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Abstract

The space of Fredholm operators of fixed index is stratified by submanifolds according to

the dimension of the kernel. Geometric considerations often lead to questions about the

intersections of concrete families of elliptic operators with these submanifolds: are the

intersections non-empty? are they smooth? what are their codimensions? The purpose

of this article is to develop tools to address these questions in equivariant situations. An

important motivation for this work are transversality questions for multiple covers of

𝐽–holomorphic maps. As an application, we use our framework to give a concise exposition

of Wendl’s proof of the super-rigidity conjecture.

Introduction

Let 𝑋 and 𝑌 be two finite dimensional vector spaces. The space Hom(𝑋,𝑌 ) is stratified by the

submanifolds

H𝑟 ≔ {𝐿 ∈ Hom(𝑋,𝑌 ) : rk𝐿 = 𝑟 }

of codimension

codimH𝑟 = (dim𝑋 − 𝑟 ) (dim𝑌 − 𝑟 ) .

This generalizes to infinite dimensions as follows. Let 𝑋 and 𝑌 be two Banach spaces. The space

of Fredholm operators from 𝑋 to 𝑌 , denoted byF(𝑋,𝑌 ), is stratified by the submanifolds

F𝑑,𝑒 ≔ {𝐿 ∈ F(𝑋,𝑌 ) : dim ker𝐿 = 𝑑 and dim coker𝐿 = 𝑒}

of codimension

codimF𝑑,𝑒 = 𝑑𝑒.

In many geometric problems, especially in the study of moduli spaces in algebraic geometry,

gauge theory, and symplectic topology, one is led to consider families of Fredholm operators

𝐷 : P→ F(𝑋,𝑌 ) parametrized by a Banach manifoldP, and to analyze the subsets𝐷−1(F𝑑,𝑒).
The archetypal example is Brill–Noether theory in algebraic geometry. Let Σ be a closed,

connected Riemann surface of genus 𝑔. Denote by Pic(Σ) the Picard group of isomorphism
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classes of holomorphic line bundles L → Σ. Brill–Noether theory is concerned with the study

of the subsets 𝐺𝑟
𝑑
⊂ Pic(Σ), called the Brill–Noether loci, defined by

𝐺𝑟
𝑑
≔

{
[L] ∈ Pic(Σ) : deg(L) = 𝑑 and dimC𝐻

0(Σ,L) = 𝑟 + 1

}
.

The fundamental results of this theory deal with the questions of whether 𝐺𝑟
𝑑
is non-empty,

smooth, and of the expected complex codimension.

This connects to the previous discussion as follows. Let 𝐿 be a Hermitian line bundle of

degree 𝑑 over Σ. Denote byA(𝐿) the space of unitary connections on 𝐿. The complex gauge

group GC(𝐿) acts on A(𝐿) and the quotient A(𝐿)/GC(𝐿) is biholomorphic to Pic
𝑑 (Σ), the

component of Pic(Σ) parametrizing holomorphic line bundles of degree 𝑑 . Define the family of

Fredholm operators

𝜕 : A(𝐿) → F(Γ(𝐿),Ω0,1(Σ, 𝐿))

by assigning to every connection 𝐴 the Dolbeault operator 𝜕𝐴 = ∇0,1

𝐴
. Set

˜𝐺𝑟
𝑑
≔ 𝜕−1(F𝑟+1,𝑔−𝑑+𝑟 ) .

It follows from the Riemann–Roch Theorem and Hodge theory that the Brill–Noether loci can

be described as the quotients

𝐺𝑟
𝑑
= ˜𝐺𝑟

𝑑
/GC(𝐿) .

If 𝐺𝑟
𝑑
is non-empty, then

codimC𝐺
𝑟
𝑑
= codimC ˜𝐺𝑟

𝑑
⩽ (𝑟 + 1) (𝑔 − 𝑑 + 𝑟 ) .

This is an immediate consequence of the definition of
˜𝐺𝑟
𝑑
and codimCF𝑑,𝑒 = 𝑑𝑒 . Ideally, every

𝐺𝑟
𝑑
is smooth of complex codimension (𝑟 + 1) (𝑔 − 𝑑 + 𝑟 ). This is not always true, but Gieseker

[Gie82] proved that it holds for generic Σ; see also [EH83; Laz86]. Furthermore, Kempf [Kem71]

and Kleiman and Laksov [KL72; KL74] proved that if (𝑟 +1) (𝑔−𝑑 +𝑟 ) ⩽ 𝑔, then𝐺𝑟
𝑑
is non-empty.

For an extensive discussion of Brill–Noether theory in algebraic geometry we refer the reader

to [ACGH85].

By analogy, for a family of Fredholm operators 𝐷 : P→ F(𝑋,𝑌 ) one might ask:

(1) When are the subsets 𝐷−1(F𝑑,𝑒) non-empty?

(2) When are they smooth submanifolds ofP?

(3) What are their codimensions?

Index theory and theory of spectral flow sometimes give partial results regarding (1). A simple

answer to (2) and (3) is that𝐷−1(F𝑑,𝑒) is smooth and of codimension𝑑𝑒 if the map𝐷 is transverse

toF𝑑,𝑒 . However, for many naturally occurring families of elliptic operators this condition does

not hold. For example, if 𝐷 is a family of elliptic operators over a manifold𝑀 and 𝑉 is a local

system, then the family 𝐷𝑉
of the elliptic operators 𝐷 twisted by 𝑉 often is not transverse to

F𝑑,𝑒 even if 𝐷 is. Related issues arise for families of elliptic operators pulled back by a covering
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map 𝜋 :
˜𝑀 → 𝑀 . The purpose of this article is to give useful tools for answering (2) and (3)

which apply to these equivariant situations. This theory is developed in Part 1.

The issues discussed above are well-known to arise from multiple covers in the theory of

𝐽–holomorphic maps in symplectic topology. In fact, our motivation for writing this article

came from trying to understand Wendl’s proof of Bryan and Pandharipande’s super-rigidity

conjecture for 𝐽–holomorphic maps [Wen19b]. The theory developed in Part 1 is essentially an

abstraction of Wendl’s ideas, some of which can themselves be traced back to Taubes [Tau96]

and Eftekhary [Eft16]. In Part 2 we use this theory to give a concise exposition of the proof of

the super-rigidity conjecture. The main results of Part 2 are contained in [Wen19b] and most of

the proofs closely follow Wendl’s approach. There are, however, two key differences:

(1) Our discussion consistently uses the language of local systems. This appears to us to be

more natural for the problem at hand. It also avoids the use of representation theory

and covering theory. In particular, there is no need to take special care of non-normal

covering maps.

(2) Our approach to dealing with branched covering maps is geometric: branched covering

map between Riemann surfaces are reinterpreted as unbranched covering maps between

orbifold Riemann surfaces. This is to be compared with Wendl’s analytic approach which

uses suitable weighted Sobolev spaces on punctured Riemann surfaces. One feature of

our approach is that it leads to a simple proof of the crucial index theorem; cf. Section 2.B

and [Wen19b, Theorem 4.1].

We expect the theory developed in Part 1 to have many applications outside of the theory

of 𝐽–holomorphic maps. In future work we plan to study transversality for multiple covers of

calibrated submanifolds in manifolds with special holonomy, such as associative submanifolds

in 𝐺2–manifolds.
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Part 1

Equivariant Brill–Noether theory
Throughout this part, let (𝑀,𝑔) be a closed, connected, oriented Riemannian orbifold of dimen-

sion dim𝑀 = 𝑛, and let 𝐸 and 𝐹 be Euclidean vector bundles of rank rk𝐸 = rk 𝐹 = 𝑟 over 𝑀

equipped with orthogonal covariant derivatives.1 Here and throughout this article dim and rk

denote the dimension and rank over the real numbers. If dimension and rank are to be taken over

a different field, then this is indicated by a subscript. Γ(𝐸) denotes the space of smooth sections

of 𝐸. For an open subset 𝑈 ⊂ 𝑀 , Γ(𝑈 , 𝐸) and Γ𝑐 (𝑈 , 𝐸) ⊂ Γ(𝐸) denote the spaces of smooth

sections of 𝐸 defined over 𝑈 and with support in 𝑈 respectively. For 𝑘 ∈ N0 = {0, 1, 2, . . .},
denote by𝑊 𝑘,2Γ(𝐸) the Sobolev completion of Γ(𝐸) with respect to the𝑊 𝑘,2

norm induced

by the Euclidean metric and covariant derivative. For 𝑘 ∈ N set𝑊 −𝑘,2Γ(𝐸) ≔𝑊 𝑘,2Γ(𝐸)∗. Set
𝐿2Γ(𝐸) ≔ 𝑊 0,2Γ(𝐸). Denote by 𝐿1Γ(𝐸) the completion of Γ(𝐸) with respect to the 𝐿1

norm.

(Analogous notation is used, instead of 𝐸, for 𝐹 etc.)

1.1 Brill–Noether loci

Let us begin by discussing the non-equivariant theory.

Definition 1.1.1. Let 𝑘 ∈ N0. A family of linear elliptic differential operators of order 𝑘 consists
of a Banach manifold P and a smooth map

𝐷 : P→ F(𝑊 𝑘,2Γ(𝐸), 𝐿2Γ(𝐹 ))

such that for every 𝑝 ∈ P the operator𝐷𝑝 ≔ 𝐷 (𝑝) is a linear elliptic differential operator.2,3 •

Definition 1.1.2. Let (𝐷𝑝)𝑝∈P be a family of linear elliptic differential operators. For 𝑑, 𝑒 ∈ N0

define the Brill–Noether locus P𝑑,𝑒 by

P𝑑,𝑒 ≔
{
𝑝 ∈ P : dim ker𝐷𝑝 = 𝑑 and dim coker𝐷𝑝 = 𝑒

}
. •

Remark 1.1.3. Let (𝐷𝑝)𝑝∈P be a family of linear elliptic operators of index 𝑖 ∈ Z. If P𝑑,𝑒 ≠ ∅,
then 𝑑 − 𝑒 = 𝑖; in particular: 𝑑 ⩾ 𝑖 and 𝑒 ⩾ −𝑖 . ♣

1Remark 1.2.2 explains why we allow orbifolds. For the purposes of this article, the category of orbifolds is the

one constructed by Moerdijk [Moe02] via groupoids; see also [ALR07]. [LU04, Section 5] compares Moerdijk’s

approach with the original approach via orbifold charts developed by Satake [Sat56] and Thurston [Thu02]. [SY19,

Section 3] discusses differential operators and Sobolev spaces on orbifolds.

2Banach manifolds are assumed to be Hausdorff, paracompact, and separable. This is required in Section 1.B

where the Sard–Smale Theorem is used.

3Denote by ∇ℓ : Γ(𝐸) → Γ(𝑇 ∗𝑀ℓ ⊗ 𝐸) the ℓ–th covariant derivative. If 𝐷𝑝 ≔
∑𝑘
ℓ=0

𝑎ℓ (𝑝, ·)∇ℓ with 𝑎ℓ (𝑝, ·) a
section of Hom(𝑇 ∗𝑀⊗ℓ ⊗ 𝐸, 𝐹 )), then it suffices to prove that 𝑎ℓ defines smooth section of pr

∗
2

Hom(𝑇 ∗𝑀⊗ℓ ⊗ 𝐸, 𝐹 )
over P ×𝑀 to establish that 𝐷 is smooth. Indeed, Section 1.6 requires this stronger hypothesis; cf. Definition 1.6.1.
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The following elementary fact from the theory of Fredholm operators reduces the discussion

to the finite-dimensional case. As in the introduction, if 𝑋 and 𝑌 are Banach spaces, then

L(𝑋,𝑌 ) denotes the Banach space of bounded linear maps from 𝑋 to 𝑌 equipped with the

operator norm, and F(𝑋,𝑌 ) ⊂ L(𝑋,𝑌 ) denotes the open subset of Fredholm operators from

𝑋 to 𝑌 .

Lemma 1.1.4 (cf. Koschorke [Kos68, Chapter I §1.b]). Let 𝑋 and 𝑌 be Banach spaces. For ev-
ery 𝐿 ∈ F(𝑋,𝑌 ) there is an open neighborhood U ⊂ F(𝑋,𝑌 ) and a smooth map S : U →
Hom(ker𝐿, coker𝐿) such that for every 𝑇 ∈ U there are isomorphisms

ker𝑇 � kerS(𝑇 ) and coker𝑇 � cokerS(𝑇 );

furthermore, the derivative of 𝑆 at 𝐿,

d𝐿S : 𝑇𝐿F(𝑋,𝑌 ) → Hom(ker𝐿, coker𝐿)

satisfies
d𝐿S( ˆ𝐿)𝑠 = ˆ𝐿𝑠 mod im𝐿

for every ˆ𝐿 ∈ 𝑇𝐿F(𝑋,𝑌 ) = L(𝑋,𝑌 ).

Proof. Pick a complement coim𝐿 of ker𝐿 in 𝑋 and a lift of coker𝐿 to 𝑌 . With respect to the

splittings 𝑋 = coim𝐿 ⊕ ker𝐿 and 𝑌 = im𝐿 ⊕ coker𝐿 every 𝑇 ∈ F(𝑋,𝑌 ) can be written as

𝑇 =

(
𝑇11 𝑇12

𝑇21 𝑇22

)
.

By construction, 𝐿11 is invertible, and the remaining components of 𝐿 vanish.

Choose an open neighborhoodU of 𝐿 inF(𝑋,𝑌 ) such that for every 𝑇 ∈ U the operator

𝑇11 is invertible. Define S : U→ Hom(ker𝐿, coker𝐿) by

S(𝑇 ) ≔ 𝑇22 −𝑇21𝑇
−1

11
𝑇12.

A brief computation shows that for every 𝑇 ∈ U

Φ𝑇Ψ =

(
1 0

0 S(𝑇 )

)
with Φ ≔

(
𝑇 −1

11
0

−𝑇21𝑇
−1

11
1

)
and Ψ ≔

(
1 −𝑇 −1

11
𝑇12

0 1

)
;

hence, ker𝑇 � kerS(𝑇 ) and coker𝑇 � cokerS(𝑇 ).
The formula for d𝐿𝑆 is evident from the fact that 𝐿21 and 𝐿12 vanish. ■

Lemma 1.1.4 together with the Regular Value Theorem immediately imply the following.

Theorem 1.1.5. Let (𝐷𝑝)𝑝∈P be a family of linear elliptic differential operators. For 𝑝 ∈ P define
Λ𝑝 : 𝑇𝑝P→ Hom(ker𝐷𝑝 , coker𝐷𝑝) by

Λ𝑝 (𝑝)𝑠 ≔ d𝑝𝐷 (𝑝)𝑠 mod im𝐷𝑝 .

Let 𝑑, 𝑒 ∈ N0 and 𝑝 ∈ P𝑑,𝑒 . If Λ𝑝 is surjective, then following hold:
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(1) There is an open neighborhood U of 𝑝 ∈ P such that P𝑑,𝑒 ∩ U is a submanifold of
codimension

codim(P𝑑,𝑒 ∩U) = 𝑑𝑒.

(2) P ˜𝑑,𝑒
≠ ∅ for every ˜𝑑, 𝑒 ∈ N0 with ˜𝑑 ⩽ 𝑑, 𝑒 ⩽ 𝑒 , and ˜𝑑 − 𝑒 = 𝑑 − 𝑒 . ■

Remark 1.1.6. If 𝐸 and 𝐹 are Hermitian vector bundles and (𝐷𝑝)𝑝∈P is a family of complex

linear elliptic differential operators, then the map Λ𝑝 factors through HomC(ker𝐷𝑝 , coker𝐷𝑝).
Therefore, the hypothesis of Theorem 1.1.5 cannot be satisfied (unless it holds trivially). Of

course, this issue is rectified by replacing R with C throughout the above discussion. ♣

Example 1.1.7 (Brill–Noether theory for holomorphic line bundles over a Riemann surface). Let
Σ be a closed, connected Riemann surface of genus 𝑔. Let 𝐿 be a Hermitian line bundle of degree

𝑑 over Σ. Denote byA(𝐿) the space of unitary connections on 𝐿.4 Define the family of complex

linear elliptic differential operators

𝜕 : A(𝐿) → F(𝑊 1,2Γ(𝐿), 𝐿2Ω0,1(Σ, 𝐿))

by assigning to every connection 𝐴 the Dolbeault operator 𝜕𝐴 ≔ ∇0,1

𝐴
.

