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Abstract

This article constructs examples of associative submanifolds in 𝐺2–manifolds obtained

by resolving 𝐺2–orbifolds using Joyce’s generalised Kummer construction. As the 𝐺2–

manifolds approach the 𝐺2–orbifolds, the volume of the associative submanifolds tends to

zero. This partially verifies a prediction due to Halverson and Morrison.

1 Introduction

The Teichmüller space

T(𝑌 ) ≔ {𝜙 ∈ Ω3(𝑌 ) : 𝜙 is a torsion-free 𝐺2–structure}/Diff0(𝑌 )

of torsion-free𝐺2–structures on a closed 7–manifold 𝑌 is a smooth manifold of dimension 𝑏3(𝑌 )
[Joy96a, Theorem C]. The 𝐺2 period map Π : T → H

3

dR
(𝑌 ) ⊕ H

4

dR
(𝑌 ) defined by

Π(𝜙 · Diff0(𝑌 )) ≔ ( [𝜙], [𝜓 ]) with 𝜓 ≔ ∗𝜙𝜙

is a Lagrangian immersion [Joy96b, Lemma 1.1.3].1 It is constrained by the following inequalities

[Joy96b, Lemma 1.1.2; HL82, §IV.2.A and §IV.2.B]:

(1)

ˆ
𝑌

𝛼 ∧ 𝛼 ∧ 𝜙 < 0 for every non-zero [𝛼] ∈ H
2

dR
(𝑌 ) if 𝜋1(𝑌 ) is finite.

(2)

ˆ
𝑌

𝑝1(𝑉 ) ∧ 𝜙 = − 1

4𝜋2
YM(𝐴) < 0 for every vector bundle 𝑉 which admits a non-flat 𝐺2–

instanton 𝐴; in particular, for 𝑉 = 𝑇𝑌 unless 𝑌 is covered by 𝑇 7
. Here 𝑝1(𝑉 ) denotes the

1
st
Pontryagin class of 𝑉 [MS74, §15], and YM(𝐴) ≔ 1

2

´
𝑌
|𝐹𝐴 |2 is the Yang–Mills energy.

(3)

ˆ
𝑃

𝜙 = vol(𝑃) > 0 for every associative submanifold 𝑃 ↬ 𝑌 .

1Whether or not Π is an embedding is an open question.
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(4)

ˆ
𝑄

𝜓 = vol(𝑄) > 0 for every coassociative submanifold 𝑄 ↬ 𝑌 .

These should be compared with the inequalities cutting out the Kähler cone of a Calabi–Yau

3–fold; see Wilson [Wil92].

By analogy with Calabi–Yau 3–folds, Halverson and Morrison [HM16, §3] suggest that the

above inequalities completely characterise the ideal boundary of T(𝑌 ). Of course, making

this precise is complicated by the fact that the notions of 𝐺2–instanton and (co)associative

submanifold depend on the 𝐺2–structure 𝜙 . The situation would be improved if there were

invariants whose non-vanishing guaranteed the existence of𝐺2–instantons and (co)associative

submanifolds as suggested by Donaldson and Thomas [DT98, §3]. However, their construction

is fraught with enormous difficulty [DS11; Joy18; Hay17; Wal17; DW19].

A more down to earth problem is to exhibit concrete examples of degenerating families

of 𝐺2–manifolds which admit 𝐺2–instantons whose Yang–Mills energies tend to zero [Wal13]

or which admit (co)associative submanifolds whose volumes tend to zero. The purpose of this

article is to present examples of the latter in 𝐺2–manifolds arising from Joyce’s generalised

Kummer construction. Although these examples had been anticipated (e.g. by Halverson and

Morrison [HM16, §6.2]), their rigorous construction has only recently become possible due to

the work of Platt [Pla22].

Remark 1.1. Of course, there are already numerous examples of closed associative submanifolds

in the literature.

(1) Joyce [Joy96b, §4.2; Joy00, §12.6] has constructed (co)associative submanifolds in gener-

alised Kummer constructions as fixed-point sets of involutions.

(2) Corti, Haskins, Nordström, and Pacini [CHNP15, §5.5 and §7.2.2] have constructed as-

sociative submanifolds in twisted connected sums using rigid holomorphic curves and

special Lagrangians in asymptotically cylindrical Calabi–Yau 3–folds.

(3) In the physics literature, Braun, Del Zotto, Halverson, Larfors, Morrison, and Schäfer-

Nameki [BDHLMS18, §4.4] have proposed a construction of infinitely many associative

submanifolds in certain twisted connected sums. An important ingredient in the proof

of this conjecture will be the gluing theorem for associative submanifolds in twisted

connected sums proved by Bera [Ber22]—analogous to [SW15]. Building on [BDHLMS18],

Acharya, Braun, Svanes, and Valandro [ABSV19, §2.2 and §4.2] have constructed infinitely

many associative submanifolds in certain 𝐺2–orbifolds (without using any analytic meth-

ods).

(4) Lotay [Lot12], Kawai [Kaw15], and Ball and Madnick [BM20] have produced a wealth of

examples of associative submanifolds in 𝑆7
, the squashed 𝑆7

, and the Berger space with

their nearly parallel 𝐺2–structures.

The novelty of the examples discussed in the present article is that their volumes tend to zero

as the ambient 𝐺2–manifolds degenerate. ♣
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2 Joyce’s generalised Kummer construction

The generalised Kummer construction is a method, developed by Joyce [Joy96a; Joy96b], to

produce 𝐺2–manifolds by desingularising certain closed flat 𝐺2–orbifolds (𝑌0, 𝜙0). Besides a
rather delicate singular perturbation theory it relies on the fact that the hyperkähler 4–orbifolds

H/Γ, obtained as quotients of the quaternions H by a finite subgroup Γ < Sp(1), can be

desingularised by hyperkähler 4–manifolds. The following model spaces feature prominently

throughout this article.

Example 2.1 (model spaces). Let 𝑋 be a hyperkähler 4–orbifold with hyperkähler form

𝝎 ∈ (ImH)∗ ⊗ Ω2(𝑋 ) .

Denote by vol ∈ Ω3(ImH) and 1 ∈ Ω1(ImH) ⊗ ImH the volume form and the tautological

1–form respectively.

(1) The 3–form

(2.2) vol − ⟨1 ∧ 𝝎⟩ ∈ Ω3(ImH × 𝑋 )

defines a torsion-free 𝐺2–structure on ImH × 𝑋 . Here ⟨· ∧ ·⟩ is induced by the wedge

product on forms and the duality pairing between ImH and (ImH)∗. The corresponding
Riemannian metric and the cross-product on ImH × 𝑋 recover the Riemannian metric

and the hypercomplex structure I ∈ (ImH)∗ ⊗ Γ(End(𝑇𝑋 )) on 𝑋 .

(2) Let𝐺 < SO(ImH) ⋉ ImH be a Bieberbach group; that is: discrete, cocompact, and torsion-

free. Let 𝜌 : 𝐺 → Isom(𝑋 ) be a homomorphism. Suppose that 𝝎 is 𝐺–invariant; that is:

for every (𝑅, 𝑡) ∈ 𝐺 (
𝑅∗ ⊗ 𝜌 (𝑅, 𝑡)∗

)
𝝎 = 𝝎 .

Set

𝑌 ≔ (ImH × 𝑋 )/𝐺.

The 𝐺2–structure (2.2) descends to a 𝐺2–structure

𝜙 ∈ Ω3(𝑌 ).

The canonical projection 𝑝 : 𝑌 → 𝐵 ≔ ImH/𝐺 is a flat fibre bundle whose fibres are

coassociative submanifolds diffeomorphic to 𝑋 ; cf. [Bar19, §3.4]. ♠

Remark 2.3 (Classification of Bieberbach groups). If𝐺 < SO(ImH)⋉ ImH is a Bieberbach group,

then Λ ≔ 𝐺 ∩ ImH < ImH is a lattice of full rank and 𝐻 ≔ 𝐺/Λ < SO(Λ) × (ImH/Λ) is
isomorphic to either 1, 𝐶2, 𝐶3, 𝐶4, 𝐶6, or 𝐶

2

2
; cf. [HW35; CR03; Szc12, §3.3]. More precisely, 𝐺 is

among the following:

(1) Λ is arbitrary and 𝐺 = Λ.
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(𝐶2) Λ = ⟨𝜆1, 𝜆2, 𝜆3⟩ with
⟨𝜆1, 𝜆2⟩ = ⟨𝜆1, 𝜆3⟩ = 0.

𝐺 is generated by Λ and (𝑅2,
1

2
𝜆1) with 𝑅2 ∈ SO(Λ) as in (2.5).

(𝐶3) Λ = ⟨𝜆1, 𝜆2, 𝜆3⟩ with

(2.4) ⟨𝜆1, 𝜆2⟩ = ⟨𝜆1, 𝜆3⟩ = 0 and |𝜆2 |2 = |𝜆3 |2 = −2⟨𝜆2, 𝜆3⟩.

𝐺 is generated by Λ and (𝑅3,
1

3
𝜆1) with 𝑅3 ∈ SO(Λ) as in (2.5).

(𝐶4) Λ = ⟨𝜆1, 𝜆2, 𝜆3⟩ with

⟨𝜆1, 𝜆2⟩ = ⟨𝜆2, 𝜆3⟩ = ⟨𝜆3, 𝜆1⟩ = 0 and |𝜆2 |2 = |𝜆3 |2.

𝐺 is generated by Λ and (𝑅4,
1

4
𝜆1) with 𝑅4 ∈ SO(Λ) as in (2.5).

(𝐶6) Λ = ⟨𝜆1, 𝜆2, 𝜆3⟩ with (2.4). 𝐺 is generated by Λ and (𝑅6,
1

6
𝜆1) with 𝑅6 ∈ SO(Λ) as in (2.5).

(𝐶2

2
) Λ = ⟨𝜆1, 𝜆2, 𝜆3⟩ with

⟨𝜆1, 𝜆2⟩ = ⟨𝜆2, 𝜆3⟩ = ⟨𝜆3, 𝜆1⟩ = 0.

𝐺 is generated by Λ, (𝑅+, 1

2
(𝜆1 + 𝜆2)), and (𝑅−, 1

2
(𝜆2 + 𝜆3)) with 𝑅± ∈ SO(Λ) as in (2.5).

Here 𝑅2, 𝑅3, 𝑅4, 𝑅6, 𝑅± ∈ GL3(Z) are defined by

(2.5)

𝑅2 ≔
©«
1 0 0

0 −1 0

0 0 −1

ª®¬ , 𝑅3 ≔
©«
1 0 0

0 −1 1

0 −1 0

ª®¬ , 𝑅4 ≔
©«
1 0 0

0 0 1

0 −1 0

ª®¬ ,
𝑅6 ≔

©«
1 0 0

0 1 −1

0 1 0

ª®¬ , and 𝑅± ≔
©«
±1 0 0

0 ∓1 0

0 0 −1

ª®¬ .
GL3(Z) is identified with GL(Λ) by the choice of generators of Λ. ♣

The version of the generalised Kummer construction considered in this article desingularises

closed flat𝐺2–orbifolds (𝑌0, 𝜙0) whose singularities are modelled on Example 2.1 with 𝑋 ≔ H/Γ
for finite Γ < Sp(1). This requires a choice of the following data; cf. [Joy00, §11.4.1].

Definition 2.6. Let (𝑌0, 𝜙0) be a flat 𝐺2–orbifold. Denote the connected components of the

singular set of 𝑌0 by 𝑆𝛼 (𝛼 ∈ 𝐴). Resolution data ℜ = (Γ𝛼 ,𝐺𝛼 , 𝜌𝛼 ;𝑅𝛼 , 𝚥𝛼 ;
ˆ𝑋𝛼 , �̂�𝛼 , 𝜌𝛼 , 𝜏𝛼 )𝛼∈𝐴 for

(𝑌0, 𝜙0) consist of the following for every 𝛼 ∈ 𝐴:

(1) A finite subgroup Γ𝛼 < Sp(1) < SO(H), a Bieberbach group 𝐺𝛼 < SO(ImH) ⋉ ImH,
and a homomorphism 𝜌𝛼 : 𝐺𝛼 → 𝑁SO(H) (Γ𝛼 ) ↩→ Isom(H/Γ𝛼 ) as in Example 2.1 (2) with

𝑋 ≔ H/Γ𝛼 and its canonical hyperkähler form 𝝎. Here 𝑁𝐺 (𝐻 ) denotes the normaliser of

𝐻 < 𝐺 .

