,0), \ \pi^* \mathscr{O}_{\mathbf{P}^1 	imes \mathbf{P}^2}(0,1), \ \pi^* \mathscr{O}_{\mathbf{P}^1 	imes \mathbf{P}^2}(0,1) = E$                                                | $\begin{pmatrix} 0 & 4 & 2 \\ 4 & 2 & 2 \\ 2 & 2 & 0 \end{pmatrix}$     | $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$     |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------|
|                             | bidegree (2, 2)) along a<br>smooth fiber of the map<br>$W_{18}^2 \rightarrow \mathbf{P}^2$ .                                                                                                                                                                                                                                                                                                                  | $\pi O \mathbf{p}_{1\times} \mathbf{p}_{2}(0,1) - L$                                                                                                                                                                                  | (0, 0, 1)                                                               | (1)                                         |
| # <sup>3</sup> <sub>5</sub> | <i>W</i> is the blow-up of $W_{34}^2$<br>( $\mathbf{P}^1 \times \mathbf{P}^2$ ) along a curve <i>C</i> of bidegree (5, 2) such that the map $C \rightarrow \mathbf{P}^2$ is an embedding.                                                                                                                                                                                                                     | $\pi^* \mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^2}(1, 0), \pi^* \mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^2}(0, 1), \pi^* \mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^2}(1, 2) - E$                                              | $\begin{pmatrix} 0 & 3 & 1 \\ 3 & 2 & 5 \\ 1 & 5 & 0 \end{pmatrix}$     | $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$     |
| # <sup>3</sup> <sub>6</sub> | <i>W</i> is the blow-up of $P^3$ along the disjoint union of line and an elliptic curve of degree 4.                                                                                                                                                                                                                                                                                                          | $\pi^* \mathcal{O}_{\mathbf{P}^3}(1),  \pi^* \mathcal{O}_{\mathbf{P}^3}(1) - E_1, \\ \pi^* \mathcal{O}_{\mathbf{P}^3}(2) - E_2$                                                                                                       | $\begin{pmatrix} 4 & 3 & 4 \\ 3 & 0 & 2 \\ 4 & 2 & 0 \end{pmatrix}$     | $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$     |
| # <sup>3</sup> <sub>7</sub> | <i>W</i> is the blow-up of $W_{32}^2$ (a divisor in $\mathbf{P}^2 \times \mathbf{P}^2$ of bidegree (1, 1)) along an elliptic curve which the intersection of two divisors in $ i^* \mathcal{O}_{\mathbf{P}^2 \times \mathbf{P}^2}(1, 1) $ .                                                                                                                                                                   | $i^* \mathcal{O}_{\mathbf{P}^2 \times \mathbf{P}^2}(1, 0), i^* \mathcal{O}_{\mathbf{P}^2 \times \mathbf{P}^2}(0, 1),$<br>$i^* \mathcal{O}_{\mathbf{P}^2 \times \mathbf{P}^2}(1, 1) - E$                                               | $\begin{pmatrix} 2 & 4 & 3 \\ 4 & 2 & 3 \\ 3 & 3 & 0 \end{pmatrix}$     | $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$     |