Let 𝐴 ∈ A(𝐿). The map Λ𝐴 : 𝑇𝐴A(𝐿) → HomC(ker 𝜕𝐴, coker 𝜕𝐴) can be described con-

cretely as follows. Since the derivative of the map 𝜕 is d𝐴𝜕(𝑎) = 𝑎0,1
, the map Λ𝐴 factors

through the isomorphism 𝑇𝐴A(𝐿) = Ω1(Σ, 𝑖R) � Ω0,1(Σ) defined by 𝑎 ↦→ 𝑎0,1
. Denote by L

the holomorphic line bundle associated with 𝜕𝐴. By Serre duality,

coker 𝜕𝐴 = 𝐻 1(Σ,L) � 𝐻 0(Σ, 𝐾Σ ⊗C L∗)∗;

hence:

HomC(ker 𝜕𝐴, coker 𝜕𝐴) � 𝐻 0(Σ,L)∗ ⊗C 𝐻 0(Σ, 𝐾Σ ⊗C L∗)∗.

The Petri map

(1.1.8) 𝜛L : 𝐻 0(Σ,L) ⊗C 𝐻 0(Σ, 𝐾Σ ⊗L∗) → 𝐻 0(Σ, 𝐾Σ)

is induced by the isomorphism L ⊗C L∗ � OΣ. The adjoint of Λ𝐴 is the composition of the

Petri map 𝜛L with the inclusion 𝐻 0(Σ, 𝐾Σ) ↩→ Ω1,0(Σ). Here the duality between Ω1,0(Σ) and
Ω0,1(Σ) is given by integration.

As a consequence, Λ𝐴 is surjective if and only if 𝜛L is injective. If 𝜛L is injective for every

[L] ∈ Pic
𝑑 (Σ), then

�̃�𝑟
𝑑
≔ A(𝐿)𝑟+1,𝑔−𝑑+𝑟

is a complex submanifold of codimension (𝑟 + 1) (𝑔 − 𝑑 + 𝑟 ); therefore, so is the Brill–Noether

locus

𝐺𝑟
𝑑
≔ ˜𝐺𝑟

𝑑
/GC(𝐿) �

{
L ∈ Pic

𝑑 (Σ) :

dim𝐻 0(Σ,L) = 𝑟 + 1 and

dim𝐻 1(Σ,L) = 𝑔 − 𝑑 + 𝑟

}
;

cf. [ACGH85, Lemma 1.6, Chapter IV]. ♠

4Strictly speaking, to be in the situation of Definition 1.1.1, A(𝐿) should be replaced by a suitable Banach space

completion.
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This example motivates the following definitions, which are particularly appropriate for

first order operators appearing in geometric applications.

Definition 1.1.9. Let𝑈 ⊂ 𝑀 be an open subset. A family of linear elliptic differential operators

(𝐷𝑝)𝑝∈P is flexible in𝑈 at 𝑝★ ∈ P if for every 𝐴 ∈ Γ𝑐 (𝑈 ,Hom(𝐸, 𝐹 )) there is a 𝑝 ∈ 𝑇𝑝★P such

that

d𝑝★𝐷 (𝑝)𝑠 = 𝐴𝑠 mod im𝐷𝑝★

for every 𝑠 ∈ ker𝐷𝑝★ . •

Definition 1.1.10. Let 𝐷 : 𝑊 𝑘,2Γ(𝐸) → 𝐿2Γ(𝐹 ) be a linear differential operator. Set

𝐸† ≔ 𝐸∗ ⊗ Λ𝑛𝑇 ∗𝑀 and 𝐹 † ≔ 𝐹 ∗ ⊗ Λ𝑛𝑇 ∗𝑀.

The formal adjoint of 𝐷 is the linear differential operator 𝐷† : 𝐿2Γ(𝐹 †) →𝑊 −𝑘,2Γ(𝐸†) charac-
terized by ˆ

𝑀

⟨𝑠, 𝐷†𝑡⟩ =
ˆ
𝑀

⟨𝐷𝑠, 𝑡⟩

for 𝑠 ∈ Γ(𝐸) and 𝑡 ∈ Γ(𝐹 †). Here ⟨·, ·⟩ denotes the canonical pairings 𝐸 ⊗ 𝐸† → Λ𝑛𝑇 ∗𝑀 and

𝐹 ⊗ 𝐹 † → Λ𝑛𝑇 ∗𝑀 . •

Definition 1.1.11. The Petri map 𝜛 : Γ(𝐸) ⊗ Γ(𝐹 †) → Γ(𝐸 ⊗ 𝐹 †) is defined by

𝜛(𝑠 ⊗ 𝑡) (𝑥) ≔ 𝑠 (𝑥) ⊗ 𝑡 (𝑥).

Let 𝑈 ⊂ 𝑀 be an open subset. A linear elliptic differential operator 𝐷 : 𝑊 𝑘,2Γ(𝐸) → 𝐿2Γ(𝐹 )
satisfies Petri’s condition in𝑈 if the map

𝜛𝐷,𝑈 : ker𝐷 ⊗ ker𝐷† → 𝐿1Γ(𝑈 , 𝐸 ⊗ 𝐹 †)

induced by the Petri map is injective. •

Proposition 1.1.12. Let (𝐷𝑝)𝑝∈P be a family of linear elliptic differential operators. Let 𝑈 ⊂ 𝑀 be
an open subset. If (𝐷𝑝)𝑝∈P is flexible in𝑈 at 𝑝★ ∈ P and 𝐷𝑝★ satisfies Petri’s condition in𝑈 , then
the map Λ𝑝★ defined in Theorem 1.1.5 is surjective.

Proof. Define the map ev𝑝 : Γ𝑐 (𝑈 ,Hom(𝐸, 𝐹 )) → Hom(ker𝐷𝑝 , coker𝐷𝑝) by

ev𝑝 (𝐴)𝑠 ≔ 𝐴𝑠 mod im𝐷𝑝 .

(𝐷𝑝)𝑝∈P is flexible in𝑈 at 𝑝★ ∈ P if and only im ev𝑝★ ⊂ imΛ𝑝★ . 𝐷𝑝★ satisfies Petri’s condition

in 𝑈 if and only if ev𝑝★ is surjective. To see this, observe the following. Since ker𝐷
†
𝑝★
�

(coker𝐷𝑝★)∗, the pairing Hom(ker𝐷𝑝★, coker𝐷𝑝★) ⊗ (ker𝐷𝑝★ ⊗ ker𝐷
†
𝑝★
) → R induced by

⟨⟨𝑠 ⊗ 𝑡, �̃�⟩⟩ ≔
ˆ
𝑀

𝑡 (�̃�𝑠)
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is perfect, that is, it induces an isomorphism Hom(ker𝐷𝑝★, coker𝐷𝑝★)∗ � ker𝐷𝑝★ ⊗ ker𝐷
†
𝑝★
.

There is a canonical perfect pairing ⟨·, ·⟩ : Hom(𝐸, 𝐹 ) ⊗ (𝐸 ⊗ 𝐹 †) → Λ𝑛𝑇 ∗𝑀 . Evidently,

𝑡 (ev𝑝★ (𝐴)𝑠) = ⟨𝐴,𝜛(𝑠 ⊗ 𝑡)⟩.

Therefore, an element 𝐵 ∈ ker𝐷𝑝★ ⊗ ker𝐷
†
𝑝★

annihilates im ev𝑝★ if and only if

⟨⟨ev𝑝★ (𝐴), 𝐵⟩⟩ =
ˆ
𝑀

⟨𝐴,𝜛(𝐵)⟩ = 0

for every𝐴 ∈ Γ𝑐 (𝑈 ,Hom(𝐸, 𝐹 )); that is: 𝜛(𝐵) = 0 in𝑈 . Therefore, (im ev𝑝★)⊥ = ker𝜛𝐷𝑝★,𝑈
. ■

Remark 1.1.13. In Example 1.1.7, imΛ𝑝 = im ev𝑝 (with 𝑈 = Σ, and R replaced with C). There-
fore, Λ𝑝 being surjective is equivalent to Petri’s condition. Furthermore, tracing through the

isomorphisms identifies the restriction of Petri map 𝜛 to ker 𝜕𝐴 ⊗C ker 𝜕∗
𝐴
with the Petri map

𝜛L . ♣
Flexibility is not a rare condition. Petri’s condition appears to be more subtle. (By the

uniqueness theorem for ordinary differential equations, it holds for first order linear elliptic

differential operators on 1–manifolds. This is somewhat useful; see, e.g., [Eft19].) The upcoming

Remark 1.1.14 (3) hints at the connection between Petri’s condition and the unique continuation

property. In Section 1.6, we revisit Petri’s condition and discuss an algebraic criterion due to

Wendl for Petri’s condition to hold away from a subset of infinite codimension.

Remark 1.1.14. Assume the situation of Theorem 1.1.5. The following observations are useful in

situations where the primary objective is to estimate the codimension ofP𝑑,𝑒 .

(1) Every 𝑝 ∈ P𝑑,𝑒 has an open neighborhood U inP such that P𝑑,𝑒 ∩U is contained in a

submanifold of codimension rkΛ𝑝 .

(2) Let 𝜌 ∈ N and let 𝑈 ⊂ 𝑀 be an open subset. A linear elliptic differential operator

𝐷 : Γ(𝐸) → Γ(𝐹 ) satisfies Petri’s condition up to rank 𝜌 in 𝑈 if for every non-zero

𝐵 ∈ ker𝐷 ⊗ ker𝐷† of rank at most 𝜌 the section 𝜛(𝐵) does not vanish on𝑈 . (A simple
tensor is non-zero tensor of the form 𝑣 ⊗𝑤 . Every tensor 𝐵 is a sum of simple tensors.

The rank of 𝐵 is the minimal number of simple tensors that sum to 𝐵.) If 𝐷𝑝★ satisfies

this condition and (𝐷𝑝)𝑝∈P is flexible in𝑈 at 𝑝★ ∈ P, then

rkΛ𝑝★ ⩾ min{𝜌,𝑑, 𝑒}max{𝑑, 𝑒}.

Proof. Set 𝜎 ≔ min{𝜌, 𝑑, 𝑒}. If 𝑑 ⩽ 𝑒 , then choose an injection R𝜎 ↩→ ker𝐷𝑝★ and

set 𝐻 ≔ Hom(R𝜎 , coker𝐷𝑝★); otherwise, choose a surjection coker𝐷𝑝★ ↠ R𝜎
and set

𝐻 ≔ Hom(ker𝐷𝑝★,R
𝜎 ). In either case, composition defines a surjection

𝜋𝑝★ : Hom(ker𝐷𝑝★, coker𝐷𝑝★) → 𝐻.

The subspace im𝜋∗𝑝★ ⊂ Hom(ker𝐷𝑝★, coker𝐷𝑝★)∗ � ker𝐷𝑝★ ⊗ ker𝐷
†
𝑝★

consists of ele-

ments of rank at most 𝜎 ⩽ 𝜌 . The argument of the proof of Proposition 1.1.12 thus shows

that 𝜋𝑝★ ◦ Λ𝑝★ is surjective. Therefore, rkΛ𝑝★ ⩾ dim𝐻 = min{𝜌, 𝑑, 𝑒}max{𝑑, 𝑒}. ■
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(3) (This is due to Eftekhary [Eft16, Proof of Lemma 4.4].) Let𝑈 ⊂ 𝑀 be a non-empty open

subset. Let 𝐷 : Γ(𝐸) → Γ(𝐹 ) be a first linear elliptic differential operator of first order. If
ker𝐷 and ker𝐷† consists of continuous sections, and 𝐷 and 𝐷† have the weak unique

continuation property, then 𝐷 satisfies Petri’s condition up to rank three in𝑈 .5
,

6

Proof. Every 𝐵 ∈ ker𝐷 ⊗ ker𝐷† can be written as 𝐵 = 𝑠1 ⊗ 𝑡1 + · · · +𝑠𝜌 ⊗ 𝑡𝜌 with 𝜌 ≔ rk𝐵,

and 𝑠1, . . . , 𝑠𝜌 ∈ ker𝐷 and 𝑡1, . . . , 𝑡𝜌 ∈ ker𝐷† linearly independent. If 𝜌 = 1 and 𝜛(𝐵) = 0,

then 𝑠1 or 𝑡1 vanishes on an open subset; hence, by unique continuation, 𝑠1 = 0 or 𝑡1 = 0:

a contradiction.

Henceforth, assume that 𝜌 ⩾ 2. Define 𝛿, 𝜀 : 𝑈 → N0 by 𝛿 (𝑥) ≔ dim⟨𝑠1(𝑥), . . . , 𝑠𝜌 (𝑥)⟩
and 𝜀 (𝑥) ≔ dim⟨𝑡1(𝑥), . . . , 𝑡𝜌 (𝑥)⟩. By unique continuation, 𝛿 and 𝜀 are positive on a dense

open subset. In fact, 𝛿, 𝜀 ⩾ 2 on a dense open subset. To see this, observe that if 𝛿 = 1 on

a non-empty open subset, then there is a non-empty open subset 𝑉 ⊂ 𝑈 and a function

𝑓 ∈ 𝐶∞(𝑉 ) such that 𝑠1(𝑥) = 𝑓 (𝑥)𝑠2(𝑥) for every 𝑥 ∈ 𝑉 . Therefore, 𝜎 (d𝑓 )𝑠2 = 0 with 𝜎

denoting the symbol of 𝐷 . Since 𝐷 is elliptic, 𝑓 must be constant: a contradiction to 𝑠1

and 𝑠2 being linearly independent. The same argument applies to 𝜀.

If 𝜌 = 2, then there exists an 𝑥 ∈ 𝑈 such that 𝛿 (𝑥) = 𝜀 (𝑥) = 2; therefore: 𝜛(𝐵) does
not vanish at 𝑥 . If 𝜌 = 3, then there is an 𝑥 ∈ 𝑈 such that min{𝛿 (𝑥), 𝜀 (𝑥)} ⩾ 2. If

𝛿 (𝑥) = 𝜀 (𝑥) = 3, then 𝜛(𝐵) evidently does not vanishing at 𝑥 ; otherwise, without loss of

generality, 𝑠1(𝑥) and 𝑠2(𝑥) are linearly independent, and 𝑠3(𝑥) = 𝜆1𝑠1(𝑥) + 𝜆2𝑠2(𝑥). In the

latter case,

𝜛(𝐵) (𝑥) = 𝑠1(𝑥) ⊗ (𝑡1(𝑥) + 𝜆1𝑡3(𝑥)) + 𝑠2(𝑥) ⊗ (𝑡2(𝑥) + 𝜆2𝑡3(𝑥))

which cannot vanish because 𝜀 (𝑥) ⩾ 2. ■

There are examples of first order linear elliptic operators which fail to satisfy Petri’s

condition up to rank four; see [Wen19b, Example 5.5] or Proposition 2.5.4. Finally, a brief

warning: the preceding observation is false when R is replaced with C or H. The analogue
of Petri’s condition only holds up to rank one in this case. (The issue is that 𝜎 (d𝑓 )𝑠2 = 0

does not imply d𝑓 = 0 if 𝑓 takes values in C or H.) ♣

1.2 Pulling back and twisting

This section introduces two constructions which produce new linear elliptic operators from old

ones: pulling back by a covering map and twisting by a Euclidean local system.

5𝐷 has the weak continuation property if every 𝑠 ∈ ker𝐷 which vanishes on an open subset must vanish

identically.