Denote by (𝑌𝛼 , 𝜙𝛼 ) the model space associated with H/Γ𝛼 , 𝝎, 𝐺𝛼 , and 𝜌𝛼 .
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(2) 𝑅𝛼 > 0 defining the open set

𝑈𝛼 ≔
(
ImH × (𝐵2𝑅𝛼 (0)/Γ𝛼 )

) /
𝐺𝛼 ⊂ 𝑌𝛼 ,

and an open embedding 𝚥𝛼 : 𝑈𝛼 ↩→ 𝑌0 satisfying 𝑆𝛼 ⊂ im 𝚥𝛼 and

𝚥∗𝛼𝜙0 = 𝜙𝛼 .

(3) A hyperkähler 4–manifold
ˆ𝑋𝛼 with hyperkähler form �̂�𝛼 ∈ (ImH)∗ ⊗ Ω2( ˆ𝑋𝛼 ), a homo-

morphism 𝜌𝛼 : 𝐺𝛼 → Diff (𝑋𝛼 ) with respect to which �̂�𝛼 is 𝐺𝛼–invariant (in the sense

of Example 2.1 (2)), a compact subset 𝐾𝛼 ⊂ ˆ𝑋𝛼 , and a 𝐺𝛼–equivariant open embedding

𝜏𝛼 :
ˆ𝑋𝛼\𝐾𝛼 ↩→ H/Γ𝛼 with (H\𝐵𝑅𝛼 (0))/Γ ⊂ im𝜏𝛼 and

(2.7) |∇𝑘 (𝜏∗�̂�𝛼 − 𝝎) | = 𝑂 (𝑟−4−𝑘 )

for every 𝑘 ∈ N0. •

Remark 2.8 (ADE classification of finite subgroups of Sp(1)). Klein [Kle93] classified the (non-

trivial) finite subgroups Γ < Sp(1). They obey an ADE classification. Γ is isomorphic to

either:

(𝐴𝑘 ) a cyclic group 𝐶𝑘+1,

(𝐷𝑘 ) a dicyclic group Dic𝑘−2,

(𝐸6) the binary tetrahedral group 2𝑇 ,

(𝐸7) the binary octahedral group 2𝑂 , or

(𝐸8) the binary icosahedral group 2𝐼 . ♣

Remark 2.9. Whether or not the data in Definition 2.6 (1) and (2) exists is a property of a

neighborhood of the singular set of 𝑌0. If it does exist, then it is essentially unique. The data in

Definition 2.6 (3) involves a choice. ♣
Remark 2.10. There are many examples of closed flat 𝐺2–orbifolds admitting resolution data in

the above sense; see [Joy96b, §3; Joy00, §12; Bar06, §3; Rei17, §5.3.4 and §5.3.5]. They arise from

certain crystallographic groups 𝐺 < 𝐺2 ⋉ R7
. It would be interesting to classify these (possibly

computer-aided) to grasp the full scope of Joyce’s generalised Kummer construction. Partial

results have been obtained by Barrett [Bar06, §3.2], and Reidegeld [Rei17, Theorem 5.3.1] proved

that the only possibilities for Γ𝛼 in Definition 2.6 (1) are 𝐶2, 𝐶3, 𝐶4, 𝐶6, Dic2, Dic3, and 2𝑇 . ♣
Remark 2.11 (scaling resolution data). For every (𝑡𝛼 ) ∈ (0, 1]𝐴 the data �̂�𝛼 and 𝜏𝛼 in Defini-

tion 2.6 (3) can be replaced with 𝑡2

𝛼 �̂�𝛼 and 𝑡𝛼𝜏𝛼 . ♣
The following two lengthy remarks help to find resolution data ℜ with certain properties.

Remark 2.12 (Gibbons–Hawking construction of 𝐴𝑘 ALE spaces). Let 𝑘 ∈ N. Consider the
subgroup 𝐶𝑘 ↩→ Sp(1) generated by right multiplication with 𝑒2𝜋𝑖/𝑘

. (Of course, 𝑖 can be

replaced by
ˆ𝜉 ∈ 𝑆2 ⊂ ImH throughout.) The 𝐴𝑘 ALE hyperkähler 4–manifolds used to resolve

H/𝐶𝑘 can be understood concretely using the Gibbons–Hawking construction [GH78; GRG97,

§3.5].
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(1) Let

𝜻 ∈ Δ ≔ Sym
𝑘
0
(ImH) ≔

{
[𝜁1, . . . , 𝜁𝑘 ] ∈ (ImH𝑘 )/𝑆𝑘 : 𝜁1 + · · · + 𝜁𝑘 = 0

}
.

Set 𝑍 ≔ {𝜁1, . . . , 𝜁𝑘 } and 𝐵 ≔ ImH\𝑍 . The function 𝑉𝜻 ∈ 𝐶∞(𝐵) defined by

𝑉𝜻 (𝑞) ≔
𝑘∑︁
𝑎=1

1

2|𝑞 − 𝜁𝑎 |

is harmonic and

[∗d𝑉𝜻 ] ∈ im

(
H

2(𝐵, 2𝜋Z) → H
2

dR
(𝐵)

)
.

Therefore, there is a U(1)–principal bundle 𝑝𝜻 : 𝑋 ◦
𝜻 → 𝐵 and a connection 1–form

𝑖𝜃𝜻 ∈ Ω1(𝑋 ◦
𝜻 , 𝑖R) with

(2.13) d𝜃𝜻 = −𝑝∗𝜻 (∗d𝑉𝜻 ) .

Indeed, 𝑝𝜻 is determined by 𝑉𝜻 up to isomorphism. The Euclidean inner product on ImH
defines

𝜎 ∈ (ImH)∗ ⊗ Ω1(ImH) .

𝑋 ◦
𝜻 is an incomplete hyperkähler manifold with hyperkähler form 𝝎𝜻 defined by

𝝎𝜻 ≔ 𝜃𝜻 ∧ 𝑝∗𝜻𝜎 + 𝑝∗𝜻 (𝑉𝜻 · ∗𝜎) .

(2) The map 𝑝0 : (H\{0})/𝐶𝑘 → 𝐵 defined by

𝑝0( [𝑥]) ≔
𝑥𝑖𝑥∗

2𝑘

is a U(1)–principal bundle with [𝑥] · 𝑒𝑖𝛼 ≔ [𝑥𝑒𝑖𝛼/𝑘 ]. The connection 1–form 𝑖𝜃0 defined

by

𝜃0( [𝑥, 𝑣]) ≔
⟨𝑥𝑖, 𝑣⟩
𝑘 |𝑥 |2

satisfies (2.13). Therefore, 𝑋 ◦
0 = (H\{0})/Γ. A straightforward (but slightly tedious)

computation reveals that 𝝎0 agrees with the standard hyperkähler form on (H\{0})/Γ.
As a consequence, 𝑋 ◦

𝜻 can be extended to a complete hyperkähler orbifold 𝑋𝜻 by adding

#𝑍 points. If

𝜻 ∈ Δ◦ ≔
{
[𝜁1, . . . , 𝜁𝑘 ] ∈ Δ : 𝜁1, . . . , 𝜁𝑘 are pairwise distinct

}
,

then 𝑋𝜻 is a manifold. Since

(2.14) |∇𝑘 (𝑉𝜻 −𝑉0) ◦ 𝑝0 | = 𝑂 ( |𝑥 |−4−𝑘 )

for every 𝑘 ∈ N0, the asymptotic decay condition (2.7) holds.
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(3) Let 𝜻 ∈ Δ◦
. Denote by I𝜻 ∈ (ImH)∗ ⊗ Γ(End(𝑇𝑋𝜻 )) the hypercomplex structure induced

by 𝝎𝜻 . If

ℓ =
{

ˆ𝜉𝑡 + 𝜂 : 𝑡 ∈ [𝑎, 𝑏]
}
⊂ ImH

with 𝜂 ∈ ImH, [𝑎, 𝑏] ⊂ R, and ˆ𝜉 ∈ 𝑆2 ⊂ ImH is a segment satisfying 𝜕ℓ ⊂ 𝑍 and ℓ◦ ⊂ 𝐵,

then

Σℓ ≔ 𝑝−1

𝜻 (ℓ) ⊂ 𝑋𝜻

is 𝐼𝜻 , ˆ𝜉–holomorphic with

𝐼𝜻 , ˆ𝜉 ≔ ⟨I𝜻 , ˆ𝜉⟩ ∈ Γ(End(𝑇𝑋𝜻 ))

and Σℓ � 𝑆
2
. H2(𝑋𝜻 ,Z) is generated by the homology classes of these curves. In fact, 𝑋𝜻

retracts to a tree of these curves.

(4) Identify (ImH)∗ = ImH. The canonical hyperkähler form on H can be written as 𝝎 =

− 1

2
d𝑞 ∧ d𝑞 ∈ ImH ⊗ Ω+(H).2 Define Λ+

: SO(H) → SO(ImH) by requiring that(
(Λ+𝑅)∗ ⊗ 𝑅∗

)
(d𝑞 ∧ d𝑞) = d𝑞 ∧ d𝑞.

Define 𝛼 : 𝑁SO(H) (Γ) → {±1} by

𝛼 (𝑅) ≔
{

1 if 𝑅 ∈ 𝑍SO(H) (Γ)
−1 otherwise.

Let 𝜻 ∈ Δ◦
. Let ℓ be as in (3). If 𝑅 ∈ 𝑁SO(H) (Γ) satisfies 𝛼 (𝑅)Λ+𝑅(𝜻 ) = 𝜻 and

𝛼 (𝑅)Λ+𝑅(ℓ) = ℓ , then it lifts to an isometry
ˆ𝑅 ∈ Diff (𝑋𝜻 ) satisfying(

(Λ+𝑅)∗ ⊗ ˆ𝑅∗
)
𝝎𝜻 = 𝝎𝜻 and

ˆ𝑅(Σℓ ) = Σℓ . ♣

Remark 2.15 (Kronheimer’s construction of ALE spaces). Let Γ < Sp(1) be a finite subgroup—not
necessarily cyclic. The ALE hyperkähler 4–manifolds asymptotic to H/Γ can be understood

using the work of Kronheimer [Kro89b; Kro89a]. This is rather more involved than Remark 2.12

and summarised in the following. (This is only used for Example 4.6 and might be skipped at

the reader’s discretion.)

(1) Denote by C[Γ] = Map(Γ,C) the regular representation of Γ equipped with the standard

Γ–invariant Hermitian inner product. Set

𝑆 ≔ (H ⊗R 𝔲(C[Γ]))Γ and 𝐺 ≔ P𝑈 (C[Γ])Γ .

The adjoint action of 𝐺 on 𝑆 has a distinguished hyperkähler moment map

𝜇 : 𝑆 → (ImH)∗ ⊗ 𝔤∗.

2Indeed, − 1

2
d𝑞 ∧ d𝑞 = 𝑖 ⊗ (d𝑞0 ∧ d𝑞1 + d𝑞2 ∧ d𝑞3) + 𝑗 ⊗ (d𝑞0 ∧ d𝑞2 + d𝑞3 ∧ d𝑞1) + 𝑘 ⊗ (d𝑞0 ∧ d𝑞3 + d𝑞1 ∧ d𝑞2).
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Denote by 𝔷∗ ⊂ 𝔤∗ the annihilator of [𝔤, 𝔤] or, equivalently, the dual of the centre 𝔷 of 𝔤.
For every

𝜻 ∈ Δ̃ ≔ (ImH)∗ ⊗ 𝔷∗

the hyperkähler quotient

𝑋𝜻 ≔ 𝑆///𝜻𝐺 ≔ 𝜇−1(𝜻 )/𝐺
is an ALE hyperkähler 4–orbifold asymptotic to H/Γ.

(2) Remark 2.8 associates a Dynkin diagram with Γ. According to the McKay correspondence

[McK81], the non-trivial irreducible complex representations 𝑅1, . . . , 𝑅𝑟 of Γ correspond

to the vertices of this diagram. Denote by Φ the corresponding root system.

(3) [Kro89b, §2] defines an isomorphism 𝜏∗ : 𝔷∗ � (RΦ)∗. Therefore, every root 𝜃 ∈ Φ defines

a hypersurface 𝐷𝜃 ≔ ker𝜃 ⊂ 𝔷∗. If

𝜻 ∈ Δ̃◦ ≔ Δ̃\𝐷 with 𝐷 ≔
⋃
𝜃 ∈Φ

(ImH)∗ ⊗ 𝐷𝜃 ,

then 𝑋𝜻 is a manifold [Kro89b, Proposition 2.8].