| # <sup>3</sup> <sub>8</sub> | $ \begin{split} &W \text{ is a divisor in} \\ & \pi_1^*\rho^*\mathcal{O}_{\mathbf{P}^2}(1)\times\pi_2^*\mathcal{O}_{\mathbf{P}^2}(1)  \text{ in} \\ &\mathbf{F}_1\times\mathbf{P}^2. \end{split} $                                                                                                                                                                                                            | $\pi_1^* \rho^* \mathcal{O}_{\mathbf{P}^2}(1), \pi_1^* (\rho^* \mathcal{O}_{\mathbf{P}^2}(1) - E), \pi_2^* \mathcal{O}_{\mathbf{P}^2}(1)$                                                                                             | $\begin{pmatrix} 2 & 2 & 5 \\ 2 & 0 & 3 \\ 5 & 3 & 2 \end{pmatrix}$     | $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ |
| # <sup>3</sup> <sub>9</sub> | <i>W</i> is the blow-up of a cone<br>$W_4 \subset \mathbf{P}^6$ over the Veronese<br>surface $R_4 \subset \mathbf{P}^5$ with center<br>in a disjoint union of the<br>vertex and a quartic <i>C</i> in<br>$R_4 \cong \mathbf{P}^2$ . This is blow-up<br>agrees with P <i>E</i> with<br>$E := \mathcal{O}_{\mathbf{P}^2} \oplus \mathcal{O}_{\mathbf{P}^2}(2)$ and $R_4$<br>corresponds to the zero<br>section. | $\pi^* \rho^* \mathcal{O}_{\mathbf{P}^2}(1),$<br>$\pi^* \rho^* \mathcal{O}_{\mathbf{P}^2}(2) \otimes \pi^* \mathcal{O}_{\mathbf{P}E},$<br>$\pi^* \rho^* \mathcal{O}_{\mathbf{P}^2}(4) \otimes \pi^* \mathcal{O}_{\mathbf{P}E}(1) - E$ | $\begin{pmatrix} 2 & 5 & 5 \\ 5 & 10 & 12 \\ 5 & 12 & 10 \end{pmatrix}$ | $\begin{pmatrix} -1\\1\\1 \end{pmatrix}$    |

| # <sup>3</sup> <sub>10</sub> | W is the blowup of a quadric $Q \subset \mathbf{P}^4$ in two disjoint conics.                                                                                                                                         | $\pi^* i^* \mathcal{O}_{\mathbf{P}^4}(1),  \pi^* i^* \mathcal{O}_{\mathbf{P}^4}(1) - E_1, \\ \pi^* i^* \mathcal{O}_{\mathbf{P}^4}(1) - E_2$                                                                                                       | $\begin{pmatrix} 6 & 4 & 4 \\ 4 & 0 & 2 \\ 4 & 2 & 0 \end{pmatrix}$      | $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|
| # <sup>3</sup> <sub>11</sub> | <i>W</i> is the blowup of $W_{35}^2$ ( <i>V</i> <sub>7</sub> )<br>in an elliptic curve which is<br>the intersection of two<br>divisors in $ -\frac{1}{2}K_{V_7} $ .                                                   | $\pi^* \rho^* \mathcal{O}_{\mathbf{P}^3}(1), \pi^* (\rho^* \mathcal{O}_{\mathbf{P}^3}(1) - E_1), \pi^* (\rho^* \mathcal{O}_{\mathbf{P}^3}(2) - E_1) - E_2$                                                                                        | $\begin{pmatrix} 4 & 4 & 4 \\ 4 & 2 & 3 \\ 4 & 3 & 0 \end{pmatrix}$      | $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$      |
| # <sup>3</sup> <sub>12</sub> | <i>W</i> is the blow-up of $\mathbf{P}^3$ along a disjoint union of a line and a twisted cubic.                                                                                                                       | $\pi^* \mathcal{O}_{\mathbf{P}^3}(1),  \pi^* \mathcal{O}_{\mathbf{P}^3}(1) - E_1, \\ \pi^* \mathcal{O}_{\mathbf{P}^3}(2) - E_2$                                                                                                                   | $\begin{pmatrix} 4 & 3 & 5 \\ 3 & 0 & 3 \\ 5 & 3 & 2 \end{pmatrix}$      | $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$      |