6The assumptions on 𝐷 are satisfied provided the coefficients are sufficiently regular, and 𝐷∗𝐷 = ∇∗∇ +
lower order terms (and similarly for 𝐷†); cf. Remark 1.6.5.
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Definition 1.2.1. Let 𝑘 ∈ N0. Let 𝜋 :
˜𝑀 → 𝑀 be a covering map with

˜𝑀 connected.7 Let

𝐷 : 𝑊 𝑘,2Γ(𝐸) → 𝐿2Γ(𝐹 ) be a linear differential operator of order 𝑘 . The pullback of 𝐷 by 𝜋 is

the linear differential operator of order 𝑘

𝜋∗𝐷 : 𝑊 𝑘,2Γ(𝜋∗𝐸) → 𝐿2Γ(𝜋∗𝐹 )

characterized by

(𝜋∗𝐷) (𝜋∗𝑠) = 𝜋∗(𝐷𝑠) . •

Remark 1.2.2. If 𝜋 : �̃� → 𝑀 is a branched covering map of manifolds whose ramification locus is

a closed submanifold of codimension two, then
˜𝑀 and𝑀 can be equippedwith orbifold structures

and 𝜋 can be lifted to an unbranched covering map of orbifolds. Section 2.7 discusses this

construction in the case of Riemann surfaces; the higher-dimensional case follows immediately

from the two-dimensional case and the above local model. ♣

Definition 1.2.3. A Euclidean local system on𝑀 is a Euclidean vector bundle𝑉 over𝑀 together

with a flat orthogonal connection. •

Remark 1.2.4. Let 𝑥0 ∈ 𝑀 . Denote by 𝜋1(𝑀,𝑥0) the fundamental group with base-point 𝑥0. If

∗ denotes the usual concatenation of paths, then the multiplication in 𝜋1(𝑀,𝑥0) is defined by

[𝛾1] [𝛾2] ≔ [𝛾2 ∗ 𝛾1].8 Parallel transport induces a monodromy representation

𝜇 : 𝜋1(𝑀,𝑥0) → O(𝑉 )

with 𝑉 denoting the fiber of 𝑉 over 𝑥0. 𝑉 can be recovered from 𝜇 as follows. Denote by

𝜋 : �̃� → 𝑀 the universal covering map and by Aut(𝜋) the group of deck transformations. A

choice of 𝑥0 ∈ 𝜋−1(𝑥0) induces an anti-isomorphism from Aut(𝜋) to 𝜋1(𝑋, 𝑥0). Therefore, ˜𝑀 is

a principal 𝜋1(𝑀,𝑥0)–bundle, and 𝑉 is the associated bundle:

𝑉 � ˜𝑀 ×𝜇 𝑉 .

This sets up a bijection between gauge equivalence classes [𝑉 ] of Euclidean local systems of

rank 𝑟 and equivalence classes [𝜇] of representations 𝜋1(𝑀,𝑥0) → O(𝑟 ) up to conjugation by

O(𝑟 ). For a more detailed discussion—in particular, of how the to interpret the above in the

category of orbifolds—we refer the reader to [SY19, Sections 2.4 and 2.5]. ♣

Definition 1.2.5. Let 𝑘 ∈ N0 Let 𝐷 : 𝑊 𝑘,2Γ(𝐸) → 𝐿2Γ(𝐹 ) be a linear differential operator of
order 𝑘 . Let 𝑉 be a Euclidean local system on𝑀 . The twist of 𝐷 by 𝑉 is the linear differential

operator of order 𝑘

𝐷𝑉
: 𝑊 𝑘,2Γ(𝐸 ⊗ 𝑉 ) → 𝐿2Γ(𝐹 ⊗ 𝑉 )

characterized as follows: if 𝑈 is a open subset 𝑀 , 𝑠 ∈ Γ(𝑈 , 𝐸), and 𝑓 ∈ Γ(𝑈 ,𝑉 ) is covariantly
constant with respect to the flat connection on 𝑉 , then

𝐷𝑉 (𝑠 ⊗ 𝑓 ) = (𝐷𝑠) ⊗ 𝑓 . •
7An orbifold map 𝜋 :

˜𝑀 → 𝑀 is a covering map if every point 𝑥 in the topological space underlying 𝑀 has a

neighborhood of the form𝑈 /𝐺 with𝑈 a𝐺–manifold, 𝜋−1 (𝑈 /𝐺) also is of the form
˜𝑈 /𝐺 with

˜𝑈 a𝐺–manifold, and

𝜋 induces a 𝐺–equivariant covering map �̃� → 𝑈 ; see [Moe02, Section 5.3; ALR07, Section 2.2].

8This definition might appear backwards. However, it does fit better with the notation of category theory; in

particular, it is forced in the definition of the fundamental groupoid Π(𝑀).
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Proposition 1.2.9 shows that the pullback 𝜋∗𝐷 is equivalent to the twist 𝐷𝑉
for a suitable

choice of 𝑉 . Its statement requires the following preparation.

Definition 1.2.6. Let 𝜋 :
˜𝑀 → 𝑀 be a finite covering map. Let 𝐸 be a Euclidean vector bundle

over
˜𝑀 . The pushforward of 𝐸 by 𝜋 is the unique Euclidean vector bundle 𝜋∗𝐸 over 𝑋 such

that for every 𝑥 ∈ 𝑋
(𝜋∗𝐸)𝑥 =

⊕
�̃�∈𝜋−1 (𝑥 )

𝐸�̃�

as Euclidean vector spaces, and such that a section 𝑠 of 𝜋∗𝐸 is smooth if and only if the induced

section 𝑠 of 𝐸 is smooth. •

Remark 1.2.7. The following facts about the construction from Definition 1.2.6 are important.

(1) If 𝐸 is a Euclidean vector bundle over
˜𝑀 , then the sheaf Γ(·, 𝜋∗𝐸) is the sheaf-theoretic

pushforward of the sheaf Γ(·, 𝐸); that is: there are canonical isomorphisms

Γ(𝑈 , 𝜋∗𝐸) � Γ(𝜋−1(𝑈 ), 𝐸)

for every open set𝑈 ⊂ 𝑀 and these are compatible with the restriction maps.

(2) If 𝐸 is a Euclidean local system on
˜𝑀 , then 𝜋∗𝐸 is a Euclidean local system on 𝑀 : 𝑠 ∈

Γ(𝑈 , 𝜋∗𝐸) is covariantly constant if and only if 𝑠 ∈ Γ(𝜋−1(𝑈 ), 𝐸) is.

(3) Let 𝐸 and 𝐹 be a Euclidean vector bundles over𝑀 and �̃� respectively. For every 𝑥 ∈ 𝑀
there is a conical isomorphism

𝜋∗(𝜋∗𝐸 ⊗ 𝐹 )𝑥 �
⊕

�̃�∈𝜋−1 (𝑥 )
𝐸𝑥 ⊗ 𝐹�̃� � (𝐸 ⊗ 𝜋∗𝐹 )𝑥 .

These assemble into the push-pull formula

𝜋∗(𝜋∗𝐸 ⊗ 𝐹 ) � 𝐸 ⊗ 𝜋∗𝐹 .

In particular,

𝜋∗(𝜋∗𝐸) � 𝐸 ⊗ 𝜋∗R.

Here R denotes the trivial rank one Euclidean local system on �̃� . ♣

Definition 1.2.8. Let 𝐺 be a group and let 𝐻 < 𝐺 be a subgroup. The normal core of 𝐻 is the

normal subgroup

𝑁 ≔
⋂
𝑔∈𝐺

𝑔𝐻𝑔−1. •

Proposition 1.2.9. Let 𝑘 ∈ N0. Let 𝜋 :
˜𝑀 → 𝑀 be a finite covering map with ˜𝑀 connected. Let

𝑥0 ∈ 𝑀 and 𝑥0 ∈ 𝜋−1(𝑥0). Denote by

𝐶 ≔ 𝜋∗𝜋1( ˜𝑀,𝑥0) < 𝜋1(𝑀,𝑥0)

12



the characteristic subgroup of the covering map and by 𝑁 the normal core of 𝐶 . Set

𝑆 ≔ 𝜋1(𝑀,𝑥0)/𝐶.

Denote by R the trivial rank one Euclidean local system on ˜𝑀 . Set

𝑉 ≔ 𝜋∗R.

Let 𝐷 : 𝑊 𝑘,2Γ(𝐸) → 𝐿2Γ(𝐹 ) be a linear differential operator of order 𝑘 . The following hold:

(1) The monodromy representation of𝑉 factors through𝐺 ≔ 𝜋1(𝑀,𝑥0)/𝑁 ; indeed, it is induced
by the representation of 𝐺 on Map(𝑆,R) defined by

(𝜇𝑔 𝑓 ) (𝑠) ≔ 𝑓 (𝑔−1𝑠) .

(2) The push-pull formula induces isometries

𝜋∗ : 𝑊 𝑘,2Γ(𝜋∗𝐸) �𝑊 𝑘,2Γ(𝐸 ⊗ 𝑉 ) and 𝜋∗ : 𝐿2Γ(𝜋∗𝐹 ) � 𝐿2Γ(𝐹 ⊗ 𝑉 )

such that
𝐷𝑉 = 𝜋∗ ◦ 𝜋∗𝐷 ◦ 𝜋−1

∗ .

Remark 1.2.10. If 𝜋 is a normal covering, then 𝐶 = 𝑁 and 𝐺 = 𝜋1(𝑀,𝑥0)/𝑁 is isomorphic to its

deck transformation group. If 𝜋 has 𝑘 sheets, then 𝐶 has index 𝑘 . Its normal core has index at

most 𝑘! by an elementary result known as Poincaré’s Theorem. This theorem follows from the

observation that the kernel of the canonical homomorphism 𝜋1(𝑀,𝑥0) → Bij(𝐺/𝐶) is precisely
𝑁 and Bij(𝐺/𝐶) � 𝑆𝑘 . Here Bij(𝐺/𝐶) denotes the set of bijections of 𝐺/𝐶 , ♣

Proof of Proposition 1.2.9. The monodromy representation 𝜇 : 𝜋1(𝑀,𝑥0) → O(𝑉 ) of 𝑉 is trivial

on 𝐶; hence, it factors through 𝐺 . Denote by 𝜌 : ( ˆ𝑀,𝑥0) → (𝑀,𝑥0) the pointed covering map

with characteristic subgroup 𝑁 .
ˆ𝑀 is a principal 𝐺–bundle and ˜𝑀 � ˆ𝑀 ×𝐺 𝑆 . This implies the

assertion about the monodromy representation.

By Remark 1.2.7 (3),

𝜋∗𝜋
∗𝐸 � 𝐸 ⊗ 𝜋∗R = 𝐸 ⊗ 𝑉 .

Denote the resulting isomorphism Γ(𝜋∗𝐸) � Γ(𝜋∗𝜋∗𝐸) � Γ(𝐸 ⊗ 𝑉 ) by 𝜋∗. For 𝑠 ∈ Γ(𝐸) and
𝑓 ∈ 𝐶∞(�̃�)

𝜋∗((𝜋∗𝑠) 𝑓 ) = 𝑠 ⊗ 𝜋∗ 𝑓 .

Let 𝑈 be an open subset of 𝑀 , 𝑠 ∈ Γ(𝑈 , 𝐸), and 𝑓 ∈ Γ(𝑈 ,𝑉 ). Suppose that 𝑓 is covariantly

constant. This is equivalent to the corresponding function
˜𝑓 ≔ (𝜋∗)−1 𝑓 on ˜𝑈 ≔ 𝜋−1(𝑈 ) being

locally constant. By the characterizing properties of 𝐷𝑉
and 𝜋∗𝐷 and since 𝜋∗𝐷 is a differential

operator,

𝐷𝑉 (𝑠 ⊗ 𝑓 ) = (𝐷𝑠) ⊗ 𝑓

and

(𝜋∗𝐷) (𝜋∗)−1(𝑠 ⊗ 𝑓 ) = (𝜋∗𝐷) (𝜋∗𝑠 · ˜𝑓 ) = 𝜋∗(𝐷𝑠) · ˜𝑓 = (𝜋∗)−1(𝐷𝑠 ⊗ 𝑓 ).

This proves that 𝐷𝑉 = 𝜋∗ ◦ 𝜋∗𝐷 ◦ 𝜋−1

∗ . ■
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1.3 Equivariant Brill–Noether loci, I: twists

Pulling back and twisting lead to families of linear elliptic differential operators which fail

to satisfy the hypotheses of Theorem 1.1.5 (except for a few corner cases). In this section we

formulate a variant of this result which applies to families of twisted linear elliptic differential

operators. Throughout this section, assume the following.

Situation 1.3.1. Let 𝑥0 ∈ 𝑀 . Let𝔙 = (𝑉
𝛼
)𝑚𝛼=1

be a finite collection of irreducible Euclidean local

systems which are pairwise non-isomorphic. (A Euclidean local system is irreducible if it is not
a direct sum of two non-zero Euclidean local systems.) For every 𝛼 = 1, . . . ,𝑚 denote by K𝛼 the

algebra of parallel endomorphisms of 𝑉
𝛼
and set 𝑘𝛼 ≔ dimR K𝛼 . ×

Remark 1.3.2. Since 𝑉
𝛼
is irreducible, K𝛼 is a division algebra; hence, by Frobenius’ Theorem it

is isomorphic to either R, C, or H and 𝑘𝛼 ∈ {1, 2, 4}. ♣
If 𝐷 is a linear elliptic differential operator, then the twists 𝐷𝑉

𝛼 commute with the action

of K𝛼 . Therefore, ker𝐷𝑉
𝛼 and coker𝐷𝑉

𝛼 are left K𝛼–modules and, hence, right Kop

𝛼 –modules.

Here Kop

𝛼 denotes the opposite algebra of K𝛼 .

Definition 1.3.3. Let (𝐷𝑝)𝑝∈P be a family of linear elliptic differential operators. For 𝑑, 𝑒 ∈ N𝑚
0

define the𝔙–equivariant Brill–Noether locus P𝔙
𝑑,𝑒

by

P𝔙
𝑑,𝑒

≔
{
𝑝 ∈ P : dimK𝛼

ker𝐷
𝑉

𝛼
𝑝 = 𝑑𝛼 and dimK𝛼

coker𝐷
𝑉

𝛼
𝑝 = 𝑒𝛼 for every 𝛼 = 1, . . . ,𝑚

}
. •

Remark 1.3.4. Let 𝑖 ∈ Z𝑚 . Let (𝐷𝑝)𝑝∈P be a family of linear elliptic operators such that

indexK𝛼
𝐷
𝑉

𝛼
𝑝 = 𝑖𝛼 for every 𝑝 ∈ P and 𝛼 = 1, . . . ,𝑚. If P𝔙

𝑑,𝑒
≠ ∅, then 𝑑 − 𝑒 = 𝑖; in particular:

𝑑𝛼 ⩾ 𝑖𝛼 and 𝑒𝛼 ⩾ −𝑖𝛼 .
If𝑀 is a manifold, then

indexK𝛼
𝐷
𝑉

𝛼
𝑝 = rkK𝛼

𝑉
𝛼
· index𝐷𝑝

by the Atiyah–Singer index theorem; therefore, the 𝑖𝛼 all have the same sign. If𝑀 is an orbifold,

there are corrections terms in the index formula which spoil this relation between the indices;

see, e.g., Proposition 2.8.6. ♣
Lemma 1.1.4 immediately implies the following.

Theorem 1.3.5. Let (𝐷𝑝)𝑝∈P be a family of linear elliptic differential operators. For 𝑝 ∈ P define
Λ𝔙
𝑝 : 𝑇𝑝P→

⊕𝑚

𝛼=1
HomK𝛼

(ker𝐷
𝑉

𝛼
𝑝 , coker𝐷

𝑉
𝛼

𝑝 ) by

Λ𝔙
𝑝 (𝑝) ≔

𝑚⊕
𝛼=1

Λ𝛼
𝑝 (𝑝) and Λ𝛼

𝑝 (𝑝)𝑠 ≔ d𝑝𝐷
𝑉

𝛼 (𝑝)𝑠 mod im𝐷
𝑉

𝛼
𝑝 .