(4) Let 𝜻 ∈ Δ̃◦
and 𝜃 ∈ Φ. [Kro89b, §4] defines another isomorphism 𝜎 : 𝔷∗ � (RΦ)∗. [Kro89b,

Propostion 4.1] shows that 𝜎 (𝜻 )𝜃 ≠ 0. Define 𝜉 = 𝜉 (𝜃 ) ∈ ImH by ⟨𝜉, ·⟩ ≔ 𝜎 (𝜻 )𝜃 and

set
ˆ𝜉 ≔ 𝜉/|𝜉 |. Suppose that 𝜃 cannot be decomposed as 𝜃 = 𝜃1 + 𝜃2 with 𝜃1, 𝜃2 ∈ Φ and

𝜃 (𝜉1) = 𝜃 (𝜉2). There is an 𝐼𝜻 , ˆ𝜉–holomorphic curve

Σ𝜃 ⊂ 𝑋𝜻

with Σ𝜃 � 𝑆
2
. (If 𝜃 can be decomposed, then Σ𝜃 is nodal.) H2(𝑋𝜻 ) is generated by the

homology classes of these curves. In fact, 𝑋𝜻 retracts to a tree of these curves. This

identifies H2(𝑋𝜻 ) with the root lattice ZΦ.

(5) 𝑁SO(H) (Γ) acts on Γ by conjugation; that is: there is a homomorphism 𝐶 : 𝑁SO(𝐻 ) (Γ) →
Aut(Γ) such that for every 𝑅 ∈ 𝑁SO(𝐻 ) (Γ), 𝑔 ∈ Γ, and 𝑥 ∈ H

𝑅𝑔𝑅−1𝑥 = 𝐶𝑅 (𝑔)𝑥 .

Identify Aut(Γ) ⊂ U(C[Γ]). Denote by Ad : U(C[Γ]) → 𝔭𝔲(C[Γ])∗ the coadjoint action.
Ad𝐶𝑅

acts on Φ.

The hyperkähler moment map satisfies

𝜇 ◦ (𝑅 ⊗ Ad𝐶𝑅
) = (Λ+𝑅 ⊗ Ad𝐶𝑅

) ◦ 𝜇.

Let 𝜻 ∈ Δ̃◦
. Let 𝜃 ∈ Φ be as in (4). If 𝑅 ∈ 𝑁SO(H) (Γ) satisfies (Λ+𝑅 ⊗ Ad𝐶𝑅

)𝜻 = 𝜻 and

Ad𝐶𝑅
preserves 𝜃 , then it lifts to an isometry 𝑅 ∈ Diff (𝑋𝜻 ) satisfying(

(Λ+𝑅)∗ ⊗ ˆ𝑅∗
)
𝝎𝜻 = 𝝎𝜻 and

ˆ𝑅(Σ𝜃 ) = Σ𝜃 .

Denote by 𝑊 the Weyl group of Φ. Every 𝜎 ∈ 𝑊 induces a hyperkähler isometry

�̂� : 𝑋𝜻 � 𝑋𝜎 (𝜻 ) satisfying �̂� (Σ𝜃 ) = Σ𝜎 (𝜃 ) . In particular, Δ̃ and Δ̃◦
can be replaced with

Δ ≔ Δ̃/𝑊 and Δ◦ ≔ Δ̃◦/𝑊 .
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Of course, for Γ = 𝐶𝑘 the above parallels Remark 2.12. ♣
The generalised Kummer construction proceeds by constructing an approximate resolution

and correcting it via singular perturbation theory.

Definition 2.16 (approximate resolution). Let (𝑌0, 𝜙0) be a flat𝐺2–orbifold together with resolu-

tion data ℜ. Let 𝑡 ∈ (0, 1]. Set

𝑌 ◦
0
≔ 𝑌0\

⋃
𝛼∈𝐴

𝚥𝛼

( (
ImH × (𝐵𝑅𝛼 (0)/Γ𝛼 )

) /
𝐺𝛼

)
.

For 𝛼 ∈ 𝐴 denote by

( ˆ𝑌𝛼,𝑡 , ˆ𝜙𝛼,𝑡 )

the model space associated with
ˆ𝑋𝛼 , 𝑡

2�̂�𝛼 , 𝐺𝛼 , and 𝜌𝛼 . Set

ˆ𝑌 ◦
𝑡 ≔

∐
𝛼∈𝐴

ˆ𝑌 ◦
𝛼,𝑡 with

ˆ𝑌 ◦
𝛼,𝑡 ≔

(
ImH ×

(
𝐾𝛼 ∪ (𝑡𝜏𝛼 )−1(𝐵2𝑅𝛼 (0)/Γ𝛼 )

) )/
𝐺𝛼 ,

ˆ𝑉𝑡 ≔
∐
𝛼∈𝐴

ˆ𝑉𝛼,𝑡 with
ˆ𝑉𝛼,𝑡 ≔

(
ImH × (𝑡𝜏𝛼 )−1

(
(𝐵2𝑅𝛼 (0)\𝐵𝑅𝛼 (0))/Γ𝛼

) )/
𝐺𝛼 , and

𝑉 ≔
∐
𝛼∈𝐴

𝑉𝛼 with 𝑉𝛼 ≔

(
ImH ×

(
(𝐵2𝑅𝛼 (0)\𝐵𝑅𝛼 (0))/Γ𝛼

) )/
𝐺𝛼 .

Denote by 𝑓 :
ˆ𝑉𝑡 → 𝑉 the diffeomorphism induced by 𝚥𝛼 and 𝑡𝜏𝛼 (𝛼 ∈ 𝐴). Denote by 𝑌𝑡 the

7–manifold obtained by gluing
ˆ𝑌 ◦
𝑡 and 𝑌 ◦

0
along 𝑓 :

𝑌𝑡 ≔ ˆ𝑌 ◦
𝑡 ∪𝑓 𝑌 ◦

0
.

A cut-and-paste procedure (whose details are swept under the rug here, but can be found in

[Joy96b, Proof of Theorem 2.2.1; Joy00, §11.5.3]) produces a closed 3–form

˜𝜙𝑡 ∈ Ω3(𝑌𝑡 )

which agrees with
ˆ𝜙𝛼,𝑡 on ˆ𝑌 ◦

𝛼 \ ˆ𝑉𝛼,𝑡 (𝛼 ∈ 𝐴) and with 𝜙0 on 𝑌
◦
0
\𝑉 ; moreover: if 𝑡 is sufficiently

small, then
˜𝜙𝑡 defines a 𝐺2–structure on 𝑌𝑡 . •

Remark 2.17. Since ˆ𝑋𝛼 retracts to a compact subset, there are canonical maps

𝜐𝛼 : 𝐻•( ˆ𝑌𝛼,𝑡 ,Z) � 𝐻•( ˆ𝑌 ◦
𝛼,𝑡 ,Z) → 𝐻•(𝑌𝑡 ,Z) . ♣

Remark 2.18 (
˜𝜙𝑡 vs. 𝑡

−3 ˜𝜙𝑡 ). As 𝑡 tends to zero, the Riemannian metric 𝑔𝑡 associated with
˜𝜙𝑡

degenerates quite severely: ∥𝑅𝑔𝑡 ∥𝐿∞ ∼ 𝑡−2
and inj(𝑔𝑡 ) ∼ 𝑡−1

. To ameliorate this it can be

convenient to pass to the Riemannian metric 𝑡−2𝑔𝑡 associated with 𝑡−3 ˜𝜙𝑡 . This is at the expense

of the diameter and volume of (𝑌𝑡 , 𝑡−2𝑔𝑡 ) tending to ∞. For the purposes of the present article

this is mostly harmless. ♣
The following refinement of Joyce’s existence theorem for torsion-free𝐺2–structures [Joy96a,

Theorem B; Joy00, Theorems G1 and G2] is crucial.
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Theorem 2.19 (Platt [Pla22, Theorem 4.58]). Let ℜ be resolution data for a closed flat𝐺2–orbifold
(𝑌0, 𝜙0). Let 𝛼 ∈ (0, 1/16). There are 𝑇0 = 𝑇0(ℜ), 𝑐 = 𝑐 (ℜ, 𝛼) > 0 and for every 𝑡 ∈ (0,𝑇0) there is
a torsion-free 𝐺2–structure 𝜙𝑡 ∈ Ω3(𝑌𝑡 ) with [𝜙𝑡 ] = [ ˜𝜙𝑡 ] ∈ H

3

dR
(𝑌𝑡 ) satisfying

∥𝑡−3(𝜙𝑡 − ˜𝜙𝑡 )∥𝐶1,𝛼 ⩽ 𝑐𝑡5/2.

Here ∥−∥𝐶1,𝛼 is with respect to 𝑡−2𝑔𝑡 .

Remark 2.20 (𝐾–equivariant generalised Kummer construction). Let (𝑌0, 𝜙0) be a closed flat𝐺2–

orbifold. Let𝐾 be a group. Let 𝜆 : 𝐾 → Diff (𝑌0) be a homomorphism with respect to which 𝜙0 is

𝐾–invariant. 𝐾 acts on the singular set of𝑌0 and, therefore, on𝐴. 𝐾–equivariant resolution data
for (𝑌0, 𝜙0; 𝜆) consist of resolution data ℜ = (Γ𝛼 ,𝐺𝛼 , 𝜌𝛼 ;𝑅𝛼 , 𝚥𝛼 ;

ˆ𝑋𝛼 , �̂�𝛼 , 𝜌𝛼 , 𝜏𝛼 )𝛼∈𝐴 for (𝑌0, 𝜙0)
with the property that for every 𝛼 ∈ 𝐴 and 𝑔 ∈ 𝐾

Γ𝑔𝛼 = Γ𝛼 , 𝐺𝑔𝛼 = 𝐺𝛼 , 𝜌𝑔𝛼 = 𝜌𝛼 , and 𝑅𝑔𝛼 = 𝑅𝛼 ,

and of the following additional data for every 𝛼 ∈ 𝐴:

(1) A pair of homomorphisms 𝜆𝛼 : 𝐾 → 𝑁SO(ImH)⋉ImH(𝐺𝛼 ) < SO(ImH)⋉ImH and𝜅𝛼 : 𝐾 →
𝑁𝑁

SO(H) (Γ𝛼 ) (𝜌𝛼 (𝐺𝛼 )) ↩→ Isom(H/Γ𝛼 ) such that for every 𝑔 ∈ 𝐾

𝜆(𝑔) ◦ 𝚥𝛼 = 𝚥𝑔𝛼 ◦ [𝜆𝛼 (𝑔) × 𝜅𝛼 (𝑔)] .

Here [𝜆𝛼 (𝑔) × 𝜅𝛼 (𝑔)] denotes the induced isometry of𝑈𝛼 = 𝑈𝑔𝛼 .

(2) A homomorphism �̂�𝛼 : 𝐾 → 𝑁
Diff ( ˆ𝑋𝛼 ) (𝜌𝛼 (𝐺𝛼 )) such that �̂�𝛼 is 𝐾–invariant with respect

to 𝜆𝛼 and �̂�𝛼 (in the sense of Example 2.1 (2)) and 𝜏𝛼 is 𝐾–equivariant with respect to �̂�𝛼 .

The approximate resolution in Definition 2.16 can be done so that 𝜆 and (𝜆𝛼 , 𝜅𝛼 )𝛼∈𝐴 lift to a

homomorphism 𝜆𝑡 : 𝐾 → Diff (𝑌𝑡 ) with respect to which
˜𝜙𝑡 is 𝐾–invariant. In this situation,

˜𝜙𝑡
constructed by Theorem 2.19 is 𝐾–invariant. ♣

3 Perturbing Morse–Bott families of associative submanifolds

This section lays the technical foundation for the construction of the examples in Section 4.

Throughout, let 𝑌 be a 7–manifold with a 𝐺2–structure 𝜙 ∈ Ω3(𝑌 ). Set

𝜓 ≔ ∗𝜙 ∈ Ω4(𝑌 ) .

Encode the torsion of 𝜙 as the section 𝜏 ∈ Γ(𝔤𝔩(𝑇𝑌 )) defined by

∇𝑣𝜓 ≕ 𝜏 (𝑣)♭ ∧ 𝜙.

Here −♭
: 𝑇𝑌 → 𝑇 ∗𝑌 denotes the isomorphism induced by the Riemannian metric.

Definition 3.1. A closed oriented 3–dimensional immersed submanifold 𝑃 ↬ 𝑌 is (𝜙–)associative
if

𝜙 |𝑃 > 0 and (𝑖𝑣𝜓 ) |𝑃 = 0 for every 𝑣 ∈ 𝑁𝑃
or, equivalently, if it is 𝜙–(semi-)calibrated; that is: 𝜙𝑃 = vol𝑃 [HL82, Theorem 1.6]. •
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Example 3.2. Assume the situation of Example 2.1 (2). Let
ˆ𝜉 ∈ 𝑆2 ⊂ ImH, 𝐿 > 0, and Σ ⊂ 𝑋 .