| # <sup>3</sup> <sub>13</sub> | <i>W</i> is the blow-up of $W_{32}^2$ (a divisor in $\mathbf{P}^2 \times \mathbf{P}^2$ of bidegree (1, 1)) along a curve <i>C</i> of bidegree (2, 2) such that both maps $C \rightarrow \mathbf{P}^2$ are embeddings. | $\pi^{*}i^{*}\mathcal{O}_{\mathbf{P}^{2}\times\mathbf{P}^{2}}(1,0),$<br>$\pi^{*}i^{*}\mathcal{O}_{\mathbf{P}^{2}\times\mathbf{P}^{2}}(1,0),$<br>$\pi^{*}i^{*}\mathcal{O}_{\mathbf{P}^{2}\times\mathbf{P}^{2}}(2,2) - E$                           | $\begin{pmatrix} 2 & 4 & 10 \\ 4 & 2 & 10 \\ 10 & 10 & 30 \end{pmatrix}$ | $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$      |
| # <sup>3</sup> <sub>14</sub> | <i>W</i> is the blowup of $\mathbf{P}^3$ along<br>a cubic lying in a plane and<br>a point not contained in this<br>plane.                                                                                             | $\pi^* \mathcal{O}_{\mathbf{P}^3}(1),  \pi^* \mathcal{O}_{\mathbf{P}^3}(3) - E_1, \\ \pi^* \mathcal{O}_{\mathbf{P}^3}(1) - E_2, $                                                                                                                 | $\begin{pmatrix} 4 & 9 & 4 \\ 9 & 18 & 9 \\ 4 & 9 & 2 \end{pmatrix}$     | $\begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$ |
| # <sup>3</sup> <sub>15</sub> | W is the blow-up of a<br>quadric $Q \subset \mathbf{P}^4$ along a<br>disjoint union of a line and a<br>conic                                                                                                          | $\pi^* i^* \mathcal{O}_{\mathbf{P}^4}(1),  \pi^* i^* \mathcal{O}_{\mathbf{P}^4}(1) - E_1, \\ \pi^* i^* \mathcal{O}_{\mathbf{P}^4}(1) - E_2$                                                                                                       | $\begin{pmatrix} 6 & 5 & 4 \\ 5 & 2 & 3 \\ 4 & 3 & 0 \end{pmatrix}$      | $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$      |
| # <sup>3</sup><br>16         | <i>W</i> is the blow-up of $W_{32}^2$ ( $V_7$ , the blow-up of $\mathbf{P}^3$ in a point <i>x</i> ) along the proper transform of a twisted cubic through <i>x</i> .                                                  | $\pi^* \rho^* \mathcal{O}_{\mathbf{P}^3}(1), \\ \pi^* (\rho^* \mathcal{O}_{\mathbf{P}^3}(1) - E_1), \\ \pi^* \rho^* \mathcal{O}_{\mathbf{P}^3}(1) - E_2$                                                                                          | $\begin{pmatrix} 4 & 4 & 5 \\ 4 & 2 & 6 \\ 5 & 6 & 2 \end{pmatrix}$      | $\begin{pmatrix} 0\\2\\1 \end{pmatrix}$      |
| # <sup>3</sup><br>17         | W is a divisor of tri-degree $(1, 1, 1)$ in $\mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^2$ .                                                                                                                  | $i^* \mathcal{O}_{\mathbf{P}^1 	imes \mathbf{P}^1 	imes \mathbf{P}^1}(1, 0, 0), \ i^* \mathcal{O}_{\mathbf{P}^1 	imes \mathbf{P}^1 	imes \mathbf{P}^1}(0, 1, 0), \ i^* \mathcal{O}_{\mathbf{P}^1 	imes \mathbf{P}^1 	imes \mathbf{P}^1}(0, 0, 1)$ | $\begin{pmatrix} 0 & 2 & 3 \\ 2 & 0 & 3 \\ 3 & 3 & 2 \end{pmatrix}$      | $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$  |