Let 𝑑, 𝑒 ∈ N𝑚
0
and 𝑝 ∈ P𝔙

𝑑,𝑒
. If Λ𝔙

𝑝 is is surjective, then the following hold:

(1) There is an open neighborhood U of 𝑝 ∈ P such that P𝔙
𝑑,𝑒
∩ U is a submanifold of

codimension

codim(P𝔙
𝑑,𝑒
∩U) =

𝑚∑︁
𝛼=1

𝑘𝛼𝑑𝛼𝑒𝛼 .
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(2) P𝔙
˜𝑑,𝑒

≠ ∅ for every ˜𝑑, 𝑒 ∈ N𝑚
0
with ˜𝑑 ⩽ 𝑑, 𝑒 ⩽ 𝑒 , and ˜𝑑 − 𝑒 = 𝑑 − 𝑒 . ■

Remark 1.3.6. If 𝐸 and 𝐹 are Hermitian vector bundles and (𝐷𝑝)𝑝∈P is a family of complex

linear elliptic differential operators, then Theorem 1.3.5 does not apply; cf. Remark 1.1.6. Again,

this issue is rectified by replacing R with C throughout. In fact, this somewhat simplifies the

discussion since C is the unique complex division algebra; hence, there is no need to introduce

K𝛼 . ♣
Remark 1.3.7 (Twists by arbitrary Euclidean local systems). Every Euclidean local system 𝑉

decomposes into irreducible local systems

𝑉 �
𝑚⊕
𝛼=1

𝑉 ⊕ℓ𝛼
𝛼

with ℓ1, . . . , ℓ𝑚 ∈ N0 for a suitable choice of𝔙. For every
¯𝑑, 𝑒 ∈ N0 the Brill–Noether locus

P
𝑉

¯𝑑,𝑒
≔

{
𝑝 ∈ P : dim ker𝐷

𝑉
𝑝 = ¯𝑑 and dim coker𝐷

𝑉
𝑝 = 𝑒

}
is the finite disjoint union of the subsetsP𝔙

𝑑,𝑒
with (𝑑, 𝑒) ∈ N𝑚

0
× N𝑚

0
satisfying

𝑚∑︁
𝛼=1

ℓ𝛼𝑘𝛼𝑑𝛼 = ¯𝑑 and

𝑚∑︁
𝛼=1

ℓ𝛼𝑘𝛼𝑒𝛼 = 𝑒.

Through this observation Theorem 1.3.5 can be brought to bear on families of linear elliptic

differential operators twisted by 𝑉 . ♣
Definition 1.1.9, Definition 1.1.11, and Proposition 1.1.12 have the following analogues in the

present situation.

Definition 1.3.8. A family of linear elliptic differential operators (𝐷𝑝)𝑝∈P is𝔙–equivariantly
flexible in𝑈 at 𝑝★ ∈ P if for every 𝐴 ∈ Γ𝑐 (𝑈 ,Hom(𝐸, 𝐹 )) there is a 𝑝 ∈ 𝑇𝑝★P such that

d𝑝★𝐷
𝑉

𝛼 (𝑝)𝑠 = (𝐴 ⊗ id𝑉
𝛼
)𝑠 mod im𝐷

𝑉
𝛼

𝑝★

for every 𝛼 = 1, . . . ,𝑚 and 𝑠 ∈ ker𝐷
𝑉

𝛼
𝑝★

. •

Definition 1.3.9. The𝔙–equivariant Petri map

𝜛𝔙
:

𝑚⊕
𝛼=1

Γ(𝐸 ⊗ 𝑉
𝛼
) ⊗Kop

𝛼
Γ(𝐹 † ⊗ 𝑉 ∗

𝛼
) → Γ(𝐸 ⊗ 𝐹 †)

is defined by 𝜛𝔙 ≔
∑𝑚

𝛼=1
𝜛𝛼 with 𝜛𝛼 denoting the composition of the Petri map

𝜛𝛼 : Γ(𝐸 ⊗ 𝑉
𝛼
) ⊗Kop

𝛼
Γ(𝐹 † ⊗ 𝑉 ∗

𝛼
) → Γ(𝐸 ⊗ 𝐹 † ⊗ 𝑉

𝛼
⊗Kop

𝛼
𝑉 ∗

𝛼
)

and the map induced by

tr : 𝑉
𝛼
⊗Kop

𝛼
𝑉 ∗

𝛼
→ R.
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Here 𝑉 ∗
𝛼
≔ Hom(𝑉

𝛼
,R) is the dual of 𝑉

𝛼
. (Its algebra of parallel endomorphisms is Kop

𝛼 .)

Let 𝑈 ⊂ 𝑀 be an open subset. A linear elliptic differential operator 𝐷 : Γ(𝐸) → Γ(𝐹 )
satisfies the𝔙–equivariant Petri condition in𝑈 if the map

𝜛𝔙
𝐷,𝑈 :

𝑚⊕
𝛼=1

ker𝐷𝑉
𝛼 ⊗Kop

𝛼
ker𝐷𝑉

𝛼
,† → 𝐿1Γ(𝑈 , 𝐸 ⊗ 𝐹 †)

induced by the𝔙–equivariant Petri map is injective. Here 𝐷𝑉
𝛼
,† ≔

(
𝐷𝑉

𝛼

)†
. •

Remark 1.3.10. The𝔙–equivariant Petri condition appears even more difficult to verify than

the Petri condition. It turns out, however, for the method discussed in Section 1.6 there is no

substantial difference between these conditions. ♣

Proposition 1.3.11. Let (𝐷𝑝)𝑝∈P be a family of linear elliptic differential operators. Let 𝑈 ⊂ 𝑀
be an open subset. If (𝐷𝑝)𝑝∈P is𝔙–equivariantly flexible in 𝑈 at 𝑝★ ∈ P and 𝐷𝑝★ satisfies the
𝔙–equivariant Petri condition in𝑈 , then the map Λ𝔙

𝑝★
defined in Theorem 1.3.5 is surjective. ■

Remark 1.3.12. There are analogues of the observations from Remark 1.1.14 in the equivariant

setting.

(1) Every 𝑝 ∈ P𝔙
𝑑,𝑒

has an open neighborhood U in P such that P𝔙
𝑑,𝑒
∩U is contained in a

submanifold of codimension rkΛ𝔙
𝑝 .

(2) Let 𝜌 ∈ N𝑚
0
and let 𝑈 ⊂ 𝑀 be an open subset. A linear elliptic differential operator

𝐷 : 𝑊 𝑘,2Γ(𝐸) → 𝐿2Γ(𝐹 ) satisfies the𝔙–equivariant Petri condition up to rank 𝜌 in 𝑈
if for every non-zero 𝐵 = (𝐵1, . . . , 𝐵𝑚) ∈

⊕𝑚

𝛼=1
ker𝐷

𝑉
𝛼

𝑝 ⊗Kop

𝛼
ker𝐷

†,𝑉 ∗
𝛼

𝑝 with rk𝐵𝛼 ⩽ 𝜌𝛼
for 𝛼 = 1, . . . ,𝑚 the section 𝜛𝔙(𝐵) does not vanish on 𝑈 . If 𝐷𝑝 satisfies this condition

and (𝐷𝑝)𝑝∈P is𝔙–equivariantly flexible in𝑈 at 𝑝★ ∈ P, then

rkΛ𝑝★ ⩾
𝑚∑︁
𝛼=1

min{𝜌𝛼 , 𝑑𝛼 , 𝑒𝛼 }max{𝑑𝛼 , 𝑒𝛼 }.

(3) Let 𝜌 ∈ N𝑚
0
and let 𝑈 ⊂ 𝑀 be an open subset. Every first order linear elliptic differential

operator 𝐷 : Γ(𝐸) → Γ(𝐹 ) satisfies the𝔙–equivariant Petri condition up to rank 𝜌 on𝑈

provided

(1.3.13)

𝑚∑︁
𝛼=1

rkR𝑉𝛼 · 𝜌𝛼 ⩽ 3.

Proof. Set 𝐺 ≔ 𝜋1(𝑀,𝑥0). Denote by 𝜋 : ( ˜𝑀,𝑥0) → (𝑀,𝑥0) the universal covering map.

Every 𝑠 ∈ ker𝐷𝑉
𝛼 can be regarded as an element 𝑠 ∈ Γ(𝜋∗𝐸 ⊗ 𝑉𝛼 )𝐺 in the space of 𝐺–

invariant sections, with𝐺 → O(𝑉𝛼 ) denoting the monodromy representation of𝑉
𝛼
. This

section can be regarded as 𝑟𝛼 ≔ rkR𝑉𝛼 sections 𝑠1, . . . , 𝑠𝑟𝛼 of 𝜋∗𝐸. For every 𝛼 = 1, . . . ,𝑚

let 𝑠𝛼
1
, . . . , 𝑠𝛼𝑞𝛼 ∈ ker𝐷𝑉

𝛼 be linearly independent over K𝛼 . The resulting collection of
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sections 𝑠𝛼
𝑗,𝑘
∈ ker𝜋∗𝐷 (𝛼 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑞𝛼 , 𝑘 = 1, . . . , 𝑟𝛼 ) are linearly independent.

The latter is a consequence of Proposition 1.3.14 applied to𝑊 = ker𝜋∗𝐷 . (Analogous
statements hold for 𝐷† instead of 𝐷 .) At this point, one can apply the argument in

Remark 1.1.14(3). ■

Unfortunately, this is not as useful as Remark 1.1.14(3) because (1.3.13) is very restrictive;

however, it is what lies at the heart of Eftekhary’s proof of the 4–rigidity conjecture

[Eft16]. ♣
The following discussion is not just needed to justify Remark 1.3.12 (3), but also plays a

crucial role in verifying the𝔙–equivariant Petri condition in Section 1.6.

Let 𝐺 be a group. For a vector space 𝑉 with an action of 𝐺 , denote by 𝑉𝐺
the subspace of

𝐺–invariant vectors, and set End𝐺 (𝑉 ) ≔ End(𝑉 )𝐺 and Hom𝐺 (𝑉 ,𝑊 ) ≔ Hom(𝑉 ,𝑊 )𝐺 with𝑊

a further vector space with an action of 𝐺 .

Proposition 1.3.14. Let (𝑉𝛼 )𝑚𝛼=1
be a finite collection of irreducible finite-dimensional orthogonal

representations which are pairwise non-isomorphic. Set K𝛼 B End𝐺 (𝑉𝛼 ). For every representation
𝑊 of 𝐺 the map

tr :

𝑚⊕
𝛼=1

𝑉 ∗𝛼 ⊗K𝛼
(𝑉𝛼 ⊗𝑊 )𝐺 →𝑊

induced by the trace maps 𝑉 ∗𝛼 ⊗K𝛼
𝑉𝛼 → R is injective.

Proof of Proposition 1.3.14. If tr is not injective, then there are finite-dimensional K𝛼–linear

subspaces 𝑋𝛼 ⊂ (𝑉𝛼 ⊗𝑊 )𝐺 such that

tr :

𝑚⊕
𝛼=1

𝑉 ∗𝛼 ⊗K𝛼
𝑋𝛼 →𝑊

is not injective. (𝑊 need not be finite-dimensional.)

𝐺 acts on 𝑉 ∗𝛼 via the contragredient representation and trivially on 𝑋𝛼 . Choose a K𝛼–

sesquilinear inner product on 𝑋𝛼 (e.g., by choosing a basis 𝑋𝛼 � K𝑑𝛼
𝛼 ). This exhibits 𝑉 ∗𝛼 ⊗K𝛼

𝑋𝛼

as an orthogonal representation. Since tr is 𝐺–equivariant,

ker tr ⊂
𝑚⊕
𝛼=1

𝑉 ∗𝛼 ⊗K𝛼
𝑋𝛼

is an orthogonal subrepresentation.

Since ker tr is an orthogonal representation, it decomposes into irreducible orthogonal

representations

ker tr �
𝑛⊕
𝛽=1

𝑉 ∗
𝛽
⊗K𝛽

K𝑑𝛽

𝛽
.

A priori, (𝑉𝛽 )𝑛𝛽=1
might not be a subset of (𝑉𝛼 )𝑚𝛼=1

. However, for every copy of 𝑉 ∗
𝛽
appearing in

the above decomposition, the induced map

𝑉 ∗
𝛽
→

𝑚⊕
𝛼=1

𝑉 ∗𝛼 ⊗K𝛼
𝑋𝛼
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is injective. Therefore, by Schur’s Lemma, 𝛽 is among the 𝛼 . Moreover, the image of the of the

above map is 𝑉 ∗
𝛽
⊗K𝛽

𝐿 for some 𝐿 ⊂ 𝑋𝛽 with dimK𝛽
𝐿 = 1. Denote by 𝑆𝛽 ⊂ 𝑋𝛽 the K𝛽–linear

subspace spanned by the corresponding lines 𝐿. The upshot of this discussion is that

ker tr =

𝑚⊕
𝛼=1

𝑉 ∗𝛼 ⊗K𝛼
𝑆𝛼 .

For every non-zero 𝑇 ∈ 𝑆𝛼 there is a 𝑣∗ ∈ 𝑉 ∗𝛼 with tr(𝑣∗ ⊗ 𝑇 ) ≠ 0. Therefore, 𝑆𝛼 = 0; hence:

ker tr = 0. ■

1.4 Equivariant Brill–Noether loci, II: pullbacks

In this section we formulate a variant of Theorem 1.1.5 which applies to families of linear elliptic

differential operators pulled back by a finite normal covering map. (This is not needed in Part 2.)

Throughout this section, assume the following.

Situation 1.4.1. Let 𝑥0 ∈ 𝑀 . Let𝐺 be the quotient of 𝜋1(𝑀,𝑥0) by a finite index normal subgroup

𝑁 . Denote by 𝜋 : ( ˜𝑀,𝑥0) → (𝑀,𝑥0) a pointed covering map with characteristic subgroup 𝑁 .

Let

𝜇𝛼 : 𝐺 → O(𝑉𝛼 ) (𝛼 = 1, . . . ,𝑚 =𝑚(𝐺))

be the irreducible representations of 𝐺 (up to isomorphism). Set

K𝛼 ≔ End𝐺 (𝑉𝛼 ) and 𝑘𝛼 ≔ dimR K𝛼 . ×

If 𝐷 : 𝑊 𝑘,2Γ(𝐸) → 𝐿2Γ(𝐹 ) is a linear elliptic differential operator of order 𝑘 , then ker𝜋∗𝐷
and coker𝜋∗𝐷 are representations of 𝐺 . Every representation 𝑉 of 𝐺 can be decomposed into

irreducible representations. The evaluation map defines a 𝐺–equivariant isomorphism

(1.4.2) ev :

𝑚⊕
𝛼=1

Hom𝐺 (𝑉𝛼 ,𝑉 ) ⊗K𝛼
𝑉𝛼 � 𝑉 .

Hence,

𝑉 �
𝑚⊕
𝛼=1

𝑉 ⊕𝑑𝛼𝛼 with 𝑑𝛼 ≔ dimKop

𝛼
Hom𝐺 (𝑉𝛼 ,𝑉 ) .

In particular, 𝑑 = (𝑑1, . . . , 𝑑𝑚) ∈ N𝑚
determines 𝑉 up to isomorphism.

Definition 1.4.3. Let (𝐷𝑝)𝑝∈P be a family of linear elliptic differential operators. For 𝑑, 𝑒 ∈ N𝑚
0

define the 𝐺–equivariant Brill–Noether locusP𝐺
𝑑,𝑒

by

P𝐺
𝑑,𝑒

≔

{
𝑝 ∈ P :

dimKop

𝛼
Hom𝐺 (𝑉𝛼 , ker𝜋∗𝐷𝑝) = 𝑑𝛼 and

dimKop

𝛼
Hom𝐺 (𝑉𝛼 , coker𝜋∗𝐷𝑝) = 𝑒𝛼 for every 𝛼 = 1, . . . ,𝑚

}
. •

18



Remark 1.4.4. Let 𝐷 : Γ(𝐸) → Γ(𝐹 ) is a linear elliptic differential operator. The𝐺–equivariant
index of 𝜋∗𝐷 is index𝐺 𝜋

∗𝐷 ≔ [ker𝜋∗𝐷] − [coker𝜋∗𝐷] ∈ 𝑅(𝐺). Here 𝑅(𝐺) denotes the repre-
sentation ring of𝐺 ; its elements are formal differences of isomorphism classes of representations

of 𝐺 . It is a consequence of the above discussion that 𝑅(𝐺) � Z𝑚 as abelian groups.