Suppose that Σ is a closed 𝐼 ˆ𝜉
–holomorphic curve with 𝐼 ˆ𝜉

≔ ⟨I, ˆ𝜉⟩, 𝜉 ≔ 𝐿 ˆ𝜉 ∈ Λ < 𝐺 is primitive,

Z𝜉 < 𝐺 is normal, and, for every 𝑔 ∈ 𝐺 , 𝜌 (𝑔) (Σ) = Σ. In this situation, for every

[𝜂] ∈ 𝑀/𝐻 with 𝑀 ≔ (ImH/R𝜉)/(Λ/Z𝜉) � 𝑇 2
and 𝐻 ≔ 𝐺/Λ

the submanifold

𝑃 [𝜂 ] ≔
(
(R𝜉 + 𝜂) × Σ

) /
Z𝜉 ↬ 𝑌

is diffeomorphic to the mapping torus 𝑇𝜇 of 𝜇 ≔ 𝜌 (𝜉) |Σ ∈ Diff (Σ). By direct inspection of (2.2),

𝑃 [𝜂 ] is associative. ♠

Remark 3.3. Z𝜉 < 𝐺 is normal if and only if 𝜉 is an eigenvector of every 𝑅 ∈ 𝐺 ∩ SO(ImH).
Direct inspection of Remark 2.3 reveals the following possibilities (without loss of generality):

(1) 𝐻 � 1 and 𝜉 ∈ Λ is any primitive element.

(𝐶+
2
) 𝐻 � 𝐶2 and 𝜉 = 𝜆1. The orbifold𝑀/𝐻 has 4 singularities: each with isotropy 𝐶2.

(𝐶−
2
) 𝐻 � 𝐶2 and 𝜉 = 𝜆2. 𝑀/𝐻 is diffeomorphic to the Klein bottle R𝑃2

#R𝑃2
.

(𝐶3) 𝐻 � 𝐶3 and 𝜉 = 𝜆1. The orbifold𝑀/𝐻 has 3 singularities: each with isotropy 𝐶3.

(𝐶4) 𝐻 � 𝐶4 and 𝜉 = 𝜆1. The orbifold𝑀/𝐻 has 3 singularities: two with isotropy 𝐶4, one with

isotropy 𝐶2.

(𝐶6) 𝐻 � 𝐶6 and 𝜉 = 𝜆1. The orbifold𝑀/𝐻 has 3 singularities: one with isotropy 𝐶6, one with

isotropy 𝐶3, one with isotropy 𝐶2.

(𝐶2

2
) 𝐻 � 𝐶2

2
and 𝜉 = 𝜆1. The orbifold𝑀/𝐻 has 2 singularities: each with isotropy 𝐶2.

The construction method summarised in Proposition 4.1 hinges upon understanding the singu-

larities of𝑀/𝐻 . This is foreshadowed in Remark 3.7 (2). ♣
Remark 3.4. The examples discussed in Section 4 are based on Example 3.2 with 𝜇 = idΣ; in

particular, 𝑃 [𝜂 ] is diffeomorphic to 𝑆1 × Σ. ♣
Let 𝛽 ∈ H3(𝑌,Z). Denote by S = S(𝑌 ) the orbifold of closed connected oriented 3–

dimensional immersed submanifolds 𝑃 ↬ 𝑌 with [𝑃] = 𝛽 ; cf. [KM97, §44]. Define 𝛿Υ = 𝛿Υ𝜓 ∈
Ω1(S) by

(𝛿Υ)𝑃 (𝑣) ≔
ˆ
𝑃

𝑖𝑣𝜓 for 𝑣 ∈ 𝑇𝑃S = Γ(𝑁𝑃).

By construction, if ⟨[𝜙], 𝛽⟩ > 0, then 𝑃 ∈ S is a zero of 𝛿Υ if and only if 𝑃 is associative.3

If d𝜓 = 0, then 𝛿Υ is closed; indeed: there is a covering map 𝜋 :
˜S → S such that 𝜋∗𝛿Υ

is exact. The covering map 𝜋 is the principal covering map associated with the sweep-out

homomorphism

sweep : 𝜋1(S) → H4(𝑌 ) .

3An analogous statement holds with the orientation of 𝑃 reversed if ⟨[𝜙], 𝛽⟩ < 0. 𝛿Υ has no zeros if ⟨[𝜙], 𝛽⟩ = 0.
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More concretely: choose 𝑃0 ∈ S and denote by
˜𝑆 the set of equivalence classes [𝑃,𝑄] of pairs

consisting of 𝑃 ∈ S and a 4–chain 𝑄 satisfying 𝜕𝑄 = 𝑃 − 𝑃0 with respect to the equivalence

relation ∼ defined by

(𝑃1, 𝑄1) ∼ (𝑃2, 𝑄2) ⇐⇒
(
𝑃1 = 𝑃2 and [𝑄1 −𝑄2] = 0 ∈ H4(𝑌,Z)

)
.

˜S admits a unique smooth structure such that the canonical projection map 𝜋 :
˜𝑆 → 𝑆 is a

smooth covering map. By Cartan’s formula and Stokes’ theorem, Υ = Υ𝜓 ∈ 𝐶∞( ˜S) defined by

(3.5) Υ( [𝑃,𝑄]) ≔
ˆ
𝑄

𝜓

satisfies

dΥ = 𝜋∗(𝛿Υ).
The fundamental strategy of this article is to find associatives submanifolds within a suitably

constructed family of submanifolds; that is: a smooth map P : 𝑀 → S. Here, a priori, 𝑀 is an

arbitrary orbifold; but in Section 4 it arises from Remark 3.3. Of course, if P : 𝑀 → S is a

smooth map, then zeros of P∗(𝛿Υ) need not correspond to associative submanifolds. However,

the following trivial observation turns out to be helpful.

Lemma 3.6. Suppose that ⟨[𝜙], 𝛽⟩ > 0. Let P : 𝑀 → S be a smooth map. If P is transverse to
ker𝛿Υ at 𝑥 ∈ 𝑀 ; that is: if

ker(𝛿Υ)P(𝑥 ) + im𝑇𝑥P = 𝑇P(𝑥 )S,

then P(𝑥) is associative if and only if 𝑥 is a zero of P∗(𝛿Υ). ■

Remark 3.7. Lemma 3.6 is particularly useful if there is a mechanism that forces P∗(𝛿Υ) to have

zeros; e.g.:

(1) If𝑀 is closed, then P∗(𝛿Υ) has 𝜒 (𝑀) zeros (counted with signs and multiplicities).

(2) If there is a finite group 𝐻 acting on 𝑀 and P∗(𝛿Υ) is 𝐻–invariant, then every isolated

fixed-point is a zero.

(3) If 𝑀 is closed and P∗(𝛿Υ) is exact, then it has at least two zeros (indeed: at least three

unless𝑀 is homeomorphic to a sphere). By (the proof of) Poincaré’s Lemma, P∗(𝛿Υ) is
exact if and only if the composite homomorphism

𝜋1(𝑀)
𝜋1 (P)−−−−→ 𝜋1(S)

sweep

−−−−→ H4(𝑌 )
⟨−,[𝜓 ] ⟩
−−−−−−→ R

vanishes. Indeed, if this homomorphism vanishes, then (3.5) is independent of the choice

of the 4–chain 𝑄 and defines a primitive of P∗(𝛿Υ). ♣

The deformation theory of associative submanifolds is quite well-behaved. Here is a sum-

mary of the salient points.

Definition 3.8. A tubular neighborhood of 𝑃 ∈ S is an open immersion 𝚥 : 𝑈 ↬ 𝑌 extending

𝑃 ↬ 𝑌 with𝑈 ⊂ 𝑁𝑃 an open neighborhood of the zero section in 𝑁𝑃 satisfying 𝑡 ·𝑈 ⊂ 𝑈 for

every 𝑡 ∈ [0, 1]. •
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Let 𝚥 : 𝑈 ↬ 𝑌 be a tubular neighborhood of 𝑃 ∈ S. Define Q = Q𝚥 : Γ(𝑈 ) → S by

Q(𝑣) ≔ 𝚥 (Γ𝑣) with Γ𝑣 ≔ im 𝑣 ⊂ 𝑁𝑃.

This map is (the inverse of) a chart of S. Since Γ(𝑈 ) ⊂ Γ(𝑁𝑃) is open, Ω1(Γ(𝑈 )) can be

identified with 𝐶∞(Γ(𝑈 ), Γ(𝑁𝑃)∗). Therefore, it makes sense to Taylor expand Q∗(𝛿Υ). If 𝑃 is

associative, then the zeroth order term vanishes and the first order term is independent of 𝚥.

Definition 3.9. Let 𝑃 ∈ S be associative. Define 𝛾 : Hom(𝑇𝑃, 𝑁𝑃) → 𝑁𝑃 by

⟨𝛾 (𝑣 · 𝑢♭),𝑤⟩ ≔ 𝜙 (𝑢, 𝑣,𝑤).

Denote by 𝜏⊥ ∈ Γ(𝔤𝔩(𝑁𝑃)) the restriction of 𝜏 ∈ Γ(𝔤𝔩(𝑇𝑌 )). The Fueter operator 𝐷 =

𝐷𝑃 : Γ(𝑁𝑃) → Γ(𝑁𝑃) associated with 𝑃 is defined by

𝐷 ≔ −𝛾∇ + 𝜏⊥. •

Proposition 3.10 (McLean [McL98, §5], Akbulut and Salur [AS08, Theorem 6], Gayet [Gay14,

Theorem 2.1], Joyce [Joy18, Theorem 2.12]). Let 𝑃 ∈ S be associative. Let 𝚥 : 𝑈 ↬ 𝑌 be a
tubular neighborhood of 𝑃 . There are a constant 𝑐 = 𝑐 ( 𝚥) > 0 and a smooth map N = N𝚥 ∈
𝐶∞(Γ(𝑈 ), Γ(𝑁𝑃)) such that

⟨Q∗(𝛿Υ) (𝑣),𝑤⟩ = ⟨𝐷𝑣 +N(𝑣),𝑤⟩𝐿2

and
∥N(𝑣) −N(𝑤)∥𝐶0,𝛼 ⩽ 𝑐 (∥𝑣 ∥𝐶1,𝛼 + ∥𝑤 ∥𝐶1,𝛼 )∥𝑣 −𝑤 ∥𝐶1,𝛼 .

Here ⟨·, ·⟩ denotes the pairing between Γ(𝑁𝑃)∗ and Γ(𝑁𝑃); and, as explained above, Q∗(𝛿Υ) ∈
𝐶∞(Γ(𝑈 ), Γ(𝑁𝑃)∗).

Remark 3.11. If 𝜓 is closed, then 𝐷 is self-adjoint; indeed, it corresponds to the Hessian of Υ;
cf. [Joy18, Lemma 2.13] ♣

Proof of Proposition 3.10. To ease notation, set 𝑓 ≔ Q∗(𝛿Υ). Since

⟨𝑓 (𝑣),𝑤⟩ =
ˆ
Γ𝑣

𝑖𝑤 𝚥
∗𝜓,

𝑇𝑢 𝑓 : 𝑇𝑢Γ(𝑈 ) = Γ(𝑁𝑃) → Γ(𝑁𝑃)∗ satisfies

⟨𝑇𝑢 𝑓 (𝑣),𝑤⟩ =
ˆ
Γ𝑢

L𝑣𝑖𝑤 𝚥
∗𝜓 .

Since

𝑓 (𝑣) = 𝑇0 𝑓 (𝑣) +
ˆ

1

0

(𝑇𝑡𝑣 𝑓 −𝑇0 𝑓 ) (𝑣) d𝑡︸                      ︷︷                      ︸
≕⟨N (𝑣),−⟩

𝐿2

,

it remains to identify 𝑇0 𝑓 as 𝐷 and estimate N(𝑣).
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Choose a frame (𝑒1, 𝑒2, 𝑒3) on 𝑈 which restricts to a positive orthonormal frame on Γ𝑡𝑢
for every 𝑡 ∈ [0, 1]. Denote by ∇ the Levi-Civita connection of 𝚥∗𝑔 on 𝑈 . To ease notation,

henceforth suppress 𝚥. Since ∇ is torsion-free,

(L𝑣𝑖𝑤𝜓 ) (𝑒1, 𝑒2, 𝑒3) = 𝜓 (∇𝑣𝑤, 𝑒1, 𝑒2, 𝑒3) + ⟨𝜏𝑣,𝑤⟩𝜙 (𝑒1, 𝑒2, 𝑒3)
+𝜓 (𝑤,∇𝑒1

𝑣, 𝑒2, 𝑒3) +𝜓 (𝑤, 𝑒1,∇𝑒2
𝑣, 𝑒3) +𝜓 (𝑤, 𝑒1, 𝑒2,∇𝑒3

𝑣).
(3.12)

A moment’s thought derives the asserted estimate onN from this; cf. [MS12, Remark 3.5.5].