|                              |                                                                                                                                                                                                          |                                                                                                                                                                                                                         | $(4 \ 3 \ 6)$                                                        | (1)                                         |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|
| $\#^3_{18}$                  | <i>W</i> is the blow-up of $\mathbf{P}^3$ in a line and a conic.                                                                                                                                         | $\pi^* \mathcal{O}_{\mathbf{P}^3}(1),  \pi^* \mathcal{O}_{\mathbf{P}^3}(1) - E_1, \\ \pi^* \mathcal{O}_{\mathbf{P}^3}(2) - E_2$                                                                                         | $\begin{pmatrix} 3 & 0 & 4 \\ 6 & 4 & 6 \end{pmatrix}$               | $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$     |
| $\#^3_{19}$                  | W is the blow-up of a quadric $Q \subset \mathbf{P}^4$ in two non-colinear points.                                                                                                                       | $\pi^* i^* \mathcal{O}_{\mathbf{P}^4}(1),  \pi^* i^* \mathcal{O}_{\mathbf{P}^4}(1) - E_1, \\ \pi^* i^* \mathcal{O}_{\mathbf{P}^4}(1) - E_2$                                                                             | $\begin{pmatrix} 6 & 6 & 6 \\ 6 & 4 & 6 \\ 6 & 6 & 4 \end{pmatrix}$  | $\begin{pmatrix} -1\\2\\2 \end{pmatrix}$    |
| # <sup>3</sup> <sub>20</sub> | W is the blow-up of a quadric $Q \subset \mathbf{P}^4$ along the disjoint union of two lines.                                                                                                            | $\pi^* i^* \mathcal{O}_{\mathbf{P}^4}(1), \pi^* i^* \mathcal{O}_{\mathbf{P}^4}(1) - E_1, \\ \pi^* i^* \mathcal{O}_{\mathbf{P}^4}(1) - E_2$                                                                              | $\begin{pmatrix} 6 & 5 & 5 \\ 5 & 2 & 4 \\ 5 & 4 & 2 \end{pmatrix}$  | $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ |
| # <sup>3</sup> <sub>21</sub> | <i>W</i> is the blow-up of $W_{34}^2$<br>( $\mathbf{P}^1 \times \mathbf{P}^2$ ) in a curve of bidegree (2, 1).                                                                                           | $\pi^* \mathscr{O}_{\mathbf{P}^1 	imes \mathbf{P}^2}(1,0), \ \pi^* \mathscr{O}_{\mathbf{P}^1 	imes \mathbf{P}^2}(0,1), \ \pi^* \mathscr{O}_{\mathbf{P}^1 	imes \mathbf{P}^2}(2,1)$                                      | $\begin{pmatrix} 0 & 3 & 1 \\ 3 & 2 & 7 \\ 1 & 7 & 2 \end{pmatrix}$  | $\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ |
| # <sup>3</sup> <sub>22</sub> | <i>W</i> is the blow-up of $W_{34}^2$<br>( $\mathbf{P}^1 \times \mathbf{P}^2$ ) in a conic in<br>{ <i>x</i> } × $\mathbf{P}^2$ .                                                                         | $\pi^* \mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^2}(1, 0), \pi^* \mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^2}(0, 1), \pi^* \mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^2}(1, 2) - E$                                | $\begin{pmatrix} 0 & 3 & 6 \\ 3 & 2 & 5 \\ 6 & 5 & 10 \end{pmatrix}$ | $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ |
| # <sup>3</sup> <sub>23</sub> | <i>W</i> is the blow-up of $W_{32}^2$ (the blow-up of $\mathbf{P}^3$ in a point <i>x</i> ) along the proper transform of a conic through <i>x</i> .                                                      | $\pi^* \rho^* \mathcal{O}_{\mathbf{P}^3}(1), \pi^* (\rho^* \mathcal{O}_{\mathbf{P}^3}(1) - E_1), \pi^* (\rho^* \mathcal{O}_{\mathbf{P}^3}(1) - E_1) - E_2$                                                              | $\begin{pmatrix} 4 & 4 & 6 \\ 4 & 2 & 5 \\ 6 & 5 & 6 \end{pmatrix}$  | $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ |
| # <sup>3</sup> <sub>24</sub> | <i>W</i> is the blow-up of $W_{32}^2$ (a divisor in $\mathbf{P}^2 \times \mathbf{P}^2$ of bidegree (1, 1)) in a fiber the projection $W_{32}^2 \to \mathbf{P}^2$ onto                                    | $\pi^{*}i^{*}\mathcal{O}_{\mathbf{P}^{2}\times\mathbf{P}^{2}}(1,0),$<br>$\pi^{*}i^{*}\mathcal{O}_{\mathbf{P}^{2}\times\mathbf{P}^{2}}(0,1),$<br>$\pi^{*}i^{*}\mathcal{O}_{\mathbf{P}^{2}\times\mathbf{P}^{2}}(0,1) - E$ | $\begin{pmatrix} 2 & 4 & 3 \\ 4 & 2 & 2 \\ 3 & 2 & 0 \end{pmatrix}$  | $\begin{pmatrix} 2\\1\\1 \end{pmatrix}$     |
| # <sup>3</sup> <sub>25</sub> | the second factor.<br><i>W</i> is the blow-up of $\mathbf{P}^3$<br>along the disjoint union of<br>two lines or, equivalently,<br><b>P</b> <i>E</i> with <i>E</i> :=                                      | $\pi^* \mathcal{O}_{\mathbf{P}^3}(1), \pi^* \mathcal{O}_{\mathbf{P}^3}(1) - E_1, \ \pi^* \mathcal{O}_{\mathbf{P}^3}(1) - E_2$                                                                                           | $\begin{pmatrix} 4 & 3 & 3 \\ 3 & 0 & 2 \\ 3 & 2 & 0 \end{pmatrix}$  | $\begin{pmatrix} 2\\1\\1 \end{pmatrix}$     |
| # <sup>3</sup> <sub>26</sub> | $\mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^1}(1,0) \oplus \mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^1}(0,1).$<br><i>W</i> is the blow-up of $\mathbf{P}^3$ in the disjoint union of a point and line | $\pi^* \mathcal{O}_{\mathbf{P}^3}(1), \pi^* \mathcal{O}_{\mathbf{P}^3}(1) - E_1, \ \pi^* \mathcal{O}_{\mathbf{P}^3}(1) - E_2$                                                                                           | $\begin{pmatrix} 4 & 4 & 3 \\ 4 & 2 & 3 \\ 3 & 3 & 0 \end{pmatrix}$  | $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$     |

| $\#^3_{27}$                  | $W$ is $\mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^1$ .                                                                                         | $\mathcal{O}_{\mathbf{p}^{1}\times\mathbf{p}^{1}\times\mathbf{p}^{1}(1,0,0),$<br>$\mathcal{O}_{\mathbf{p}^{1}\times\mathbf{p}^{1}\times\mathbf{p}^{1}(0,1,0),$<br>$\mathcal{O}_{\mathbf{p}^{1}\times\mathbf{p}^{1}\times\mathbf{p}^{1}(0,0,1)$ | $\begin{pmatrix} 0\\2\\2 \end{pmatrix}$     | 2<br>0<br>2 | $\begin{pmatrix} 2\\2\\0 \end{pmatrix}$ | $\begin{pmatrix} 2\\2\\2 \end{pmatrix}$     |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------|-----------------------------------------|---------------------------------------------|
| # <sup>3</sup> <sub>28</sub> | <i>W</i> is $\mathbf{P}^1 \times \mathbf{F}_1$ or equivalently<br>the blow-up of $\mathbf{P}^1 \times \mathbf{P}^2$ in<br>$\mathbf{P}^1 \times \{x\}$ . | $\pi^* \mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^2}(1, 0),$<br>$\pi^* \mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^2}(0, 1),$<br>$\pi^* \mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^2}(0, 1) - E$                                             | $\begin{pmatrix} 0\\ 3\\ 2 \end{pmatrix}$   | 3<br>2<br>2 | $\begin{pmatrix} 2\\2\\0 \end{pmatrix}$ | $\begin{pmatrix} 2\\2\\1 \end{pmatrix}$     |