For families of linear elliptic operators with𝐺–equivariant index corresponding to 𝑖 ∈ Z𝑚
what was said in Remark 1.3.4 applies in the present situation as well. ♣

Lemma 1.1.4 has the following refinement for 𝐺–equivariant Fredholm operators.

Lemma 1.4.5. Let𝑋 and𝑌 be two Banach spaces equipped with𝐺–actions. Denote byF𝐺 (𝑋,𝑌 ) the
space of𝐺–equivariant Fredholm operators. For every 𝐿 ∈ F𝐺 (𝑋,𝑌 ) there is an open neighborhood
U ⊂ F𝐺 (𝑋,𝑌 ) and a smooth map S : U → Hom𝐺 (ker𝐿, coker𝐿) such that for every 𝑇 ∈ U

there are 𝐺–equivariant isomorphisms

ker𝑇 � kerS(𝑇 ) and coker𝑇 � cokerS(𝑇 );

furthermore, d𝐿S : 𝑇𝐿F𝐺 (𝑋,𝑌 ) → Hom𝐺 (ker𝐿, coker𝐿) satisfies

d𝐿S( ˆ𝐿)𝑠 = ˆ𝐿𝑠 mod im𝐿.

Proof. The proof of Lemma 1.1.4 carries over provided coim𝐿 and the lift of coker𝐿 are chosen

𝐺–invariant. ■

Lemma 1.4.5 immediately implies the following.

Theorem 1.4.6. Let (𝐷𝑝)𝑝∈P be a family of linear elliptic differential operators. For 𝑝 ∈ P define
Λ𝐺
𝑝 : 𝑇𝑝P→ Hom𝐺 (ker𝜋∗𝐷𝑝 , coker𝜋∗𝐷𝑝) by

Λ𝐺
𝑝 (𝑝)𝑠 ≔ d𝑝 (𝜋∗𝐷) (𝑝)𝑠 mod im𝜋∗𝐷𝑝 .

Let 𝑑, 𝑒 ∈ N𝑚
0
and 𝑝 ∈ P𝐺

𝑑,𝑒
. If Λ𝐺

𝑝 is surjective, then the following hold:

(1) There is an open neighborhood U of 𝑝 ∈ P such that P𝐺
𝑑,𝑒
∩ U is a submanifold of

codimension

codim(P𝐺
𝑑,𝑒
∩U) =

𝑚∑︁
𝛼=1

𝑘𝛼𝑑𝛼𝑒𝛼 .

(2) P𝐺
˜𝑑,𝑒

≠ ∅ for every ˜𝑑, 𝑒 ∈ N𝑚
0
with ˜𝑑 ⩽ 𝑑, 𝑒 ⩽ 𝑒 , and ˜𝑑 − 𝑒 = 𝑑 − 𝑒 . ■

Remark 1.4.7 (Pullbacks by arbitrary covering maps). Suppose that 𝜋 :
˜𝑀 → 𝑀 is a finite

covering map with characteristic subgroup 𝐶 < 𝜋1(𝑀,𝑥0). Denote by 𝑁 the normal core of 𝐶 ,

denote by 𝜌 : (�̂�, 𝑥0) → (𝑀,𝑥0) the pointed covering map with characteristic subgroup 𝑁 , and

set 𝐺 ≔ 𝜋1(𝑀,𝑥0)/𝑁 . For 𝑆 ≔ 𝜋1(𝑀,𝑥0)/𝐶 the decomposition (1.4.2) of Map(𝑆,R) is

Map(𝑆,R) �
𝑚⊕
𝛼=1

(𝑉 ∗𝛼 )𝐶 ⊗K𝛼
𝑉𝛼 ;
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indeed: the map ev[1] : Hom𝐺 (𝑉𝛼 ,Map(𝑆,R)) → 𝑉 ∗𝛼 defined by ev1(ℓ) (𝑣) ≔ ℓ (𝑣) ( [1]) is
injective and its image is (𝑉 ∗𝛼 )𝐶 . Therefore, by Proposition 1.2.9(2)

ker𝜋∗𝐷 �
𝑚⊕
𝛼=1

𝑉𝐶
𝛼 ⊗Kop

𝛼
Hom𝐺 (𝑉𝛼 , ker 𝜌∗𝐷) and

coker𝜋∗𝐷 �
𝑚⊕
𝛼=1

𝑉𝐶
𝛼 ⊗Kop

𝛼
Hom𝐺 (𝑉𝛼 , coker 𝜌∗𝐷).

With the above in mind Theorem 1.4.6 can be brought to bear on non-normal covering maps;

cf. Remark 1.3.7 ♣
Definition 1.1.9, Definition 1.1.11, and Proposition 1.1.12 have the following analogues in the

present situation.

Definition 1.4.8. A family of linear elliptic differential operators (𝐷𝑝)𝑝∈P is 𝐺–equivariantly
flexible in𝑈 at 𝑝★ ∈ P if for every 𝐴 ∈ Γ(Hom(𝐸, 𝐹 )) supported in𝑈 there is a 𝑝 ∈ 𝑇𝑝★P such

that

d𝑝★ (𝜋∗𝐷) (𝑝)𝑠 = (𝜋∗𝐴)𝑠 mod im𝜋∗𝐷𝑝★

for every 𝑠 ∈ ker𝜋∗𝐷𝑝★ . •

Definition 1.4.9. Let𝑈 ⊂ 𝑀 be an open subset. A linear elliptic differential operator𝐷 : 𝑊 𝑘,2Γ(𝐸) →
𝐿2Γ(𝐹 ) satisfies the 𝐺–equivariant Petri condition in𝑈 if the map

𝜛𝐺
𝐷,𝑈 : (ker𝜋∗𝐷 ⊗ ker𝜋∗𝐷†)𝐺 → Γ(𝜋−1(𝑈 ), 𝜋∗𝐸 ⊗ 𝜋∗𝐹 †)𝐺

induced by the Petri map is injective. •

Remark 1.4.10. Remark 1.3.10 applies to the the 𝐺–equivariant Petri condition as well. ♣

Proposition 1.4.11. Let (𝐷𝑝)𝑝∈P be a family of linear elliptic differential operators. Let 𝑈 ⊂ 𝑀
be an open subset. If (𝐷𝑝)𝑝∈P is 𝐺–equivariantly flexible in 𝑈 at 𝑝★ ∈ P and 𝐷𝑝★ satisfies the
𝐺–equivariant Petri condition in𝑈 , then the map Λ𝐺

𝑝★
defined in Theorem 1.4.6 is surjective. ■

1.5 Equivariant Brill–Noether loci, III: comparison

This section discusses the relation between Section 1.3 and Section 1.4. (This is not needed in

Part 2.) Throughout this section, assume Situation 1.4.1. This yields an instance of Situation 1.3.1

by setting

𝑉
𝛼
≔ ˜𝑀 ×𝜇𝛼 𝑉𝛼 .

Denote by 𝜎 ∈ 𝑆𝑚 the permutation such that 𝑉 ∗𝛼 � 𝑉𝜎 (𝛼 ) . The following summarizes the what

lies at the heart of the relation.

Proposition 1.5.1. Let 𝐷 : 𝑊 𝑘,2Γ(𝐸) → 𝐿2Γ(𝐹 ) be a linear differential operator of order 𝑘 . The
following hold:
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(1) The action of 𝐺 by deck transformations of 𝜋 induces a 𝐺–action on the local system

𝑉 ≔ 𝜋∗R.

The isomorphisms 𝜋∗ : 𝑊 𝑘,2Γ(𝜋∗𝐸) � 𝑊 𝑘,2Γ(𝐸 ⊗ 𝑉 ) and 𝜋∗ : 𝐿2Γ(𝜋∗𝐹 ) � 𝐿2Γ(𝐹 ⊗ 𝑉 )
from Proposition 1.2.9(2) are 𝐺–equivariant.

(2) There is a 𝐺–equivariant isomorphism

𝜙 : 𝑉 �
𝑚⊕
𝛼=1

𝑉 ∗𝛼 ⊗K𝛼
𝑉

𝛼
.

Here 𝐺 acts on 𝑉 ∗𝛼 .

(3) Denote by

𝜓𝐸 : 𝑊 𝑘,2Γ(𝜋∗𝐸) �𝑊 𝑘,2Γ(𝐸 ⊗ 𝑉 ) �
𝑚⊕
𝛼=1

𝑉 ∗𝛼 ⊗K𝛼
𝑊 𝑘,2Γ(𝐸 ⊗ 𝑉

𝛼
)

the𝐺–equivariant isomorphisms induced by 𝜋∗ and 𝜙 (and analogously for 𝐹 and 𝐹 †). The
composition

𝜓𝐹 ◦ 𝜋∗𝐷 ◦𝜓 −1

𝐸

agrees with
𝑚⊕
𝛼=1

id𝑉 ∗𝛼 ⊗K𝛼
𝐷𝑉

𝛼 :

𝑚⊕
𝛼=1

𝑉 ∗𝛼 ⊗K𝛼
𝑊 𝑘,2Γ(𝐸 ⊗ 𝑉

𝛼
) →

𝑚⊕
𝛼=1

𝑉 ∗𝛼 ⊗K𝛼
𝐿2Γ(𝐹 ⊗ 𝑉

𝛼
) .

(4) Define 𝛾 to be the composition of the isomorphisms( (⊕𝑚

𝛼=1
𝑉 ∗𝛼 ⊗K𝛼

𝑊 𝑘,2Γ(𝐸 ⊗ 𝑉
𝛼
)
)
⊗

(⊕𝑚

𝛽=1
𝑉 ∗
𝛽
⊗Kop

𝛽
𝐿2Γ(𝐹 † ⊗ 𝑉

𝛽
)
) )𝐺

⊕𝑚

𝛼,𝛽=1
𝑊 𝑘,2Γ(𝐸 ⊗ 𝑉

𝛼
) ⊗Kop

𝛼
(𝑉 ∗𝛼 ⊗ 𝑉𝜎 (𝛽 ) )𝐺 ⊗Kop

𝛽
𝐿2Γ(𝐹 † ⊗ 𝑉 ∗

𝜎 (𝛽 ) )

⊕𝑚

𝛼=1
𝑊 𝑘,2Γ(𝐸 ⊗ 𝑉

𝛼
) ⊗Kop

𝛼
𝐿2Γ(𝐹 † ⊗ 𝑉 ∗

𝛼
).

�

(★) �

Here (★) is induced by the identification

(𝑉 ∗𝛼 ⊗ 𝑉𝜎 (𝛽 ) )𝐺 =

{
Kop

𝛼 if 𝛼 = 𝜎 (𝛽)
0 otherwise.

The following diagram commutes:

(1.5.2)

(
𝑊 𝑘,2Γ(𝜋∗𝐸) ⊗ 𝐿2Γ(𝜋∗𝐹 †)

)𝐺
𝐿1Γ(𝜋∗(𝐸 ⊗ 𝐹 †))𝐺

⊕𝑚

𝛼=1
𝑊 𝑘,2Γ(𝐸 ⊗ 𝑉

𝛼
) ⊗Kop

𝛼
𝐿2Γ(𝐹 † ⊗ 𝑉 ∗

𝛼
) 𝐿1Γ(𝐸 ⊗ 𝐹 †).

𝛾◦(𝜓𝐸⊗𝜓𝐹† ) �

𝜛

𝜛𝔙

𝜋∗�
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Proof. Let 𝑔 ∈ 𝐺 . Denote by 𝛿𝑔 the corresponding deck transformation: 𝛿𝑔 (𝑥) ≔ 𝑥𝑔−1
. There

is a canonical isomorphism R � (𝛿𝑔)∗R identifying R
�̃�
= R =

(
(𝛿𝑔)∗R

)
�̃�
= R

�̃�𝑔
. This defines an

isomorphism

(1.5.3) 𝑉 = 𝜋∗R � 𝜋∗(𝛿𝑔)∗R = 𝜋∗R � 𝑉 .

A moment’s thought shows that this isomorphism maps 𝑣 ∈ 𝑉
𝑥
= 𝐶∞(𝜋−1(𝑥),R) to 𝑔𝑣 ∈ 𝑉

𝑥

defined by (𝑔𝑣) (𝑥) ≔ 𝑣 (𝑥𝑔). These isomorphisms (1.5.3) assemble into a𝐺–action on 𝑉 . This

description makes (1) evident.

The left and right regular representations of 𝐺 on R[𝐺] ≔ Map(𝐺,R) are defined by

(𝜆𝑔 𝑓 ) (𝑥) ≔ 𝑓 (𝑔−1𝑥) and (𝜌ℎ 𝑓 ) (𝑥) ≔ 𝑓 (𝑥ℎ)

respectively. By Proposition 1.2.9(1), the monodromy representation of 𝑉 is 𝜆; that is: 𝑉 �
˜𝑀 ×𝜆 R[𝐺]. Since 𝜆 and 𝜌 commute, 𝜌 defines an action of 𝐺 on 𝑉 . This is precisely the action

described above.

Since 𝜆𝑔 and 𝜌ℎ commute, (𝑔, ℎ) ↦→ 𝜆𝑔 ◦ 𝜌ℎ defines a representation of𝐺 ×𝐺 on R[𝐺]. 𝐺 ×𝐺
also acts on 𝑉 ∗𝛼 ⊗K𝛼

𝑉𝛼 via (𝑔, ℎ) ↦→ 𝜇𝛼 (ℎ−1)∗ ⊗ 𝜇𝛼 (𝑔). The isomorphism (1.4.2) corresponding

to 𝜆 reads
𝑚⊕
𝛼=1

Hom𝐺 (𝑉𝛼 ,R[𝐺]) ⊗K𝛼
𝑉𝛼 � R[𝐺] .

Hom𝐺 (𝑉𝛼 ,R[𝐺]) inherits a 𝐺–action from 𝜌 . The map ev1 : Hom𝐺 (𝑉𝛼 ,R[𝐺]) → 𝑉 ∗𝛼 defined

by ev1(ℓ) (𝑣) ≔ ℓ (𝑣) (1) is a 𝐺–equivariant isomorphism. This yields the 𝐺 ×𝐺–equivariant
Peter–Weyl isomorphism

(1.5.4) 𝜓 : R[𝐺] �
𝑚⊕
𝛼=1

𝑉 ∗𝛼 ⊗K𝛼
𝑉𝛼 .

It induces a 𝐺–equivariant isomorphism

(1.5.5) 𝑉 �
𝑚⊕
𝛼=1

𝑉 ∗𝛼 ⊗K𝛼
𝑉

𝛼
.

This proves (2).

(2) and Proposition 1.2.9(2) imply (3).

It suffices to prove (4) for 𝑀 = {1} and �̃� = 𝐺 . In this case 𝐸 and 𝐹 † are vector spaces,
Γ(𝜋∗𝐸) = Map(𝐺, 𝐸) = R[𝐺] ⊗ 𝐸 with the 𝐺–action induced by 𝜌 , Γ(𝐸 ⊗ 𝑉

𝛼
) = 𝐸 ⊗ 𝑉𝛼 (and

analogously for 𝐹 † and 𝐸 ⊗ 𝐹 †). The diagram (1.5.2) becomes

(1.5.6)

(
R[𝐺] ⊗ 𝐸 ⊗ R[𝐺] ⊗ 𝐹 †

)𝐺 (R[𝐺] ⊗ 𝐸 ⊗ 𝐹 †)𝐺

⊕𝑚

𝛼=1
(𝐸 ⊗ 𝑉𝛼 ) ⊗Kop

𝛼
(𝐹 † ⊗ 𝑉 ∗𝛼 ) 𝐸 ⊗ 𝐹 †.