Since 𝑃 is associative, on 𝑃 = Γ0, the first term in (3.12) vanishes and the second equals

⟨𝜏⊥𝑣,𝑤⟩. To digest the second line of (3.12), define the cross-product − × − : 𝑇𝑌 ⊗ 𝑇𝑌 → 𝑇𝑌

and the associator [−,−,−] : 𝑇𝑌 ⊗ 𝑇𝑌 ⊗ 𝑇𝑌 → 𝑇𝑌 by

⟨𝑢 × 𝑣,𝑤⟩ ≔ 𝜙 (𝑢, 𝑣,𝑤) and 𝜓 (𝑢, 𝑣,𝑤, 𝑥) ≔ ⟨[𝑢, 𝑣,𝑤], 𝑥⟩.

These are related by

[𝑢, 𝑣,𝑤] = (𝑢 × 𝑣) ×𝑤 + ⟨𝑣,𝑤⟩𝑢 − ⟨𝑢,𝑤⟩𝑣 ;

cf. [SW17, §4]. Therefore,

𝜓 (𝑤,∇𝑒𝑖𝑣, 𝑒 𝑗 , 𝑒𝑘 ) = −⟨𝑤, (𝑒 𝑗 × 𝑒𝑘 ) × ∇𝑒𝑖𝑣⟩.

Since 𝑃 is associative, 𝑒𝑖 × 𝑒 𝑗 =
∑

3

𝑘=1
𝜀
𝑘

𝑖 𝑗
𝑒𝑘 . Here 𝜀

𝑘

𝑖 𝑗
is the Levi-Civita symbol: if (𝑖, 𝑗, 𝑘) is a

permutation of (1, 2, 3), then it is the sign of this permutation; otherwise it vanishes. Therefore,

the second line of (3.12) is

−
3∑︁
𝑎=1

⟨𝑒𝑎 × ∇𝑒𝑎𝑣,𝑤⟩ = −⟨𝛾∇𝑣,𝑤⟩. ■

In Example 3.2, the operator 𝐷 , governing the infinitesimal deformation theory of 𝑃 = 𝑃 [𝜂 ] ,
can be understood rather concretely.

Example 3.13. Assume the situation of Example 3.2 with 𝜇 = idΣ. Evidently,

𝑇𝑃 [𝜂 ] = R𝜉 ⊕ 𝑇Σ and 𝑁𝑃 [𝜂 ] = (R𝜉)⊥ ⊕ 𝑁Σ.

Direct inspection reveals that 𝛾 (− · 𝜉♭) defines a complex structure 𝑖 on (R𝜉)⊥ and agrees with

−𝐼𝜉 on 𝑁Σ; moreover, for 𝜁 · 𝑣♭ ∈ Hom(𝑇Σ, (R𝜉)⊥)

𝛾 (𝜁 · 𝑣♭) = 𝐼𝜁 𝑣 ∈ 𝑁Σ.

A moment’s thought shows that

𝛾 (𝜁 · 𝑣♭𝐼𝜉 ) = 𝐼𝜉𝛾 (𝜁 · 𝑣♭) = 𝛾 (𝑖𝜁 · 𝑣♭) .

Denote by HomC(𝑇Σ, (R𝜉)⊥) ⊂ Hom(𝑇Σ, (R𝜉)⊥) the subspace of complex anti-linear maps.

The restriction of 𝛾 to Hom(𝑇Σ, (R𝜉)⊥) is the composition of a complex linear isomorphism

𝜅 : HomC(𝑇Σ, (R𝜉)⊥) � 𝑁Σ
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and the projection (−)0,1
: Hom(𝑇Σ, (R𝜉)⊥) → HomC(𝑇Σ, (R𝜉)⊥) defined by𝐴0,1 ≔ 1

2
(𝐴+𝐼𝐴𝐼 )

Therefore,

𝐷 = 𝐷𝑃 [𝜂 ] = (−𝑖 ⊕ 𝐼𝜉 ) · 𝜕𝜉 −
(

0 𝜕∗𝜅∗

𝜅𝜕 0

)
with 𝜕𝜉 denoting the derivative along 𝜉 and the Cauchy–Riemann operator 𝜕 : 𝐶∞(Σ, (R𝜉)⊥) →
Γ
(
HomC(𝑇Σ, (R𝜉)⊥)

)
defined by

(𝜕𝑓 ) (𝑣) ≔ (d𝑓 )0,1(𝑣) = 1

2

(∇𝑣 𝑓 + 𝑖∇𝐼𝜉 𝑣 𝑓 )

and 𝜕∗ denoting its formal adjoint. In particular,

ker𝐷𝑃 [𝜂 ] � (R𝜉)⊥ ⊕ H
0,1(Σ, (R𝜉)⊥). ♠

If coker𝐷 = 0, then 𝑃 is unobstructed and stable under perturbations of the 𝐺2–structure

𝜙 . In Example 3.2, 𝑃 [𝜂 ] is never unobstructed. However, the entire family of 𝑃 [𝜂 ] parametrised

by [𝜂] ∈ 𝑀 does satisfy the following property if Σ = 𝑆2
because (R𝜉)⊥ = 𝑇[𝜂 ]𝑀 .4

Definition 3.14. A smooth map P : 𝑀 → S is a Morse–Bott family of (𝜙–)associative submani-

folds if it is an immersion and for every 𝑥 ∈ 𝑀

(𝛿Υ)P(𝑥 ) = 0 and ker𝐷P(𝑥 ) = im𝑇𝑥P. •

Informally, this condition asserts that P integrates every infinitesimal deformation. Un-

fortunately, Morse–Bott families of 𝜙–associative submanifolds are not stable under small

deformations of the 𝐺2–structure; however, P being transverse to ker𝛿Υ (as in Lemma 3.6) is.

Most of the remainder of this section is devoted to establishing this. This requires a family

version of the discussion preceding Proposition 3.10. In a sense this is standard, but: since the

application in Section 4 is carried out very close to the degenerate limit, some caution and

precision is advised.

Henceforth, the choice of 𝐺2–structure 𝜙 ∈ Ω3(𝑌 ) made at the beginning of this section

shall be undone.

Definition 3.15. Let P0 : 𝑀 → S be a smooth map. Consider the fibre bundle

𝑝 : P
0
≔

∐
𝑥∈𝑀

P0(𝑥) ↩→ 𝑀 × 𝑌 → 𝑀.

(1) The normal bundle of P0 is the vector bundle

𝑞 : 𝑁P0 ≔
∐
𝑥∈𝑀

𝑁P0(𝑥) → P
0
.

There is a canonical isomorphism 𝑁P0 � 𝑁P
0
≔ 𝑇 (𝑀 × 𝑌 ) |P

0

/𝑇P
0
.

4If 𝑃[𝜂 ] is multiply covering, then the underlying embedded associative submanifold might be unobstructed; see

Remark 4.2.
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(2) A tubular neighborhood of P0 is a tubular neighborhood 𝚥 : U ↬ 𝑀 × 𝑌 of P
0
with

pr𝑀 ◦ 𝚥 = 𝑝 ◦ 𝑞. In particular, for every 𝑥 ∈ 𝑀 , 𝚥 induces a tubular neighborhood

𝚥𝑥 : 𝑈𝑥 ↬ 𝑌 of P0(𝑥).

(3) The derivative of P0 ∈ 𝐶∞(𝑀,S) is a section 𝑇P ∈ Hom(𝑇𝑀, P∗
0
𝑇S). Therefore, differen-

tiation defines a section 𝑇 ∈ Γ(E) of the vector bundle

𝑟 : E ≔
∐

P0∈𝐶∞ (𝑀,S)
Γ
(
Hom(𝑇𝑀, P∗

0
𝑇S)

)
→ 𝐶∞(𝑀,S).

Let 𝚥 : U ↬ 𝑀 × 𝑌 be a tubular neighborhood of P0. The map Q𝚥 : Γ(U) → 𝐶∞(𝑀,S)
defined by

Q𝚥 (𝑣) (𝑥) ≔ Q𝚥𝑥 (𝑣) with 𝑣𝑥 ≔ 𝑣 |P0 (𝑥 )

is (the inverse of) a chart on𝐶∞(𝑀,S). Within this chart E is trivialised and𝑇 is identified

with a smooth map T = T𝚥 ∈ 𝐶∞
(
Γ(U), Γ

(
Hom(𝑝∗𝑇𝑀, 𝑁P0)

) )
; that is: the diagram

Γ(U) × Γ
(
Hom(𝑝∗𝑇𝑀, 𝑁P0)

)
E

Γ(U) 𝐶∞(𝑀,S)

𝑟

Q

(id,T) 𝑇

commutes. (See Figure 1 and Remark 3.16.)

Henceforth, suppose that 𝜙0 is a 𝐺2–structure and that P0(𝑥) is 𝜙0–associative for every 𝑥 ∈ 𝑀 .

(4) Define 𝐷 = 𝐷P0
: Γ(𝑁P0) → Γ(𝑁P0) by

(𝐷𝑣) |P0 (𝑥 ) ≔ 𝐷P0 (𝑥 ) (𝑣 |P0 (𝑥 ) ).

Set

V ≔ {𝑣 ∈ Γ(𝑁P0) : 𝑣 |P0 (𝑥 ) ⊥𝐿2 im𝑇𝑥P0 for every 𝑥 ∈ 𝑀}

with ⊥𝐿2 denoting 𝐿2
orthogonality. Denote by 𝐷⊥ = 𝐷⊥

P0

: V → V the map induced by

𝐷 and projection ontoV.

(5) Let 𝚥 : U↬ 𝑀×𝑌 be a tubular neighborhood of P0. DefineN = N𝚥 ∈ 𝐶∞(Γ(U), Γ(𝑁P0))
by

(N𝑣) |P0 (𝑥 ) ≔ N𝚥𝑥 (𝑣) |P0 (𝑥 ) . •

Remark 3.16. The upcoming Proposition 3.19 constructs a perturbation P ≔ Q𝚥 (𝑣) of P0. To

establish one of the desired properties of P, it is necessary to compare the derivatives 𝑇P and

𝑇P0. The purpose of the map T is to enable this. ♣

Example 3.17. In the situation of Example 3.2 with 𝜇 = idΣ, 𝑀 = 𝑇 2
, P

0
= 𝑇 2 × (𝑆1 × Σ)

and 𝑁P0 = 𝑇𝑇 2 ⊕ 𝑁Σ. 𝐷P0 (𝑥 ) and N𝚥𝑥—for a suitable choice of 𝚥 and with respect to suitable

identifications—are independent of 𝑥 ∈ 𝑇 2
. ♠
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P0

Q(𝑣)

𝑌

𝑀
𝑥

T(𝑣) (𝑥)

Figure 1: A sketch of the situation of Definition 3.15 (3).

Definition 3.18. Let P0 : 𝑀 → S be a smooth map. Suppose that Riemannian metrics on 𝑀

and 𝑌 are given. This induces a Euclidean inner product and an orthogonal covariant derivative

∇ on 𝑁P0 → P
0
, and an Ehresmann connection on 𝑝 : P

0
→ 𝑀 . Denote by ∇1,0

and ∇0,1
the

restriction of ∇ to the horizontal and vertical directions defined by the Ehresmann connection

respectively. Denote by

𝔓 ≔
∐
𝑥∈𝑀

𝐶∞( [0, 1], 𝑝−1(𝑥))

the set of vertical paths in 𝑝 : P
0
→ 𝑀 . Denote by𝔓+ ⊂ 𝔓 the subset of non-constant paths.

For 𝛼 ∈ (0, 1) set

[𝑣]𝐶0𝐶0,𝛼 ≔ sup

𝛾 ∈𝔓+

|tra𝛾 (𝑣 (𝛾 (0))) − 𝑣 (𝛾 (1)) |
ℓ (𝛾)𝛼 and ∥𝑣 ∥𝐶0𝐶0,𝛼 ≔ ∥𝑣 ∥𝐶0 + [𝑣]𝐶0𝐶0,𝛼

with ℓ (𝛾) denoting the length of𝛾 and tra𝛾 denoting parallel transport along 𝛾 . For 𝑘, ℓ ∈ N0, 𝛼 ∈
(0, 1) define the norm ∥−∥𝐶𝑘𝐶ℓ,𝛼 on Γ(𝑁P0) by

∥𝑣 ∥𝐶𝑘𝐶ℓ,𝛼 ≔

𝑘∑︁
𝑚=0

ℓ∑︁
𝑛=0

∥(∇1,0)𝑚 (∇0,1)𝑛𝑣 ∥𝐶0𝐶0,𝛼 . •

Proposition 3.19. Let 𝛼 ∈ (0, 1), 𝛽,𝛾, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑅 > 0. If 𝛽 > 2𝛾 , then there are constants𝑇 =

𝑇 (𝛼, 𝛽,𝛾, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑅) > 0 and 𝑐𝑣 = 𝑐𝑣 (𝛼, 𝛽,𝛾, 𝑐1, 𝑐2, 𝑐3) > 0 with the following significance.
Let 𝜙0, 𝜙 ∈ Ω3(𝑌 ) be two 𝐺2–structures on 𝑌 . Let P0 : 𝑀 → S be a Morse–Bott family of 𝜙0–
associative submanifolds. Let 𝚥 : U ↬ 𝑀 × 𝑌 be a tubular neighborhood of P0. Let 𝑡 ∈ (0,𝑇 ).
Suppose that:

(1) 𝐵𝑅 (0) ⊂ 𝑈𝑥 .