| # <sup>3</sup> <sub>29</sub> | <i>W</i> is the blowup of $W_{35}^2$ (the blow-up of $\mathbf{P}^3$ in a point) in a line in the exceptional divisor.                                   | $\pi^* \rho^* \mathcal{O}_{\mathbf{P}^3}(1), \\ \pi^* (\rho^* \mathcal{O}_{\mathbf{P}^3}(1) - E_1), \\ \pi^* \rho^* \mathcal{O}_{\mathbf{P}^3}(1) - E_2$                                                                                       | $\begin{pmatrix} 4\\ 4\\ 4 \end{pmatrix}$   | 4<br>2<br>3 | $\begin{pmatrix} 4\\3\\2 \end{pmatrix}$ | $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ |
| # <sup>3</sup> <sub>30</sub> | <i>W</i> is the blow-up of $W_{35}^2$ (the blow-up of $\mathbf{P}^3$ in a point <i>x</i> ) along a the proper transform of a line through <i>x</i> .    | $\pi^* \rho^* \mathcal{O}_{\mathbf{P}^3}(1), \pi^* (\rho^* \mathcal{O}_{\mathbf{P}^3}(1) - E_1), \pi^* (\rho^* \mathcal{O}_{\mathbf{P}^3}(1) - E_1) - E_2$                                                                                     | $\begin{pmatrix} 4\\ 4\\ 3 \end{pmatrix}$   | 4<br>2<br>2 | $\begin{pmatrix} 3\\2\\0 \end{pmatrix}$ | $\begin{pmatrix} 2\\1\\1 \end{pmatrix}$     |
| $\#^3_{31}$                  | <i>W</i> is PE with<br>$E := \mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^1} \oplus \mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^1}(-1, -1).$             | $\pi^* \mathscr{O}_{\mathbf{P}^1 	imes \mathbf{P}^1}(1,0)), \ \pi^* \mathscr{O}_{\mathbf{P}^1 	imes \mathbf{P}^1}(0,1),  \mathscr{O}_{\mathbf{P}E}(1)$                                                                                         | $\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$ | 2<br>0<br>3 | 3<br>3<br>6)                            | $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ |

# C Fano 3-folds whose ample anticanonical bundle is not very ample

According to [IP99, Theorem 2.4.5, Theorem 2.1.16, and the Remarks preceeding Section 12.3] if W is a Fano 3 with  $-K_W$  is not very ample, then W is one of the following:

- 1. a double cover of  $\mathbf{P}^3$  branched along a divisor of degree 6,
- 2. a double cover of a quadric branched along a divisor of degree 8,
- 3.  $V_1$ , a double cover of  $C \subset \mathbf{P}^6$ , a cone over the Veronese surface in  $\mathbf{P}^5$ , branched along a cubic hypersurface in *C* not passing through the vertex, or a hypersurface of degree 6 in the weighted projective space  $\mathbf{P}(1, 1, 1, 2, 3)$ ,
- 4. the blow-up of  $V_1$  along an elliptic curve which is an intersection of two divisors in  $\left|-\frac{1}{2}K_{V_1}\right|$ ,
- 5. a double cover of  $\mathbf{P}^1 \times \mathbf{P}^2$  branched along a divisor of bidegree (2, 4),
- 6. the blow-up of  $V_2$  along an elliptic curve which is an intersection of two divisors in  $\left|-\frac{1}{2}K_{V_2}\right|$  ( $V_2$  is a double cover of  $\mathbf{P}^3$  branched along divisor of degree 4),
- 7. **P**<sup>1</sup> ×  $S_2$ , or

8.  $\mathbf{P}^1 \times S_1$ .

Here  $S_{\ell}$  is a del Pezzo surface of degree  $\ell$ . The double cover of a quadric branched along a divisor of degree 8 can be deformed to a quartic in  $\mathbf{P}^3$ , for which  $-K_W$  is, of course, very ample.

# References

- [CHNP13] A. Corti, M. Haskins, J. Nordström, and T. Pacini. Asymptotically cylindrical Calabi– Yau 3–folds from weak Fano 3–folds. Geometry and Topology 17.4 (2013), pp. 1955–2059.