𝜛

𝛾◦(𝜓𝐸⊗𝜓𝐹† ) �

𝜛𝔙

𝜋∗�
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Since every map in this diagram has a factor id𝐸⊗𝐹 † , it suffices to prove that it commutes for

𝐸 = 𝐹 † = R.
The map 𝜛 : (R[𝐺] ⊗ R[𝐺])𝐺 → (R[𝐺])𝐺 is the pointwise multiplication and the map

(𝜋∗)−1
: R[𝐺]𝐺 → R is evaluation at 1. Therefore,

(𝜋∗)−1 ◦𝜛
(∑︁

𝑔,ℎ∈𝐺
𝑎𝑔,ℎ · 𝑔 ⊗ ℎ

)
= 𝑎1,1.

The computation of the composition 𝜛𝔙 ◦ 𝛾 ◦ (𝜓 ⊗𝜓 ) relies on the following.

Proposition 1.5.7. After identifying 𝑉 ∗𝛼 ⊗K𝛼
𝑉𝛼 = EndK𝛼

(𝑉𝛼 ), the Peter–Weyl isomorphism (1.5.4)
is given by

𝜓 (𝑔) =
𝑚⊕
𝛼=1

dimK𝛼
𝑉𝛼

|𝐺 | · 𝜇𝛼 (𝑔) .

Proof. The inverse of the evaluation map ev :

⊕𝑚

𝛼=1
Hom𝐺 (𝑉𝛼 ,𝑉 ) ⊗K𝛼

𝑉𝛼 � 𝑉 is the map

Π = (Π1, . . . ,Π𝑚) with

Π𝛼 (𝑣) ≔
dimK𝛼

𝑉𝛼

|𝐺 |

𝑟𝛼∑︁
𝑖=1

(∑︁
𝑔∈𝐺

𝜇∗𝛼 (𝑔)𝑒∗𝛼,𝑖 ⊗ 𝜇 (𝑔)𝑣
)
⊗ 𝑒𝛼,𝑖 .

Here 𝑟𝛼 ≔ dimR𝑉𝛼 , 𝑒𝛼,𝑖 (𝑖 = 1, . . . , 𝑟𝛼 ) is a basis of 𝑉𝛼 , and 𝑒
∗
𝛼,𝑖 (𝑖 = 1, . . . , 𝑟𝛼 ) is the dual basis of

𝑉 ∗𝛼 . Indeed,

ev ◦ Π(𝑣) =
𝑚∑︁
𝛼=1

dimK𝛼
𝑉𝛼

|𝐺 |
∑︁
𝑔∈𝐺

tr(𝜇𝛼 (𝑔−1)) · 𝜇 (𝑔)𝑣

=
1

|𝐺 |

𝑚∑︁
𝛼=1

∑︁
𝑔∈𝐺

tr(𝜆(𝑔−1)) · 𝜇 (𝑔)𝑣

= 𝑣 .

Here the the first identity follows by direct inspection, the second uses the existence of the

Peter–Weyl isomorphism (1.5.4), and the last identity follows by direct computation of tr◦𝜆. (The
composition of Π𝛼 with ev𝛼 : Hom𝐺 (𝑉𝛼 ,𝑉 ) ⊗K𝛼

𝑉𝛼 → 𝑉 is the projection to the 𝑉𝛼–isotypic

component.)

The Peter–Weyl isomorphism (1.5.4) is the composition

𝜓 : R[𝐺] Π−→
𝑚⊕
𝛼=1

Hom𝐺 (𝑉𝛼 ,R[𝐺]) ⊗K𝛼
𝑉𝛼

⊕𝑚
𝛼=1

ev1⊗id𝑉𝛼−−−−−−−−−−−−→
𝑚⊕
𝛼=1

𝑉 ∗𝛼 ⊗K𝛼
𝑉𝛼 .

By direct computation

𝜓 (𝑔) =
(

dimK𝛼
𝑉𝛼

|𝐺 |

𝑟𝛼∑︁
𝑖=1

𝜇∗𝛼 (𝑔−1)𝑒∗𝛼,𝑖 ⊗ 𝑒𝛼,𝑖 : 𝛼 = 1, . . . ,𝑚

)
.

This yields the asserted expression for𝜓 . ■
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In the definition of 𝛾 , the map (𝑉 ∗𝛼 ⊗ 𝑉𝛼 )𝐺 → K𝛼 in (★) is induced by the composition

𝑉 ∗𝛼 ⊗ 𝑉𝛼 → 𝑉 ∗𝛼 ⊗K𝛼
𝑉𝛼

trK𝛼
dimK𝛼 𝑉𝛼

−−−−−−−→ K𝛼 .

Therefore, 𝛾 is induced by 1/dimK𝛼
𝑉𝛼 times the map EndK𝛼

(𝑉𝛼 ) ⊗ EndKop

𝛼
(𝑉 ∗𝛼 ) → EndK𝛼

(𝑉𝛼 ),
𝐴 ⊗ 𝐵 ↦→ 𝐴 ◦ 𝐵∗. The Petri map 𝜛𝔙

is the sum of the traces tr : EndK𝛼
(𝑉𝛼 ) → R. Therefore,

𝜛𝔙 ◦ 𝛾 ◦ (𝜓 ⊗𝜓 )
(∑︁

𝑔,ℎ∈𝐺
𝑎𝑔,ℎ · 𝑔 ⊗ ℎ

)
=

∑︁
𝑔,ℎ∈𝐺

𝑎𝑔,ℎ

𝑚∑︁
𝛼=1

dimK𝛼
𝑉𝛼

|𝐺 |2 · tr(𝜇𝛼 (𝑔ℎ−1))

=
1

|𝐺 |
∑︁
𝑔∈𝐺

𝑎𝑔,𝑔

= 𝑎1,1.

Here the second identity follows as in the proof of Proposition 1.5.7 above, and the third identity

uses the 𝐺–invariance: 𝑎𝑔,𝑔 = 𝑎1,1. ■

With Proposition 1.5.1 in hand the discussions in Section 1.3 and Section 1.4 can be related as

follows:

(1) By Proposition 1.5.1(3), For every 𝛼 = 1, . . . ,𝑚 the isomorphisms 𝜓𝐸 and 𝜓𝐹 induce

isomorphisms

Hom𝐺 (𝑉𝛼 , ker𝜋∗𝐷) � ker𝐷𝑉 ∗
𝛼 and Hom𝐺 (𝑉𝛼 , coker𝜋∗𝐷) � coker𝐷𝑉 ∗

𝛼

(and analogously for 𝜋∗𝐷† and 𝐷𝑉
𝛼
,†
). If 𝑉 and𝑊 are representations of 𝐺 , then (1.4.2)

induces isomorphisms

Hom𝐺 (𝑉 ,𝑊 ) �
𝑚⊕
𝛼=1

HomK𝛼
(Hom𝐺 (𝑉 ∗𝛼 ,𝑉 ),Hom𝐺 (𝑉 ∗𝛼 ,𝑊 )) and

(𝑉 ⊗𝑊 )𝐺 �
𝑚⊕
𝛼=1

Hom𝐺 (𝑉 ∗𝛼 ,𝑉 ) ⊗Kop

𝛼
Hom𝐺 (𝑉𝛼 ,𝑊 ) .

Hence, there are isomorphisms

𝜂 : Hom𝐺 (ker𝜋∗𝐷, coker𝜋∗𝐷) →
𝑚⊕
𝛼=1

HomK𝛼
(ker𝐷𝑉

𝛼 , coker𝐷𝑉
𝛼 ) and

𝜏 : (ker𝜋∗𝐷 ⊗ ker𝜋∗𝐷†)𝐺 →
𝑚⊕
𝛼=1

ker𝐷𝑉
𝛼 ⊗Kop

𝛼
ker𝐷𝑉

𝛼
,†.

(2) In the situation of Definition 1.3.3 and Definition 1.4.3,

P𝐺
𝑑,𝑒

= P𝔙
𝜎∗𝑑,𝜎∗𝑒

with (𝜎∗𝑑)𝛼 = 𝑑𝜎 (𝛼 ) and (𝜎∗𝑒)𝛼 = 𝑒𝜎 (𝛼 ) .
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(3) In the situation of Theorem 1.3.5 and Theorem 1.4.6,

Λ𝔙
𝑝 = 𝜂 ◦ Λ𝐺

𝑝 .

(4) In the situation of Definition 1.4.8, the maps

ev
𝔙
𝑝 : Γ𝑐 (𝑈 ,Hom(𝐸, 𝐹 )) →

𝑚⊕
𝛼=1

HomK𝛼
(ker𝐷

𝑉
𝛼

𝑝 , coker𝐷
𝑉

𝛼
𝑝 ) and

ev
𝐺
𝑝 : Γ𝑐 (𝑈 ,Hom(𝐸, 𝐹 )) → Hom𝐺 (ker𝜋∗𝐷𝑝 , coker𝜋∗𝐷𝑝)

defined by

ev
𝔙
𝑝 ≔

𝑚⊕
𝛼=1

ev
𝛼
𝑝 with ev

𝛼
𝑝 (𝐴)𝑠 ≔ (𝐴 ⊗ id𝑉

𝛼
)𝑠 mod im𝐷

𝑉
𝛼

𝑝 and

ev
𝐺
𝑝 (𝐴)𝑠 ≔ (𝜋∗𝐴)𝑠 mod im𝜋∗𝐷𝑝

satisfy

ev
𝔙
𝑝 = 𝜂 ◦ ev

𝐺
𝑝 .

Therefore, (𝐷𝑝)𝑝∈P is 𝐺–equivariantly flexible in 𝑈 at 𝑝 ∈ P if and only if it is 𝔙–

equivariantly flexible in𝑈 at 𝑝 .

(5) By Proposition 1.5.1(4), in the situation of Definition 1.4.9, the map 𝜛𝐺
𝐷,𝑈

satisfies

(1.5.8) 𝜛𝐺
𝐷,𝑈 = 𝜋∗ ◦𝜛𝔙

𝐷,𝑈 ◦ 𝜏 .

Therefore, 𝐷 satisfies the𝐺–equivariant Petri condition in𝑈 if and only if it satisfies the

𝔙–equivariant Petri condition in𝑈 .

1.6 Petri’s condition revisited

While Petri’s condition typically is hard to verify for any particular elliptic operator, one can

sometimes prove that it is satisfied for a generic element of a family of operators. Theorem 1.6.17

provides a useful tool for proving such statements. This result has been developed by Wendl

[Wen19b, Section 5.2] and was the essential innovation which allowed Wendl to prove the

super-rigidity conjecture.

Throughout this section, let 𝑥 ∈ 𝑀 and, furthermore, amend Definition 1.1.1 as follows.

Definition 1.6.1. Let 𝑘 ∈ N0. A family of linear elliptic differential operators of order 𝑘 with
smooth coefficients is a family of linear elliptic differential operators (𝐷𝑝)𝑝∈P of the form

𝐷 (𝑝) =
𝑘∑︁
ℓ=0

𝑎ℓ (𝑝, ·)∇ℓ

with 𝑎ℓ a smooth section of pr
∗
2

Hom(𝑇 ∗𝑀⊗ℓ ⊗ 𝐸, 𝐹 ) overP ×𝑀 (ℓ = 0, . . . , 𝑘). •
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Let us begin by introducing the following algebraic variant of Petri’s condition.

Definition 1.6.2. Denote byE the sheaf of sections of 𝐸 and byE𝑥 its stalk at 𝑥 ; that is:

E𝑥 ≔ lim−−→
𝑥∈𝑈

Γ(𝑈 , 𝐸) .

If 𝑠 ∈ E𝑥 vanishes at 𝑥 , then its derivative at 𝑥 does not depend on the choice of a local

trivialization and defines an element d𝑥𝑠 ∈ Hom(𝑇𝑥𝑀, 𝐸𝑥 ). If d𝑥𝑠 = 0, then 𝑠 has a second

derivative d
2

𝑥𝑠 ∈ Hom(𝑆2𝑇𝑥𝑀, 𝐸𝑥 ) at 𝑥 . Here 𝑆 𝑗𝑇𝑥𝑀 is the 𝑗–th symmetric tensor power. In

general, if 𝑠 (𝑥), d𝑥𝑠, . . . , d𝑗−1

𝑥 𝑠 vanish, then 𝑠 is said to vanish to ( 𝑗 − 1)st order and its 𝑗 th

derivative
d
𝑗
𝑥𝑠 ∈ Hom(𝑆 𝑗𝑇𝑥𝑀, 𝐸𝑥 )

is defined. The vanishing order filtrationV•E𝑥 onE𝑥 is defined by

V𝑗E𝑥 ≔ {𝑠 ∈ E𝑥 : 𝑠 vanishes to ( 𝑗 − 1)st order}

for 𝑗 ∈ N0 and V− 𝑗E𝑥 ≔E𝑥 for 𝑗 ∈ N. For ℓ ∈ N0 the ℓ–jet space of 𝐸 at 𝑥 is

𝐽 ℓ𝑥𝐸 ≔E𝑥/Vℓ+1E𝑥 .

The∞–jet space of 𝐸 at 𝑥 is

𝐽∞𝑥 𝐸 ≔ lim←−− 𝐽
ℓ
𝑥𝐸 =E𝑥/V∞E𝑥 with V∞E𝑥 ≔

⋂
𝑗∈Z

V𝑗E𝑥 .

For ℓ ∈ N0 ∪ {∞} the ℓ–jet of a linear differential operator 𝐷 : Γ(𝐸) → Γ(𝐹 ) of order 𝑘 with

smooth coefficients is the linear map

𝐽 ℓ𝑥𝐷 : 𝐽𝑘+ℓ𝑥 𝐸 → 𝐽 ℓ𝑥𝐹 .

induced by 𝐷 . •

Definition 1.6.3. The∞–jet of a linear elliptic differential operator 𝐽∞𝑥 𝐷 : 𝐽∞𝑥 𝐸 → 𝐽∞𝑥 𝐹 satisfies

the∞–jet Petri condition if the map

𝜛 𝐽∞𝑥 𝐷 : ker 𝐽∞𝑥 𝐷 ⊗ ker 𝐽∞𝑥 𝐷
† → 𝐽∞𝑥 (𝐸 ⊗ 𝐹 †)

induced by the Petri map is injective. •

The∞–jet Petri condition and the equivariant Petri conditions are related by the following

proposition.

Definition 1.6.4. Let 𝑥 ∈ 𝑀 . Let𝑈 be an open neighborhood of 𝑥 ∈ 𝑀 . A differential operator

𝐷 : Γ(𝐸) → Γ(𝐹 ) has the strong unique continuation property at 𝑥 in𝑈 if the map

ker(𝐷 : Γ(𝑈 , 𝐸) → Γ(𝑈 , 𝐹 )) → ker 𝐽∞𝑥 𝐷

is injective. •
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Remark 1.6.5. If 𝐷 has smooth coefficients, satisfies 𝐷∗𝐷 = ∇∗∇ + lower order terms, and𝑈 is

connected, then it has the strong unique continuation property at 𝑥 ∈ 𝑈 [Cor56; Aro57]; see

also [GL87; Kaz88] for stream-lined proofs using Almgren’s frequency function. ♣

Proposition 1.6.6. Assume Situation 1.3.1 (or Situation 1.4.1). Let 𝑥 ∈ 𝑀 . Let 𝑈 ⊂ 𝑀 be an open
neighborhood of 𝑥 . Let 𝐷 : Γ(𝐸) → Γ(𝐹 ) be a linear elliptic differential operator with smooth
coefficients. Suppose that 𝐷 and 𝐷† possess the strong unique continuation property at 𝑥 in𝑈 . If
𝐽∞𝑥 𝐷 satisfies the ∞–jet Petri condition, then 𝐷 satisfies the 𝔙–equivariant (or 𝐺–equivariant)
Petri condition in𝑈 .