(2) ∥ 𝚥∗(𝜙 − 𝜙0)∥𝐶1,𝛼 (U) ⩽ 𝑐1𝑡
𝛽 .

(3) 𝐷⊥
: V → V is bijective and

∥𝑣 ∥𝐶1𝐶1,𝛼 ⩽ 𝑐2𝑡
−𝛾 ∥𝐷⊥𝑣 ∥𝐶1𝐶0,𝛼 .
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(4) N ∈ 𝐶∞(Γ(U), Γ(𝑁P0)) satisfies

∥N(𝑣) −N(𝑤)∥𝐶1𝐶0,𝛼 ⩽ 𝑐3(∥𝑣 ∥𝐶1𝐶1,𝛼 + ∥𝑤 ∥𝐶1𝐶1,𝛼 )∥𝑣 −𝑤 ∥𝐶1𝐶1,𝛼 .

(5) For every 𝑥 ∈ 𝑇𝑀 and 𝑣 ∈ Γ(U)

|𝑥 | ⩽ 𝑐4∥T(0) (𝑥)∥𝐶0 and ∥T(𝑣) − T(0)∥𝐶0 ⩽ 𝑐5∥𝑣 ∥𝐶1𝐶1,𝛼 .

In this situation, there is a 𝑣 ∈ Γ(U) ⊂ Γ(𝑁P0) with ∥𝑣 ∥𝐶1𝐶1,𝛼 ⩽ 𝑐𝑣𝑡
𝛽−𝛾 such that the map

(3.20) P ≔ Q𝚥 (𝑣) : 𝑀 → S

is transverse to ker𝛿Υ𝜓 (as in Lemma 3.6). Moreover, if 𝐻 is a finite group acting on𝑀 and 𝑌 , 𝜙0

and 𝜙 are 𝐻–invariant, and 𝚥 and P0 are 𝐻–equivariant, then P is 𝐻–equivariant.

Remark 3.21. The condition (3) can be understood as a quantification of theMorse–Bott condition.

♣

Proof of Proposition 3.19. To ease notation, define 𝑓0, 𝑓 ∈ 𝐶∞(Γ(U), Γ(𝑁P0)) by

⟨𝑓0(𝑣) |P0 (𝑥 ) ,𝑤⟩𝐿2 ≔ ⟨Q∗
𝚥𝑥
(𝛿Υ𝜓0) (𝑣),𝑤⟩ and ⟨𝑓 (𝑣) |P0 (𝑥 ) ,𝑤⟩𝐿2 ≔ ⟨Q∗

𝚥𝑥
(𝛿Υ𝜓 ) (𝑣),𝑤⟩.

Denote by (−)⊥ the projection ontoV. For every 𝑣 ∈ V

(𝐷⊥)−1 𝑓 (𝑣)⊥ = 𝑣 + (𝐷⊥)−1(N(𝑣) + 𝑓 (𝑣) − 𝑓0(𝑣))⊥︸                                   ︷︷                                   ︸
≔𝐸 (𝑣)

.

By (2), (3), and (4), there is a constant 𝑐𝐸 = 𝑐𝐸 (𝛼, 𝛽,𝛾, 𝑐1, 𝑐2, 𝑐3) > 0 such that for every 𝑟 ∈ (0, 𝑅)
and 𝑣,𝑤 ∈ 𝐵𝑟 (0) ⊂ 𝐶1𝐶1,𝛼Γ(𝑁P0)

∥𝐸 (0)∥𝐶1𝐶1,𝛼 ⩽ 𝑐𝐸𝑡
𝛽−𝛾

and

∥𝐸 (𝑣) − 𝐸 (𝑤)∥𝐶1𝐶1,𝛼 ⩽ 𝑐𝐸 (𝑟 + 𝑡𝛽 )𝑡−𝛾 ∥𝑣 −𝑤 ∥𝐶1𝐶1,𝛼 .

Therefore, −𝐸 defines a contraction on 𝐵𝑟 (0) ⊂ 𝐶1𝐶1,𝛼Γ(𝑁P0) provided

𝑐𝐸 (𝑟 + 𝑡𝛽 )𝑡−𝛾 < 1 and 𝑐𝐸𝑡
𝛽−𝛾 + 𝑐𝐸 (𝑟 + 𝑡𝛽 )𝑡−𝛾𝑟 ⩽ 𝑟 .

These can be seen to hold for 𝑟 ≔ 2𝑐𝐸𝑡
𝛽−𝛾

and 𝑡 ⩽ 𝑇 ≪ 1 because 𝛽 > 2𝛾 . Denote by

𝑣 ∈ 𝐵𝑟 (0) ⊂ 𝐶1𝐶1,𝛼Γ(𝑁P0) the unique solution of

𝑓 (𝑣)⊥ = 0.

By elliptic regularity, 𝑣 ∈ Γ(U).
It remains to prove that P defined by (3.20) is transverse to ker𝛿Υ𝜓 ; that is: for every 𝑥 ∈ 𝑀

ker(𝛿Υ𝜓 )P(𝑥 ) + im𝑇𝑥P = 𝑇P(𝑥 )S,

or, equivalently,

𝑓𝑥 (𝑣) = 0 or 𝑓𝑥 (𝑣) ∉ (imT𝑥 (𝑣))⊥.
Here the subscript 𝑥 indicates restriction to P0(𝑥). By construction, 𝑓𝑥 (𝑣) ∈ imT𝑥 (0). Therefore,
the hypothesis is satisfied by (5) provided 𝑡 ⩽ 𝑇 ≪ 1.

Evidently, this construction preserves 𝐻–equivariance. ■
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In Example 3.2 with Σ = 𝑆2
, the following gives the required estimate on 𝐷 .

Situation 3.22. Let 𝑋 be a compact oriented Riemannian manifold. Let 𝑉 be a Euclidean vector

bundle over 𝑋 . Let 𝐴 : Γ(𝑉 ) → Γ(𝑉 ) be a formally self-adjoint linear elliptic differential

operator of first order. Denote by 𝜋 : Γ(𝑉 ) → ker𝐴 the 𝐿2
orthogonal projection onto ker𝐴.

Let 𝐿 > 0. Define Π : Γ((R/𝐿Z) × 𝑋,𝑉 ) → ker𝐴 by

Π𝑠 ≔

 𝐿

0

𝜋 (𝑖∗𝑡 𝑠) d𝑡

with 𝑖𝑡 (𝑥) ≔ (𝑡, 𝑥). ×

Remark 3.23. In the situation of Example 3.2 with 𝜇 = idΣ, according to Example 3.13

𝐷𝑃 [𝜂 ] = (−𝑖 ⊕ 𝐼𝜉 ) · (𝜕𝜉 +𝐴) with 𝐴 ≔

(
0 𝑖𝜕∗𝜅∗

−𝜅𝜕𝑖 0

)
. ♣

Proposition 3.24. In Situation 3.22, for every 𝛼 ∈ (0, 1) there is a constant 𝑐 = 𝑐 (𝐴, 𝛼) > 0 such
that for every 𝑠 ∈ Γ((R/𝐿Z) × 𝑋,𝑉 )

∥𝑠 ∥𝐶1,𝛼 ⩽ 𝑐
(
(𝐿 + 1)∥(𝜕𝑡 +𝐴)𝑠 ∥𝐶0,𝛼 + ∥Π𝑠 ∥𝐿∞

)
.

Proof. By interior Schauder estimates

∥𝑠 ∥𝐶1,𝛼 ⩽ 𝑐1(∥(𝜕𝑡 +𝐴)𝑠 ∥𝐶0,𝛼 + ∥𝑠 ∥𝐿∞);

see, e.g., [Kic06, §3]. Define 𝜋 : Γ((R/𝐿Z) × 𝑋,𝑉 ) → Γ((R/𝐿Z) × 𝑋,𝑉 ) by

(𝜋𝑠) (𝑡, 𝑥) ≔ (𝜋 (𝑖∗𝑡 𝑠)) (𝑥) .

A contradiction argument proves that

∥(1 − 𝜋)𝑠 ∥𝐿∞ ⩽ 𝑐2∥(𝜕𝑡 +𝐴) (1 − 𝜋)𝑠 ∥𝐶0,𝛼 ⩽ 𝑐2

(
∥(𝜕𝑡 +𝐴)𝑠 ∥𝐶0,𝛼 + ∥(𝜕𝑡 +𝐴)𝜋𝑠 ∥𝐶0,𝛼

)
;

cf. [Wal13, Proof of Proposition 8.5]. As a consequence of the fundamental theorem of calculus

∥𝜋𝑠 ∥𝐿∞ ⩽ 𝐿∥𝜕𝑡𝜋𝑠 ∥𝐿∞ + ∥Π𝑠 ∥𝐿∞ = 𝐿∥(𝜕𝑡 +𝐴)𝜋𝑠 ∥𝐿∞ + ∥Π𝑠 ∥𝐿∞ .

Therefore,

∥𝑠 ∥𝐿∞ ⩽ 𝑐2∥(𝜕𝑡 +𝐴)𝑠 ∥𝐶0,𝛼 + (𝑐2 + 𝐿)∥(𝜕𝑡 +𝐴)𝜋𝑠 ∥𝐿∞ + ∥Π𝑠 ∥𝐿∞ .

Since 𝐴 is formally self-adjoint,

𝜋 (𝜕𝑡 +𝐴) = (𝜕𝑡 +𝐴)𝜋.

Therefore,

∥(𝜕𝑡 +𝐴)𝜋𝑠 ∥𝐶0,𝛼 ⩽ 𝑐3∥(𝜕𝑡 +𝐴)𝑠 ∥𝐶0,𝛼 .

The above observations combine to the asserted estimate with 𝑐 = 𝑐1(𝑐2 + 1) (𝑐3 + 1). ■
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4 Examples

The purpose of this section is to construct the associative submanifolds whose existence was

promised in Section 1. These associative submanifolds are diffeomorphic to 𝑆1 × 𝑆2
, have not

appeared in the literature (known to the authors) so far, and—most importantly—their volumes

tend to zero as the ambient 𝐺2–manifolds degenerate. In the following, some examples are

exhibited. These are certainly not exhaustive; cf. Remark 4.7.

Here is a construction technique based on Proposition 3.19 and Remark 3.7 (2).

Proposition 4.1. Let ℜ = (Γ𝛼 ,𝐺𝛼 , 𝜌𝛼 ;𝑅𝛼 , 𝚥𝛼 ;
ˆ𝑋𝛼 , �̂�𝛼 , 𝜌𝛼 , 𝜏𝛼 )𝛼∈𝐴 be resolution data for a closed flat

𝐺2–orbifold (𝑌0, 𝜙0). Denote by (𝑌𝑡 , 𝜙𝑡 )𝑡 ∈ (0,𝑇0 ) the family of closed 𝐺2–manifolds obtained from
the generalised Kummer construction discussed in Section 2. Let ★ ∈ 𝐴, ˆ𝜉 ∈ 𝑆2 ⊂ ImH, 𝐿 > 0, and
Σ ⊂ 𝑋★. Set 𝜉 ≔ 𝐿 ˆ𝜉 , Λ★ ≔ 𝐺★ ∩ ImH < ImH, 𝑀★ ≔ (ImH/R𝜉)/(Λ★/Z𝜉), and 𝐻★ ≔ 𝐺★/Λ★.
Denote by I★ the hypercomplex structure on 𝑋★. Suppose that:

(1) Σ is a closed 𝐼
★, ˆ𝜉

–holomorphic curve. Σ � 𝑆2.

(2) 𝜉 ∈ Λ★ is primitive. Z𝜉 < 𝐺★ is normal.

(3) 𝜌★(𝑔) (Σ) = Σ for every 𝑔 ∈ 𝐺★, and 𝜌 (𝜉) |Σ = idΣ.

Denote by 𝑛𝑓 the number of singularities of the orbifold𝑀★/𝐻★ (see Remark 3.3). In this situation,
there is a constant 𝑇1 ∈ (0,𝑇0] and for every 𝑡 ∈ (0,𝑇1) there are at least 𝑛𝑓 distinct associative
submanifolds in (𝑌𝑡 , 𝜙𝑡 ) representing the homology class 𝛽 ≔ 𝜐★( [𝑃 [0]]) ∈ H3(𝑌𝑡 ,Z) with 𝜐★ as
in Remark 2.17 and 𝑃 [0] ⊂ ˆ𝑌★,𝑡 as in Example 3.2.