   DOI: 10.2140/gt.2013.17.1955. MR: 3109862. Zbl: 1273.14081 (cit. on pp. 1, 2)
- [CHNP15] A. Corti, M. Haskins, J. Nordström, and T. Pacini. G<sub>2</sub>-manifolds and associative submanifolds via semi-Fano 3-folds. Duke Mathematical Journal 164.10 (2015), pp. 1971–2092. DOI: 10.1215/00127094-3120743. MR: 3369307. Zbl: 06486366 (cit. on pp. 1, 2, 4)
- [CN14] D. Crowley and J. Nordström. *Exotic*  $G_2$ -manifolds. 2014. arXiv: 1411.0656 (cit. on p. 13)
- [Dréo8] J.-M. Drézet. Exotic fine moduli spaces of coherent sheaves. Algebraic cycles, sheaves, shtukas, and moduli. Trends in Mathematics. 2008, pp. 21–32. DOI: 10.1007/978-3-7643-8537-8\_2. MR: 2402691 (cit. on p. 6)
- [EH16] D. Eisenbud and J. Harris. *3264 and all that: a second sourse in algebraic geometry.* 2016. Zbl: 1341.14001 (cit. on p. 13)
- [ER01] F. Eisenbrand and G. Rote. *Fast reduction of ternary quadratic forms. Cryptography and lattices. 1st international conference, CaLC 2001, Providence, RI, USA, March 29–30, 2001. Revised papers.* 2001, pp. 32–44. Zbl: 1006.11080 (cit. on p. 10)
- [GH94] P. Griffiths and J. Harris. *Principles of algebraic geometry*. Wiley Classics Library. Reprint of the 1978 original. New York, 1994, pp. xiv+813. MR: 1288523 (cit. on p. 13)
- [HHN15] M. Haskins, H.-J. Hein, and J. Nordström. Asymptotically cylindrical Calabi–Yau manifolds. Journal of Differential Geometry 101.2 (2015), pp. 213–265. DOI: 10.4310/jdg/1442364651
   MR: 3399097. Zbl: 1332.32028 (cit. on p. 2)
- [HL10] D. Huybrechts and M. Lehn. The geometry of moduli spaces of sheaves. Second. Cambridge Mathematical Library. 2010, pp. xviii+325. DOI: 10.1017/CBO9780511711985. MR: 2665168. Zbl: 1206.14027 (cit. on pp. 6, 7)
- [Huy15] D. Huybrechts. Lectures on K3 surfaces. 2015 (cit. on p. 6)
- [IP99] V. A. Iskovskih and Yu. G. Prokhorov. *Fano varieties. Algebraic geometry, V.* Vol. 47.
   Encyclopaedia Math. Sci. 1999, pp. 1–247. MR: 1668579 (cit. on pp. 14, 21)

[Joy96a] D. D. Joyce. Compact Riemannian 7-manifolds with holonomy G<sub>2</sub>. I. Journal of Differential Geometry 43.2 (1996), pp. 291–328. DOI: 10.4310/jdg/1214458109. MR: MR1424428. Zbl: 0861.53022 (cit. on p. 1)

- [Joy96b] D. D. Joyce. Compact Riemannian 7-manifolds with holonomy G<sub>2</sub>. II. Journal of Differential Geometry 43.2 (1996), pp. 329–375. DOI: 10.4310/jdg/1214458110. MR: MR1424428. Zbl: 0861.53023 (cit. on p. 1)
- [KL11] A. Kovalev and N.-H. Lee. K3 surfaces with non-symplectic involution and compact irreducible G<sub>2</sub>-manifolds. Mathematical Proceedings of the Cambridge Philosophical Society 151.2 (2011), pp. 193–218. DOI: 10.1017/S030500411100003X. MR: 2823130. Zbl: 1228.53064 (cit. on p. 1)
- [Kovo3] A. Kovalev. Twisted connected sums and special Riemannian holonomy. Journal für die Reine und Angewandte Mathematik 565 (2003), pp. 125–160. DOI: 10.1515/crll.2003.097.