Proof. By Section 1.5, it suffices to consider Situation 1.3.1. Set 𝐺 ≔ 𝜋1(𝑀,𝑥0). Denote by

𝜋 : (�̃�, 𝑥0) → (𝑀,𝑥0) the universal covering map. Set �̃� ≔ 𝜋−1(𝑈 ). The upcoming arguments

prove that

𝜛𝜋∗𝐷,�̃� : ker𝜋∗𝐷 ⊗ ker(𝜋∗𝐷)† → Γ( ˜𝑈 , 𝜋∗𝐸 ⊗ 𝜋∗𝐹 †)

is injective. Let 𝑥 ∈ 𝜋−1(𝑥). Since 𝜋 is a covering map,

𝐽∞𝑥 𝐷 = 𝐽∞�̃� 𝜋
∗𝐷 and 𝐽∞𝑥 𝐷

† = 𝐽∞�̃� 𝜋
∗𝐷†.

Therefore, there is a commutative diagram

ker𝜋∗𝐷 ⊗ ker𝜋∗𝐷† Γ( ˜𝑈 , 𝜋∗𝐸 ⊗ 𝜋∗𝐹 †)

ker 𝐽∞𝑥 𝐷 ⊗ ker 𝐽∞𝑥 𝐷
† 𝐽∞𝑥 (𝐸 ⊗ 𝐹 †) .

𝜛𝐷,𝑈

𝜛 𝐽∞𝑥 𝐷

Since 𝐷 and 𝐷† have the strong unique continuation property at 𝑥 ∈ 𝑈 , 𝜋∗𝐷 and 𝜋∗𝐷† have the
strong unique continuation property at 𝑥 ∈ ˜𝑈 . Consequently, the left vertical map is injective.

Therefore, since 𝜛 𝐽∞𝑥 𝐷 is injective, so is 𝜛𝜋∗𝐷,�̃� .

Every 𝑠 ∈ Γ(𝐸 ⊗ 𝑉
𝛼
) can be regarded as an element 𝑠 ∈ (Γ(𝜋∗𝐸) ⊗ 𝑉𝛼 )𝐺 . This establishes

an isomorphism ker𝐷
𝑉

𝛼
𝑝 � (ker𝜋∗𝐷𝑝 ⊗𝑉𝛼 )𝐺 (and similarly for 𝐷†). Consider the commutative

diagram⊕𝑚

𝛼=1
ker𝐷

𝑉
𝛼

𝑝 ⊗Kop

𝛼
ker𝐷

†,𝑉 ∗
𝛼

𝑝

⊕𝑚

𝛼=1
(ker𝜋∗𝐷𝑝 ⊗ 𝑉𝛼 )𝐺 ⊗Kop

𝛼
(ker𝜋∗𝐷†𝑝 ⊗ 𝑉 ∗𝛼 )𝐺

(ker𝜋∗𝐷𝑝 ⊗ ker𝜋∗𝐷†𝑝)𝐺

Γ(𝑈 , 𝐸 ⊗ 𝐹 †) Γ( ˜𝑈 , 𝜋∗𝐸 ⊗ 𝜋∗𝐹 †) .

�

𝜛𝔙
𝐷,𝑈

tr

𝜛
𝜋∗𝐷,�̃�

�

Here tr is the sum of the maps induced by the trace maps 𝑉𝛼 ⊗ 𝑉 ∗𝛼 → R. It is a consequence of
Proposition 1.3.14 that the map tr is injective. Therefore, since𝜛𝜋∗𝐷,�̃� is injective, so is𝜛𝔙

𝐷,𝑈
. ■

The failure of the∞–jet Petri condition manifests itself at the level of symbols as follows.
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Definition 1.6.7. Let 𝑘 ∈ N0. A symbol of order 𝑘 is an element 𝜎 ∈ 𝑆𝑘𝑇𝑥𝑀 ⊗ Hom(𝐸𝑥 , 𝐹𝑥 ).
Since every 𝑣 ∈ 𝑇𝑥𝑀 defines a derivation 𝜕𝑣 on the polynomial algebra 𝑆•𝑇 ∗𝑥𝑀 , every symbol 𝜎

defines a formal differential operator

�̂� : 𝑆•𝑇 ∗𝑥𝑀 ⊗ 𝐸𝑥 → 𝑆•𝑇 ∗𝑥𝑀 ⊗ 𝐹𝑥 .

The adjoint symbol 𝜎† ∈ 𝑆𝑘𝑇𝑥𝑀 ⊗ Hom(𝐹 †𝑥 , 𝐸†𝑥 ) is (−1)𝑘–times the image of 𝜎 under the the

map induced by the canonical isomorphism Hom(𝐸𝑥 , 𝐹𝑥 ) � Hom(𝐹 †𝑥 , 𝐸†𝑥 ). •

Remark 1.6.8. Here is an explicit description of the above provided a basis (𝜕1, . . . , 𝜕𝑛) of 𝑇𝑥𝑀
has been chosen. Denote the dual basis of 𝑇 ∗𝑥𝑀 by (𝑥1, . . . , 𝑥𝑛) and set 𝜕𝑖𝑥 𝑗 ≔ 𝑥𝑖 (𝜕𝑖) (= 𝛿𝑖 𝑗 ).
This exhibits 𝑆•𝑇 ∗𝑥𝑀 as the polynomial ring R[𝑥1, . . . , 𝑥𝑛]. Evidently, 𝜕𝑖 acts on R[𝑥1, . . . , 𝑥𝑛] by
differentiation. If the symbol 𝜎 is

𝜎 =
∑︁
|𝛼 |=𝑘

𝜕𝛼 ⊗ 𝑎𝛼

with the sum taken over all multi-indices 𝛼 ∈ N𝑛
0
of length |𝛼 | = 𝑘 , then

�̂� =
∑︁
|𝛼 |=𝑘

𝑎𝛼 · 𝜕𝛼1

1
· · · 𝜕𝛼𝑛𝑛 . ♣

The symbol of a linear differential operator 𝐷 : Γ(𝐸) → Γ(𝐹 ) of order 𝑘 is a section

𝜎 (𝐷) ∈ Γ(𝑆𝑘𝑇𝑀 ⊗ Hom(𝐸, 𝐹 )). Its value 𝜎𝑥 (𝐷) at 𝑥 ∈ 𝑀 is a symbol in the above sense and

depends only on 𝐽 0

𝑥𝐷 . Furthermore, 𝜎𝑥 (𝐷†) = 𝜎𝑥 (𝐷)†.

Definition 1.6.9. The polynomial Petrimap �̂� : (𝑆•𝑇 ∗𝑥𝑀⊗𝐸𝑥 )⊗(𝑆•𝑇 ∗𝑥𝑀⊗𝐹 †𝑥 ) → 𝑆•𝑇 ∗𝑥𝑀⊗𝐸𝑥⊗𝐹 †𝑥
is defined by

�̂�((𝑝 ⊗ 𝑒) ⊗ (𝑞 ⊗ 𝑓 )) ≔ (𝑝 · 𝑞) ⊗ 𝑒 ⊗ 𝑓 .

A symbol 𝜎 ∈ 𝑆𝑘𝑇𝑥𝑀 ⊗ Hom(𝐸𝑥 , 𝐹𝑥 ) satisfies the polynomial Petri condition if the map

�̂�𝜎 : ker �̂� ⊗ ker �̂�† → 𝑆•𝑇 ∗𝑥𝑀 ⊗ 𝐸𝑥 ⊗ 𝐹 †𝑥

induced by the polynomial Petri map is injective. •

Proposition 1.6.10. If 𝐽∞𝑥 𝐷 fails to satisfy the∞–jet Petri condition, then 𝜎𝑥 (𝐷) fails to satisfy the
polynomial Petri condition.

The proof of this result and the upcoming discussion require the following algebraic defini-

tions, constructions, and facts:

(1) Let 𝑉 be a vector space equipped with a filtration F•𝑉 . The order of F•𝑉 is the map

ord : 𝑉 → Z ∪ {∞,−∞} defined by

ord(𝑣) ≔ sup{ 𝑗 ∈ Z : 𝑣 ∈ F𝑗𝑉 }.

F•𝑉 is called exhaustive if ord
−1(−∞) = ∅ or, equivalently,

⋃
𝑗∈ZF𝑗𝑉 = 𝑉 . F•𝑉 is

separated if ord
−1(∞) = 0 or, equivalently,

⋂
𝑗∈ZF𝑗𝑉 = 0.
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(2) The associated graded vector space ofF•𝑉 is

gr𝑉 ≔
⊕
𝑗∈Z

gr𝑗 𝑉 with gr𝑗 𝑉 ≔ F𝑗𝑉 /F𝑗+1𝑉 .

Define [·] : ord
−1(Z) → gr𝑉 by

[𝑣] ≔ 𝑣 +F𝑗+1𝑉 ∈ gr𝑗 𝑉 with 𝑗 ≔ ord(𝑣) .

This is map is not linear and not even continuous (except for a few corner cases). It is

appropriate to regard [𝑣] as the leading order term of 𝑣 .

(3) Let𝑊 be a further vector space equipped with a filtrationF•𝑊 . A linear map 𝑓 : 𝑉 →𝑊

is of order 𝑘 ∈ Z if 𝑓 (F𝑗𝑉 ) ⊂ F𝑗+𝑘𝑊 for every 𝑗 ∈ Z but the same does not hold for

𝑘 + 1 instead of 𝑘 . If this is the case, then 𝑓 induces a linear map

gr 𝑓 : gr𝑉 → gr𝑊

of degree 𝑘 . There is a canonical inclusion gr ker 𝑓 ↩→ ker gr 𝑓 and and a canonical

projection coker gr 𝑓 ↠ gr coker 𝑓 . These maps are typically not isomorphisms.

(4) The tensor product 𝑉 ⊗𝑊 inherits the tensor product filtration defined by

F𝑗 (𝑉 ⊗𝑊 ) ≔
∑︁

𝑗1+𝑗2=𝑗
F𝑗1𝑉 ⊗F𝑗2𝑊 .

There is a canonical graded isomorphism

(1.6.11) gr(𝑉 ⊗𝑊 ) � gr𝑉 ⊗ gr𝑊 .

IfF•𝑉 andF•𝑊 are both separated (exhaustive), then so isF•(𝑉 ⊗𝑊 ).

Let ℓ ∈ N0 ∪ {∞}. The vanishing order filtration on E𝑥 descends to a filtration on 𝐽 ℓ𝑥𝐸.

Taylor expansion defines an isomorphism

(1.6.12) 𝑇 ℓ
𝑥 : gr 𝐽 ℓ𝑥𝐸 →

ℓ⊕
𝑗=0

𝑆 𝑗𝑇 ∗𝑥𝑀 ⊗ 𝐸𝑥 ;

in particular:

(1.6.13) dim 𝐽 ℓ𝑥𝐸 = 𝑟 ·
(
𝑛 + ℓ
𝑛

)
(and similarly for 𝐸†, 𝐹 , and 𝐹 † instead of 𝐸). If 𝐷 : Γ(𝐸) → Γ(𝐹 ) is a linear differential operator
and 𝜎𝑥 (𝐷) denotes its symbol at 𝑥 , then

𝑇∞𝑥 ◦ gr 𝐽∞𝑥 𝐷 = �̂�𝑥 (𝐷) ◦𝑇∞𝑥 .

Furthermore,

𝑇∞𝑥 ◦ gr 𝐽∞𝑥 𝜛 = �̂� ◦ (𝑇∞𝑥 ⊗ 𝑇∞𝑥 ) .
This implies corresponding identities for ℓ ∈ N0 instead of ∞ provided �̂�𝑥 (𝐷) and �̂� are

appropriately truncated.
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Proof of Proposition 1.6.10. The vanshing order filtration on 𝐽∞𝑥 𝐸 and 𝐽∞𝑥 𝐹 is exhaustive and

separated. Therefore, if 𝐵 ∈ ker𝜛 𝐽∞𝑥 𝐷 is non-zero, then

[𝐵] ∈ (ker gr 𝐽∞𝑥 𝐷 ⊗ ker gr 𝐽∞𝑥 𝐷
†) ∩ ker gr 𝐽∞𝑥 𝜛

is defined and non-zero. By the preceding discussion, 𝑇∞𝑥 induces an isomorphism

(ker gr 𝐽∞𝑥 𝐷 ⊗ ker gr 𝐽∞𝑥 𝐷
†) ∩ ker gr 𝐽∞𝑥 𝜛 � ker �̂�𝜎 with 𝜎 = 𝜎𝑥 (𝐷) . ■

Proposition 1.6.10 is probably not terribly useful for establishing the∞–jet Petri condition.
The polynomial Petri condition fails for real Cauchy–Riemann operators (see [Wen19b, Example

5.5] and Proposition 2.5.4) and we suspect that it typically fails. However, this is no reason to

despair. It can be shown that every
ˆ𝐵 ∈ ker �̂�𝑥 (𝐷) ⊗ ker �̂�𝑥 (𝐷†) admits some (but not a unique)

lift to an element 𝐵 ∈ ker 𝐽∞𝑥 𝐷 ⊗ ker 𝐽∞𝑥 𝐷
†
. However, if

ˆ𝐵 ∈ ker �̂�, then this does not imply that

𝐵 ∈ ker 𝐽∞𝑥 𝜛. In fact, it is reasonable to expect that typically the higher order terms will prevent

the vanishing of 𝐽∞𝑥 𝜛(𝐵). The upcoming theorem shows that this heuristic is valid assuming an

algebraic hypothesis on symbol level.

Definition 1.6.14. Let 𝑘, ℓ ∈ N0. A family of linear elliptic differential operators (𝐷𝑝)𝑝∈P of

order 𝑘 with smooth coefficients is ℓ–jet flexible at 𝑥 and 𝑝★ ∈ P if for every𝐴 ∈ 𝐽 ℓ𝑥 Hom(𝐸, 𝐹 )
there is a 𝑝 ∈ 𝑇𝑝★P such that

d𝑝★ 𝐽
ℓ
𝑥𝐷 (𝑝)𝑠 = 𝐴𝑠

for every 𝑠 ∈ 𝐽𝑘+ℓ𝑥 𝐸. •

Definition 1.6.15. Let 𝑘 ∈ N0. A symbol 𝜎 ∈ 𝑆𝑘𝑇𝑥𝑀 ⊗ Hom(𝐸𝑥 , 𝐹𝑥 ) satisfies Wendl’s condition
if there are 𝑐0 : N0 ×N→ (0,∞) and ℓ0 : N0 ×N→ N0 such that for every every homogeneous

𝐵 ∈ ker �̂�𝜎 the following hold: there are right-inverses
ˆ𝑅 and

ˆ𝑅† of �̂� and �̂�† such that the linear

map

L̂𝜎,𝐵 : 𝑆•𝑇 ∗𝑥𝑀 ⊗ Hom(𝐸𝑥 , 𝐹𝑥 ) → 𝑆•𝑇 ∗𝑥𝑀 ⊗ 𝐸𝑥 ⊗ 𝐹 †𝑥
defined by

L̂𝜎,𝐵 (𝐴) ≔ �̂�
(
( ˆ𝑅𝐴 ⊗ 1 + 1 ⊗ ˆ𝑅†𝐴†)𝐵

)
satisfies

rk L̂⩽ℓ
𝜎,𝐵
⩾ 𝑐0(𝑑, 𝜌)ℓ𝑛

for every ℓ ⩾ ℓ0(𝑑, 𝜌) with 𝑑 ≔ deg𝐵 and 𝜌 ≔ rk𝐵. Here

L̂⩽ℓ
𝜎,𝐵

:

ℓ⊕
𝑗=0

𝑆 𝑗𝑇 ∗𝑥𝑀 ⊗ Hom(𝐸𝑥 , 𝐹𝑥 ) →
𝑘+ℓ⊕
𝑗=0

𝑆 𝑗𝑇 ∗𝑥𝑀 ⊗ 𝐸𝑥 ⊗ 𝐹 †𝑥

denotes the truncation of L̂𝜎,𝐵 . •

Remark 1.6.16. The reader is by no means expected to understand the significance of Wendl’s

condition at this point. The following remarks might help clarify the definition:

(1) Proposition 1.6.20 proves that �̂� and �̂�† have right-inverses provided 𝜎 is elliptic.
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(2) The maps L̂⩽ℓ
𝜎,𝐵

play a crucial role in the proof of Theorem 1.6.17. Their ranks provide

lower bounds for the ranks of certain map between jet spaces tied to the failure of the

∞–jet Petri condition.