Proof. For every [𝜂] ∈ 𝑀★/𝐻★ and 𝑡 ≪ 1, Example 3.2 constructs a 𝑡−3 ˜𝜙𝑡–associative sub-

manifold 𝑃 [𝜂 ] ↬ ˆ𝑌 ◦
★,𝑡\ ˆ𝑉★,𝑡 . This defines an 𝐻★–invariant Morse–Bott family P0 : 𝑀★ → S of

𝑡−3 ˜𝜙𝑡–associative submanifolds; see Example 3.13. With respect to 𝑡−2𝑔𝑡 these submanifolds are

isometric to (R/𝑡−1𝐿Z) × Σ.
The hypotheses of Proposition 3.19 are satisfied for the choices 𝜙0 = 𝑡−3 ˜𝜙𝑡 , 𝜙 = 𝑡−3𝜙𝑡 ,

𝛼 ∈ (0, 1/16), 𝛽 = 5/2, 𝛾 = 1, and choices of 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑅 > 0 which shall not be specified

(because of their secondary importance): (1) holds for 0 < 𝑅 ≪ 1. (2) holds by Theorem 2.19.

Because of Remark 2.18 (the proof of) Proposition 3.10 implies (4). For a suitable choice of 𝚥,
(5) holds with respect to 𝑡−2𝑔𝑡 by direct inspection; cf. Example 3.17. It remains to verify (3).

As pointed out in Example 3.13, 𝑁P0( [𝜂]) = 𝑇[𝜂 ]𝑀★ ⊕ 𝑁Σ. Therefore, 𝑁P0 � 𝑇𝑀★ ⊕ 𝑁Σ →
P

0
� (R/𝑡−1𝐿Z) × Σ ×𝑀★. By Remark 3.23, 𝐷P0 ( [𝜂 ] ) is as in Situation 3.22. By definition, 𝑣 ∈ V

if 𝑣 |P0 ( [𝜂 ] ) ⊥𝐿2 im𝑇[𝜂 ]P0 = 𝑇[𝜂 ]𝑀★ for every [𝜂] ∈ 𝑀★. Since Σ � 𝑆
2
, ker𝐴 = 𝑇[𝜂 ]𝑀★ and the

preceding condition is equivalent to Π(𝑣 |P0 ( [𝜂 ] ) ) = 0. Therefore, Proposition 3.24 implies (3)

with respect to 𝑡−2𝑔𝑡 .

For 𝑡 ∈ (0,𝑇1/2) the resulting 𝐻★–invariant map P : 𝑀★ → S is transverse to ker𝛿Υ (as in

Lemma 3.6). By Remark 3.7 (2), every isolated fixed-point of the action of 𝐻★ on𝑀★ is a zero of

P∗(𝛿Υ𝜙𝑡 ). If 𝑡 < 𝑇1 ≪ 𝑇1/2, then these map to 𝑛𝑓 pairwise distinct elements of S. By Lemma 3.6,

each one of these is a 𝜙𝑡–associative submanifold. ■
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Remark 4.2. If 𝑥 ∈ 𝑀★ corresponds to an orbifold point [𝑥] ∈ 𝑀★/𝐻★, then 𝑃0 ≔ P0(𝑥) and
P(𝑥) are multiply covering and their deck transformation group contain the isotropy group Γ
of [𝑥]. The embedded associative submanifold

ˇ𝑃0 ≔ 𝑃0/Γ is unobstructed; indeed:

ker𝐷 ˇ𝑃0

= (ker𝐷𝑃0
)Γ = (𝑇𝑥𝑀★)Γ = 0.

This can be used to give a somewhat simpler proof of most of Proposition 4.1 avoiding the use

of Proposition 3.19. ♣

Example 4.3. Joyce [Joy96b, Examples 4, 5, 6] constructs 7 examples of closed flat 𝐺2–orbifolds

(𝑌0, 𝜙0) whose singular set has components 𝑆𝛼 (𝛼 ∈ 𝐴). 𝐴 is a disjoint union 𝐴 = 𝐴0 ⨿ 𝐴1

with 𝐴1 ≠ ∅. For 𝛼 ∈ 𝐴0
, 𝑆𝛼 is isometric to 𝑇 3 ≔ R3/Z3

. For 𝛼 ∈ 𝐴1
, 𝑆𝛼 is isometric to

𝑇 3/𝐶2. Here is a more precise description. For 𝛼 ∈ 𝐴 set Γ𝛼 ≔ 𝐶2. For 𝛼 ∈ 𝐴0
set 𝐺𝛼 ≔

Λ = ⟨𝑖, 𝑗, 𝑘⟩ < ImH and denote by 𝜌𝛼 : 𝐺𝛼 → Isom(H/Γ𝛼 ) the trivial homomorphism. For

𝛼 ∈ 𝐴1
let 𝐺𝛼 < SO(ImH) ⋉ ImH be generated by Λ and (𝑅2,

𝑖
2
) with 𝑅2 as in (2.5), and define

𝜌𝛼 : 𝐺𝛼 → 𝐺𝛼/Λ → 𝑁SO(H) (Γ𝛼 ) ↩→ Isom(H/Γ𝛼 ) by

𝜌𝛼
(
𝑅2,

𝑖
2

)
[𝑞] ≔ [−𝑖𝑞𝑖] .

For every 𝛼 ∈ 𝐴 there is an open embedding 𝚥𝛼 :

(
ImH × (𝐵𝑅𝛼 (0)/Γ𝛼 )

)
/𝐺𝛼 ↩→ 𝑌0 as in

Definition 2.6 (2).

These can be extended to resolution dataℜ for (𝑌0, 𝜙0) with the aid of the Gibbons–Hawking
construction discussed in Remark 2.12. According to Remark 2.12 (2), (𝑋0,𝝎0) is H/𝐶2 with the

standard hyperkähler form. If 𝜻 = [𝜁 ,−𝜁 ] ∈ Δ◦
, then (𝑋𝜻 ,𝝎𝜁 ) is a hyperkähler manifold and

Remark 2.12 (2) provides 𝜏 : 𝑋𝜻\𝐾𝜻 → 𝑋0. Therefore, completing the resolution data for 𝛼 ∈ 𝐴0

amounts to a choice of 𝜁𝛼 ∈ Δ◦

For 𝛼 ∈ 𝐴1
the situation is slightly complicated by the fact that 𝜌𝛼 is non-trivial. The

involution 𝑅(𝑞) ≔ −𝑖𝑞𝑖 lies in 𝑍SO(H) (Γ𝛼 ) and Λ+𝑅 = 𝑅2. By Remark 2.12 (4), requiring that 𝑅

lifts to 𝑋𝜻 imposes the constraint that 𝜻𝛼 ∈ (Δ◦)𝑅2
. Therefore, completing the resolution data

for 𝛼 ∈ 𝐴1
amounts to a choice of 𝜻𝛼 ∈ (Δ◦)𝑅2

. If

𝜻 ∈
{
[𝜁 ,−𝜁 ] ∈ Δ◦

: 𝜁 ∈ R𝑖
}
⊂ (Δ◦)𝑅2,

then the segment joining 𝜁 and −𝜁 lifts to an 𝐼𝑖–holomorphic curve Σ � 𝑆2
. Therefore, for

the corresponding choices of ℜ, Proposition 4.1 with
ˆ𝜉 = 𝑖 and 𝐿 = 1 exhibits 4 associative

submanifolds in (𝑌𝑡 , 𝜙𝑡 ) for every 𝑡 ∈ (0,𝑇1). ♠

Example 4.4. Joyce [Joy96b, Examples 15, 16] constructs two examples of closed flat𝐺2–orbifolds

(𝑌0, 𝜙0) whose singular set has components 𝑆𝛼 (𝛼 ∈ 𝐴). 𝐴 is a disjoint union 𝐴 = 𝐴0 ⨿ 𝐴1
with

𝐴1 = {★}. The situation is analogous to that in Example 4.3 except that Γ★ ≔ 𝐶3.

Completing the resolution data for ★ amounts to a choice of 𝜻★ ∈ (Δ◦)𝑅2
with 𝑅2 as in (2.5).

If

𝜻 ∈
{
[𝜁1, 𝜁2, 𝜁3] ∈ Δ◦

: 𝜁1, 𝜁2, 𝜁3 ∈ R𝑖
}
⊂ (Δ◦)𝑅2

and 𝜁2 is contained in the segment joining 𝜁1 and 𝜁2, then the segment joining 𝜁1 and 𝜁2 and

the segment joining 𝜁2 and 𝜁3 lift to 𝐼★,𝑖–holomorphic curves Σ1, Σ2 � 𝑆
2
and Proposition 4.1 (2)

holds. Therefore, for the corresponding choices of ℜ, Proposition 4.1 with
ˆ𝜉 = 𝑖 and 𝐿 = 1

exhibits 8 = 2 · 4 associative submanifolds in (𝑌𝑡 , 𝜙𝑡 ) for every 𝑡 ∈ (0,𝑇1). ♠
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Example 4.5. Reidegeld [Rei17, §5.3.4] constructs an example of a closed flat𝐺2–orbifold (𝑌0, 𝜙0)
whose singular set has 16 components 𝑆𝛼 (𝛼 ∈ 𝐴). For every 𝛼 ∈ 𝐴, 𝑆𝛼 is isometric to 𝑇 3/𝐶2

2
.

Here is a more precise description. For 𝛼 ∈ 𝐴 set Γ𝛼 ≔ 𝐶2, let 𝐺𝛼 < SO(ImH) ⋉ ImH be

generated by Λ ≔ ⟨𝑖, 𝑗, 𝑘⟩, (𝑅+, 𝑖+𝑘
2
), and (𝑅−, 𝑗

2
) with 𝑅± as in (2.5), define 𝜌𝛼 : 𝐺𝛼 → 𝐺𝛼/Λ →

𝑁SO(H) (Γ𝛼 ) ↩→ Isom(H/Γ𝛼 ) by

𝜌𝛼
(
𝑅+,

𝑖+𝑘
2

)
[𝑞] ≔ [𝑖𝑞𝑖] and 𝜌𝛼

(
𝑅−,

𝑗

2

)
[𝑞] ≔ [ 𝑗𝑞 𝑗] .

These act on ImH as 𝑅+ and 𝑅− . For every 𝛼 ∈ 𝐴 there is an open embedding 𝚥𝛼 :

(
ImH ×

(𝐵𝑅𝛼 (0)/Γ𝛼 )
)
/𝐺𝛼 ↩→ 𝑌0 as in Definition 2.6 (2).

Completing the resolution data for 𝛼 ∈ 𝐴 amounts to a choice of 𝜻𝛼 ∈ (Δ◦)𝑅+,𝑅−
. If

𝜻 ∈
{
[𝜁 ,−𝜁 ] ∈ Δ◦

: 𝜁 ∈ R𝑖
}
⊂ (Δ◦)𝑅+,𝑅− ,

then the segment joining 𝜁 and −𝜁 lifts to an 𝐼𝑖–holomorphic curve Σ � 𝑆2
. Therefore, for every

corresponding choice of ℜ, Proposition 4.1 with
ˆ𝜉 = 𝑖 and 𝐿 = 1 exhibits (up to 16 times) 2

associative submanifolds in (𝑌𝑡 , 𝜙𝑡 ) for every 𝑡 ∈ (0,𝑇1). ♠

Example 4.6. Here is an example that involves non-cyclic Γ and requires the use of Remark 2.15.

Reidegeld [Rei17, §5.3.4] constructs an example of a closed flat 𝐺2–orbifold (𝑌0, 𝜙0) whose
singular set has 7 components 𝑆𝛼 (𝛼 ∈ 𝐴). The situation is analogous to that in Example 4.5

except that 𝐴 = 𝐴0 ⨿ 𝐴1 ⨿ 𝐴1
and

Γ𝛼 ≔


𝐶2 if 𝛼 ∈ 𝐴0

𝐶4 if 𝛼 ∈ 𝐴1

Dic2 if 𝛼 ∈ 𝐴2.