   MR: MR2024648. Zbl: 1043.53041 (cit. on pp. 1, 2)
- [Mar77] M. Maruyama. *Moduli of stable sheaves. I. J. Math. Kyoto Univ.* 17.1 (1977), pp. 91–126. MR: 0450271. Zbl: 0374.14002 (cit. on p. 6)
- [Mar78] M. Maruyama. *Moduli of stable sheaves. II. J. Math. Kyoto Univ.* 18.3 (1978), pp. 557–614. MR: 509499. Zbl: 0395.14006 (cit. on p. 6)
- [MM81] S. Mori and S. Mukai. Classification of Fano 3-folds with B<sub>2</sub> ≥ 2. Manuscripta Math. 36.2 (1981), pp. 147-162. DOI: 10.1007/BF01170131. MR: 641971. Zbl: 0478.14033 (cit. on p. 9)
- [MNS17] G. Menet, J. Nordström, and H. N. Sá Earp. Construction of  $G_2$ -instantons via twisted connected sums. 2017. arXiv: 1510.03836 (cit. on pp. 1, 4)
- [Moĭ67] B. G. Moĭšezon. Algebraic homology classes on algebraic varieties. Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), pp. 225–268. MR: 0213351. Zbl: 0162.52503 (cit. on p. 4)
- [Muk87] S. Mukai. On the moduli space of bundles on K3 surfaces. I. Vector bundles on algebraic varieties (Bombay, 1984). Vol. 11. Tata Inst. Fund. Res. Stud. Math. 1987, pp. 341–413.
   MR: 893604 (cit. on p. 7)
- [Nik79] V. V. Nikulin. Integer symmetric bilinear forms and some of their geometric applications. Izv. Akad. Nauk SSSR Ser. Mat. 43.1 (1979), pp. 111–177, 238. MR: 525944. Zbl: 0408.10011 (cit. on p. 4)
- [Sim94] C. T. Simpson. Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes Études Sci. Publ. Math. 79 (1994), pp. 47–129. MR: 1307297. Zbl: 0891.14005. <sup>1</sup> (cit. on pp. 6, 8)
- [SW15] H. N. Sá Earp and T. Walpuski. *G*<sub>2</sub>−*instantons over twisted connected sums. Geometry and Topology* 19.3 (2015), pp. 1263–1285. DOI: 10.2140/gt.2015.19.1263. arXiv: 1310.7933. MR: 3352236. Zbl: 06441803. <sup>(a)</sup> (cit. on pp. 1, 5)
- [Thooo]R. P. Thomas. A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on<br/>K3 fibrations. Journal of Differential Geometry 54.2 (2000), pp. 367-438. MR: 1818182.<br/>Zbl: 1034.14015. In (cit. on p. 7)

- [Voio7] C. Voisin. Hodge theory and complex algebraic geometry. II. Vol. 77. Cambridge Studies in Advanced Mathematics. Translated from the French by Leila Schneps. 2007, pp. x+351. MR: 2449178. Zbl: 1129.14020 (cit. on p. 3)
- [Wal13] T. Walpuski. G<sub>2</sub>−instantons on generalised Kummer constructions. Geometry and Topology 17.4 (2013), pp. 2345–2388. DOI: 10.2140/gt.2013.17.2345. arXiv: 1109.6609. MR: 3110581. Zbl: 1278.53051. <sup>•</sup> (cit. on p. 1)
- [Wal16] T. Walpuski. G<sub>2</sub>-instantons over twisted connected sums: an example. Mathematical Research Letters 23.2 (2016), pp. 529–544. DOI: 10.4310/MRL.2016.v23.n2.a11. arXiv: 1505.01080. MR: 3512897. Zbl: 06609380. <sup>(a)</sup> (cit. on pp. 1, 10)