Completing the resolution data for 𝛼 ∈ 𝐴0
is identical to Example 4.5. Completing the

resolution data for 𝛼 ∈ 𝐴1
amounts to a choice of 𝜻𝛼 ∈ (Δ◦)𝑅+,−𝑅−

. The minus sign arises

because 𝛼 (𝑅) = −1 for 𝑅(𝑞) = 𝑗𝑞 𝑗 . If

𝜻 ∈
{
[𝜁1, 𝜁2, 𝜁3, 𝜁4] ∈ Δ◦

: 𝜁1, 𝜁2, 𝜁2, 𝜁4 ∈ R𝑖
}
⊂ (Δ◦)𝑅+,−𝑅−

then 𝑋𝜻 contains three 𝐼𝜻 ,𝑖–holomorphic curves Σ𝑎 � 𝑆
2
with

ˆ𝜉𝑎 = 𝜁𝑎/|𝜁𝑎 | (𝑎 = 1, 2). Therefore,

for the corresponding choices of ℜ, Proposition 4.1 with
ˆ𝜉𝑎 = 𝑖 and 𝐿 = 1 exhibits 6 = 3 · 2

associative submanifolds in (𝑌𝑡 , 𝜙𝑡 ) for every 𝑡 ∈ (0,𝑇1).
To understand the situation for 𝛼 ∈ 𝐴2

, recall that the 𝐷4 root system is

Φ =
{
±𝑒𝑎 ± 𝑒𝑏 ∈ R4

: 𝑎 ≠ 𝑏 ∈ {1, 2, 3, 4}
}
.

The standard choice of simple roots is

𝜃1 ≔ 𝑒1 − 𝑒2, 𝜃2 ≔ 𝑒2 − 𝑒3, 𝜃3 ≔ 𝑒3 − 𝑒4, and 𝜃4 ≔ 𝑒3 + 𝑒4.

The Weyl group𝑊 = 𝑆4 ⋉𝐶3

2
acts by permuting and flipping the signs on an even number of

the coordinates of R4
. Therefore,

Δ◦ =
{
[𝜁1, 𝜁2, 𝜁3, 𝜁4] ∈ (ImH ⊗ R4)/𝑊 : 𝜁𝑎 ≠ ±𝜁𝑏 for 𝑎 ≠ 𝑏 ∈ {1, 2, 3, 4}

}
.
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The automorphism group of the Dynkin diagram is 𝑆3
, which fixes 𝜃2 and permutes 𝜃1, 𝜃3, 𝜃4.

Since Dic2 = ⟨𝑖, 𝑗⟩ < Sp(1), for 𝑅(𝑞) = 𝑖𝑞𝑖 and 𝑅(𝑞) = 𝑗𝑞 𝑗 , 𝐶𝑅 ∈ Aut(Γ) is inner and, therefore,
Ad𝐶𝑅

acts trivially on Φ.
If

𝜻 ∈
{
[𝜁1, 𝜁2, 𝜁3, 𝜁4] ∈ Δ◦

: 𝜁1, 𝜁2, 𝜁3, 𝜁4 ∈ R𝑖
}
⊂ (Δ◦)𝑅+,𝑅− ,

then, by Remark 2.15 (4), 𝑋𝜻 contains 4 𝐼𝜻 ,𝑖–holomorphic curves Σ𝑎 � 𝑆2
(𝑎 ∈ {1, 2, 3, 4}).

Therefore, for the corresponding choices of ℜ, Proposition 4.1 with
ˆ𝜉 = 𝑖 and 𝐿 = 1 exhibits

8 = 4 · 2 associative submanifolds in (𝑌𝑡 , 𝜙𝑡 ) for every 𝑡 ∈ (0,𝑇1). ♠
Remark 4.7 (Homework assignment). Reidegeld [Rei17, §5.3.4 and §5.3.5] constructed further

examples of closed flat𝐺2–orbifolds (𝑌0, 𝜙0) whose singular sets are isometric to𝑇 3
,𝑇 3/𝐶2, and

𝑇 3/𝐶2

2
and whose transverse singularity models are H/Γ with Γ ∈ {𝐶2,𝐶3,𝐶4,𝐶6,Dic2,Dic3, 2𝑇 }.

The reader might enjoy analysing these examples with the methods used above. ♣
Here is a construction technique based on Proposition 3.19 and Remark 3.7 (3).

Proposition 4.8. Let ℜ = (Γ𝛼 ,𝐺𝛼 , 𝜌𝛼 ;𝑅𝛼 , 𝚥𝛼 ;
ˆ𝑋𝛼 , �̂�𝛼 , 𝜌𝛼 , 𝜏𝛼 ; 𝜆𝛼 , 𝜅𝛼 , �̂�𝛼 )𝛼∈𝐴 be 𝐾–equivariant reso-

lution data for a closed flat𝐺2–orbifold (𝑌0, 𝜙0) together with a homomorphism 𝜆 : 𝐾 → Diff (𝑌0)
with respect to which𝜙0 is𝐾–invariant. Denote by (𝑌𝑡 , 𝜙𝑡 )𝑡 ∈ (0,𝑇0 ) the family of closed𝐺2–manifolds
obtained from the 𝐾–equivariant generalised Kummer construction discussed in Remark 2.20. Let
★ ∈ 𝐴, ˆ𝜉 ∈ 𝑆2 ⊂ ImH, 𝐿 > 0, and Σ ⊂ 𝑋★. Set 𝜉 ≔ 𝐿 ˆ𝜉 , Λ★ ≔ 𝐺★ ∩ ImH < ImH, and
𝑀★ ≔ (ImH/R𝜉)/(Λ★/Z𝜉). Denote by I★ the hypercomplex structure on 𝑋★. Suppose that (1), (2),
and (3) in Proposition 4.1 hold; and moreover:

(4) 𝑔★ = ★ for every 𝑔 ∈ 𝐾 , 𝜅★(𝐾) < 𝑁SO(ImH)⋉ImH(Z𝜉), and �̂�★(𝑔) (Σ) = Σ for every 𝑔 ∈ 𝐾 .

(5) Hom(𝜋1(𝑀★),R)𝐾 = 0.

In this situation, there is a constant𝑇1 ∈ (0,𝑇0] and for every 𝑡 ∈ (0,𝑇1) there are at least 3 distinct
associative submanifolds in (𝑌𝑡 , 𝜙𝑡 ) representing the homology class 𝛽 ≔ 𝜐★( [𝑃 [0]]) ∈ H3(𝑌𝑡 ,Z)
with 𝜐★ as in Remark 2.17 and 𝑃 [0] ⊂ ˆ𝑌★,𝑡 as in Example 3.2.

Proof. The proof is very similar to that of Proposition 4.1. The additional hypothesis (4) guar-

antees that 𝐾 acts on𝑀★ and that the map P0 is 𝐾–equivariant. Therefore, P is 𝐾–equivariant

as well. According to Remark 3.7 (3), the obstruction to P∗(𝛿Υ𝜙𝑡 ) being exact is the composite

homomorphism

𝜋1(𝑀★)
𝜋1 (P)−−−−→ 𝜋1(S)

sweep

−−−−→ H4(𝑌𝑡 )
⟨−,[𝜓𝑡 ] ⟩−−−−−−→ R.

The first two homomorphisms are manifestly 𝐾–equivariant. The third homomorphism is

𝐾–equivariant because𝜓𝑡 is 𝐾–invariant (see Remark 2.20). By (5), the composition vanishes.

Therefore, P∗(𝛿Υ𝜙𝑡 ) is exact. Since𝑀★ ̸� 𝑆2
, P∗(𝛿Υ𝜙𝑡 ) has at least 3 zeros. ■

Example 4.9. Set 𝑇 7 ≔ R7/Z7
. Define the torsion-free 𝐺2–structure 𝜙0 by

𝜙0 ≔ d𝑥1 ∧ d𝑥2 ∧ d𝑥3 −
3∑︁
𝑎=1

d𝑥𝑎 ∧ 𝜔𝑎 with

𝜔1 ≔ d𝑥4 ∧ d𝑥5 + d𝑥6 ∧ d𝑥7, 𝜔2 ≔ d𝑥4 ∧ d𝑥6 + d𝑥7 ∧ d𝑥5, 𝜔3 ≔ d𝑥4 ∧ d𝑥7 + d𝑥5 ∧ d𝑥6.
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Define 𝜄1, 𝜄2, 𝜄3, 𝜆 ∈ Isom(𝑇 7) by

𝜄1 [𝑥1, . . . , 𝑥7] ≔ [𝑥1, 𝑥2, 𝑥3,−𝑥4,−𝑥5,−𝑥6,−𝑥7],
𝜄2 [𝑥1, . . . , 𝑥7] ≔ [𝑥1,−𝑥2,−𝑥3, 𝑥4, 𝑥5,

1

2
− 𝑥6,−𝑥7],

𝜄3 [𝑥1, . . . , 𝑥7] ≔ [−𝑥1, 𝑥2,−𝑥3, 𝑥4,
1

2
− 𝑥5, 𝑥6,

1

2
− 𝑥7], and

𝜆[𝑥1, . . . , 𝑥7] ≔ [𝑥1,−𝑥2,−𝑥3, 𝑥4, 𝑥5,−𝑥6,−𝑥7] .

(𝑌0 ≔ 𝑇 7/⟨𝜄1, 𝜄2, 𝜄3⟩, 𝜙0) is the closed flat 𝐺2–orbifold from [Joy96b, Example 3]. Its singular set

has 12 = 3 · 4 components 𝑆𝛼 (𝛼 ∈ 𝐴 = 𝐴1 ⨿𝐴2 ⨿𝐴3
). Here𝐴𝑎 groups those components arising

from the fixed-point set of 𝜄𝑎 . The situation is analogous to that in Example 4.3 except that, for

every 𝛼 ∈ 𝐴, 𝑆𝛼 is isometric to 𝑇 3
and 𝐺𝛼 ≔ Λ = ⟨𝑖, 𝑗, 𝑘⟩ < ImH.

The involution 𝜆 descends to 𝑌0: it can be identified with an action of 𝐶2 on 𝑌0 as in

Remark 2.20. The induced action on 𝐴 fixes the elements of 𝐴1
and permutes those of 𝐴2

and

𝐴3
. Completing the 𝐶2–equivariant resolution data for 𝛼 ∈ 𝐴2 ⨿ 𝐴3

presents no difficulty. For

𝛼 ∈ 𝐴1
, 𝜆𝛼 = 𝑅2 as in (2.5), and 𝜌𝛼 (𝑞) = −𝑖𝑞𝑖 as in Example 4.3. Therefore, completing the

resolution data for 𝛼 ∈ 𝐴1
amounts to a choice of

𝜻𝛼 ∈ (Δ◦)𝑅2 =
{
[𝜁 ,−𝜁 ] ∈ Δ◦

: 𝜁 ∈ R𝑖 ∪ (R𝑖)⊥
}
.

If 𝜻𝛼 = [𝜁𝛼 ,−𝜁𝛼 ] with 𝜁𝛼 ∈ R𝑖 , then the hypotheses of Proposition 4.8 are satisfied with

ˆ𝜉 = 𝑖 , 𝐿 = 1, and Σ as in Example 4.3; indeed: 𝐶2 acts on 𝑇
2
by [𝑥2, 𝑥3] ↦→ [−𝑥2,−𝑥3]; hence:

Hom(𝜋1(𝑇 2),R)𝐶2 = 0. This exhibits up to 12 = 4 · 3 associative submanifolds in (𝑌𝑡 , 𝜙𝑡 ) for
every 𝑡 ∈ (0,𝑇1) depending on the choice of 𝐶2–equivariant resolution data. ♠

Remark 4.10. If 𝑋 is a 𝐾3 surface with a non-symplectic involution 𝜏 , then the fixed-point

locus 𝑋𝜏 (typically) contains a surface of genus 𝑔 ≠ 1 [Nik83, §4]. The twisted connected

sum construction [Kov03; KL11; CHNP15]—in fact: a trivial version thereof—produces closed

𝐺2–orbifolds (𝑌0, 𝜙0) from a matching pair of 𝐾3 surfaces Σ± equipped with non-symplectic

involutions 𝜏±. The singular set of 𝑌0 is 𝑆
1 ×𝑀 with𝑀 ≔ 𝑋𝜏+ ∪𝑋𝜏− and the transverse singularity

model is H/𝐶2. An extension of the generalised Kummer construction due to Joyce and Kari-

giannis [JK17] resolves 𝑌0 into a family (𝑌𝑡 , 𝜙𝑡 )𝑡 ∈ (0,𝑇0 ) of closed𝐺2–manifolds. It seems plausible

that an extension of the techniques in the present article could produce P : 𝑀 → S transverse

to ker𝛿Υ (as in Lemma 3.6). Since (typically) 𝜒 (𝑀) ≠ 0, this would produce associatives in

Joyce and Karigiannis’s 𝐺2–manifolds. ♣
Remark 4.11. It is also possible to construct coassociative submanifolds in𝐺2–manifolds obtained

from the generalised Kummer construction using similar techniques. In fact, the situation is

quite a bit simpler because the deformation theory of coassociative submanifolds is always

unobstructed [McL98, §4]. Details and examples will appear in the forthcoming work of Gutwein

[Gut22]. ♣
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