(3) The dimension of the codomain of L̂⩽ℓ
𝜎,𝐵

grows like ℓ𝑛; therefore, rk L̂⩽ℓ
𝜎,𝐵

is assumed to

have maximal growth rate.

(4) Unfortunately, it appears not to be easy to verify whether a given symbol 𝜎 satisfies

Wendl’s condition or not. In fact, even determining ker �̂�𝜎 is a non-trivial task. Theo-

rem 2.5.3 proves that the symbol 𝜎 of a real Cauchy–Riemann operator satisfies Wendl’s

condition. As far as we know, it is possible that every elliptic symbol satisfies Wendl’s

condition. ♣

Theorem 1.6.17 (Wendl [Wen19b, Section 5.2]). Let (𝐷𝑝)𝑝∈P be a family of linear elliptic differ-
ential operators with smooth coefficients of order 𝑘 . Set

R ≔ {𝑝 ∈ P : 𝐽∞𝑥 𝐷 fails to satisfy the∞–jet Petri condition}.

Let 𝑝★ ∈ P. If

(1) (𝐷𝑝)𝑝∈P is ℓ–jet flexible at 𝑥 and 𝑝★ ∈ P for every ℓ ∈ N0, and

(2) the symbol 𝜎𝑥 (𝐷𝑝★) satisfies Wendl’s condition,

then for every 𝑐 ∈ N0 there is an open neighborhoodU of 𝑝★ ∈ P such thatR∩U has codimension
at least 𝑐 .9

The remainder of this section is devoted to the proof of Theorem 1.6.17. The following obser-

vation decomposesR into pieces whose codimensions can be estimated using the hypotheses

of the theorem.

Proposition 1.6.18. For 𝑑 ∈ N0 and 𝜌 ∈ N set

Rℓ
𝑑,𝜌

≔

{
𝑝 ∈ P :

there is a 𝐵 ∈ (ker 𝐽 ℓ𝑥𝐷𝑝 ⊗ ker 𝐽 ℓ𝑥𝐷
†
𝑝) ∩ ker 𝐽𝑘+ℓ𝑥 𝜛

with ord(𝐵) ⩽ 𝑑 and rk𝐵 = 𝜌

}
.

The setR satisfies
R ⊂

⋃
𝑑∈N0

𝜌∈N
ℓ0∈N0

⋂
ℓ⩾ℓ0

Rℓ
𝑑,𝜌
.

The proof relies on the following fact.

Proposition 1.6.19. Let 𝑉 be a vector space and equipped with a filtrationF•𝑉 . Set

𝑄ℓ ≔ 𝑉 /Fℓ𝑉 and 𝑄 ≔ lim←−−𝑄ℓ .

If 𝑅 ⊂ 𝑄 is a finite dimensional subspace, then there is an ℓ0 ∈ N0 such that for every ℓ ⩾ ℓ0 the
restriction of the composition 𝑅 → 𝑄 → 𝑄ℓ is injective.

9Definition 1.B.1 defines what it means for a subset of a Banach manifold to have codimension at least 𝑐 .
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Proof. 𝐾ℓ ≔ ker(𝑅 → 𝑄 → 𝑄ℓ ) is a decreasing sequence of finite dimensional vector spaces

with lim←−−𝐾ℓ = 0. Therefore, 𝐾ℓ = 0 for ℓ ≫ 1. ■

Proof of Proposition 1.6.18. If 𝑝 ∈ R, then there exists a non-zero 𝐵 ∈ ker𝜛 𝐽∞𝑥 𝐷𝑝
. Set 𝑑 ≔ ord(𝐵),

𝜌 ≔ rk𝐵, and write 𝐵 as

𝐵 =

𝜌∑︁
𝑖=1

𝑠𝑖 ⊗ 𝑡𝑖 .

with 𝑠1, . . . , 𝑠𝜌 and 𝑡1, . . . , 𝑡𝜌 linearly independent. Since

𝐽∞𝑥 𝐸 = lim←−− 𝐽
ℓ
𝑥𝐸

and by Proposition 1.6.19, there is an ℓ0 ∈ N0 such that for every ℓ ⩾ ℓ0 the (𝑘 + ℓ)–jets
𝑠1, . . . , 𝑠𝜌 ∈ 𝐽𝑘+ℓ𝑥 𝐸 and 𝑡1, . . . , 𝑡𝜌 ∈ 𝐽𝑘+ℓ𝑥 𝐹 † are linearly independent. By construction,

˜𝐵 ≔

𝜌∑︁
𝑖=1

𝑠𝑖 ⊗ 𝑡𝑖 ∈ ker𝜛 𝐽 ℓ𝑥𝐷

satisfies

ord( ˜𝐵) = 𝑑 and rk
˜𝐵 = 𝜌.

Therefore, 𝑝 ∈ Rℓ
𝑑,𝜌

for every ℓ ⩾ ℓ0. ■

To estimate the codimension ofRℓ
𝑑,𝜌

we require the following. Recall that dim𝑀 = 𝑛 and

rk𝐸 = rk 𝐹 = 𝑟 .

Proposition 1.6.20. Let 𝐽∞𝑥 𝐷 be the ∞–jet of an elliptic differential operator 𝐷 of order 𝑘 . The
following hold:

(1) The formal differential operator �̂�𝑥 (𝐷) is surjective.

(2) For every ℓ ∈ N0 ∪ {∞} the ℓ–jet 𝐽 ℓ𝑥𝐷 is surjective.

(3) For every ℓ ∈ N0

dim ker 𝐽 ℓ𝑥𝐷 = 𝑟 ·
[(
𝑛 + 𝑘 + ℓ

𝑛

)
−

(
𝑛 + ℓ
𝑛

)]
.

Proof. Since 𝐷 is elliptic, the restriction �̂�𝑘𝑥 (𝐷) : 𝑆𝑘𝑇 ∗𝑥𝑀 ⊗ 𝐸𝑥 → 𝐹𝑥 is surjective. Choose a basis

(𝜉1, . . . , 𝜉𝑛) of 𝑇 ∗𝑥𝑀 . For a multi-index 𝛼 ∈ N𝑛
0
set 𝜉𝛼 ≔

∏𝑛
𝑖=1
𝜉
𝛼𝑖
𝑖
. A moment’s thought shows

that

�̂�𝑥 (𝐷) (𝜉𝑘1 𝜉𝛼 ⊗ 𝑒) =
(
𝑘 + 𝛼1

𝛼1

)
𝜉𝛼 ⊗ �̂�𝑥 (𝐷) (𝜉𝑘1 ⊗ 𝑒) + 𝑅

with 𝑅 denoting a sum of tensors of the form 𝜉𝛽 ⊗ 𝑤 with 𝛽1 > 𝛼1. Therefore, the image of

�̂�𝑥 (𝐷) contains every tensor product of the form 𝜉𝑚
1
⊗ 𝑓 . Descending induction on 𝛼1 starting

at𝑚 proves that the image of �̂�𝑥 (𝐷) contains every tensor product of the form 𝜉𝛼 ⊗ 𝑤 with

|𝛼 | =𝑚. This proves (1).

Since coker gr 𝐽 ℓ𝑥𝐷 ↠ gr coker 𝐽 ℓ𝑥𝐷 , (1) implies (2).

Finally, (2) implies dim ker 𝐽 ℓ𝑥𝐷 = dim 𝐽𝑘+ℓ𝑥 𝐸 − dim 𝐽 ℓ𝑥𝐹 . Therefore, (3) follows from (1.6.13).

■
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Proof of Theorem 1.6.17. Let 𝑑 ∈ N0, 𝜌 ∈ N, and ℓ ⩾ ℓ0(𝑑, 𝜌). By Proposition 1.6.20,

Kℓ ≔
{
(𝑝, 𝑠) ∈ P × 𝐽𝑘+ℓ𝑥 𝐸 : 𝑠 ∈ ker 𝐽 ℓ𝑥𝐷𝑝

}
and

Cℓ ≔
{
(𝑝, 𝑡) ∈ P × 𝐽𝑘+ℓ𝑥 𝐹 † : 𝑡 ∈ ker 𝐽 ℓ𝑥𝐷

†
𝑝

}
are vector bundles overP of rank

rkKℓ = rkCℓ = 𝑟 ·
[(
𝑛 + 𝑘 + ℓ

𝑛

)
−

(
𝑛 + ℓ
𝑛

)]
.

Therefore,

Tℓ
𝑑,𝜌

≔
{
(𝑝, 𝐵) ∈Kℓ ⊗ Cℓ

: ord(𝐵) ⩽ 𝑑 and rk𝐵 = 𝜌
}

is a fiber bundle overP with fibers of dimension

2𝜌𝑟 ·
[(
𝑛 + 𝑘 + ℓ

𝑛

)
−

(
𝑛 + ℓ
𝑛

)]
− 𝜌2 ⩽ 𝑐 (𝑛, 𝑘)𝜌ℓ𝑛−1.

Denote by 𝜋 : Tℓ
𝑑,𝜌
→ P the projection map. By construction,

Rℓ
𝑑,𝜌

= 𝜋 ((𝐽𝑘+ℓ𝑥 𝜛 ◦ pr
2
)−1(0)).

The upcoming discussion proves that for every (𝑝★, 𝐵) ∈ (𝐽𝑘+ℓ𝑥 𝜛 ◦ pr
2
)−1(0)

rk d(𝑝★,𝐵) (𝐽𝑘+ℓ𝑥 𝜛 ◦ pr
2
) ⩾ 𝑐0(𝑑, 𝜌)ℓ𝑛 .

Therefore, there is an open neighborhood U of 𝑝★ ∈ P such that for every (𝑝, 𝐵) ∈ (𝐽𝑘+ℓ𝑥 𝜛 ◦
pr

2
)−1(0) with 𝑝 ∈ U the analogous condition hold. Consequently, by Proposition 1.B.2,Rℓ

𝑑,𝜌
∩U

has codimension at least

(𝑐0(𝑑, 𝜌)ℓ − 𝑐 (𝑛, 𝑘)𝜌)ℓ𝑛 .

This immediately implies the theorem.

Let (𝑝★, 𝐵) ∈ (𝐽𝑘+ℓ𝑥 𝜛 ◦pr
2
)−1(0). Set 𝜎 ≔ 𝜎𝑥 (𝐷𝑝★). Denote by 𝑅 and 𝑅† the right-inverses of

�̂� and �̂�† from Definition 1.6.15. Denote by 𝑅 and 𝑅† right-inverses of 𝐽𝑘+ℓ𝑥 𝐷𝑝★ and 𝐽𝑘+ℓ𝑥 𝐷
†
𝑝★

such

that gr𝑅 and gr𝑅† correspond to the truncations of
ˆ𝑅 and

ˆ𝑅† with respect to (1.6.12). Define

L𝑝★,𝐵 : 𝐽 ℓ𝑥 Hom(𝐸𝑥 , 𝐹𝑥 ) → 𝐽𝑘+ℓ𝑥 (𝐸𝑥 ⊗ 𝐹 †𝑥 ) by

L𝑝★,𝐵 (𝐴) ≔ 𝐽𝑘+ℓ𝑥 𝜛
(
(𝑅𝐴 ⊗ 1 + 1 ⊗ 𝑅†𝐴†)𝐵

)
Since (𝐷𝑝)𝑝∈P is ℓ–jet flexible at 𝑥 and 𝑝★ ∈ P, for every 𝐴 ∈ 𝐽 ℓ𝑥 Hom(𝐸𝑥 , 𝐹𝑥 ) there is a

𝑝 ∈ 𝑇𝑝★P such that

d𝑝★ 𝐽
ℓ
𝑥𝐷 (𝑝)𝑠 = 𝐴𝑠

for every 𝑠 ∈ 𝐽𝑘+ℓ𝑥 𝐸. If this identity holds, then

(𝑝, (𝑅𝐴 ⊗ 1 + 1 ⊗ 𝑅†𝐴†)𝐵) ∈ 𝑇(𝑝★,𝐵)Tℓ
𝑑,𝜌
.

Therefore,

rk d(𝑝,𝐵) (𝐽𝑘+ℓ𝑥 𝜛 ◦ pr
2
) ⩾ rk L𝑝★,𝐵 .
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Since gr ker L𝑝★,𝐵 ↩→ ker gr L𝑝★,𝐵 ,

rk L𝑝★,𝐵 = 𝑟 ·
(
𝑛 + ℓ
𝑛

)
− dim gr ker L𝑝★,𝐵 ⩾ 𝑟 ·

(
𝑛 + ℓ
𝑛

)
− dim ker gr L𝑝★,𝐵 = rk gr L𝑝★,𝐵 .

The isomorphism (1.6.12) identifies [𝐵] with �̂� ∈ ker �̂�𝜎 , which is homogeneous of degree 𝑑 .

Furthermore, it identifies gr L𝑝★,𝐵 with L̂⩽ℓ
𝜎,�̂�

. Therefore,

rk d(𝑝,𝐵) (𝐽𝑘+ℓ𝑥 𝜛 ◦ pr
2
) ⩾ rk L̂⩽ℓ

𝜎,�̂�
⩾ 𝑐0(𝑑, 𝜌)ℓ𝑛 .

This finishes the proof. ■

1.A Self-adjoint operators

The purpose of this section is to summarize how the results developed so far need to be modified

to become useful for families of formally self-adjoint linear elliptic differential operators. These

are relevant for many geometric applications (although not for Part 2.) A particularly interesting

application would be to understand the generic multiple cover phenomena for associative

submanifolds in G2–manifolds: the deformation theory of the latter are controlled by twisted

Dirac operators.

Definition 1.A.1. Let 𝑘 ∈ N0. A family of formally self-adjoint linear elliptic differential
operators of order 𝑘 consists of a Banach manifoldP and a smooth map

𝐷 : P→ F(𝑊 𝑘,2Γ(𝐸), 𝐿2Γ(𝐸))

such that for every 𝑝 ∈ P the operator 𝐷𝑝 ≔ 𝐷 (𝑝) is a formally self-adjoint linear elliptic

differential operator of order 𝑘 . •

Throughout this section, assume Situation 1.3.1 and keep the following in mind:

(1) The algebras K𝛼 carry an anti-involution 𝜆 ↦→ 𝜆∗ and an inner product ⟨𝜆, 𝜇⟩ ≔ tr(𝜇∗𝜆).
(These correspond to the standard conjugation and inner products on R C, and H.) The
Euclidean metric on 𝑉

𝛼
is K𝛼–sesquilinear.

(2) Let𝑊 be a left K𝛼–module equipped with a K𝛼–sesquilinear inner product. Denote

by SymK𝛼
(𝑊 ) the space of self-adjoint K𝛼–linear maps.𝑊 is a right K𝛼–module with

𝑣 · 𝜆 ≔ 𝜆∗ · 𝑣 . Therefore, one can form the tensor product𝑊 ⊗K𝛼
𝑊 and the symmetric

tensor power 𝑆2

K𝛼
𝑊 .

(3) Let 𝐷 be a formally self-adjoint linear elliptic differential operator. The K𝛼–sesquilinear

inner product on 𝑉
𝛼
induces a canonical isomorphism

ker𝐷
𝑉

𝛼
𝑝 � coker𝐷

𝑉
𝛼

𝑝 .

Moreover, the map Λ𝛼
𝑝 defined in Theorem 1.3.5 takes values in

SymK𝛼
(ker𝐷

𝑉
𝛼

𝑝 ) .
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Here is the analogue of the theory developed in Section 1.3. (It is left as an exercise for the

reader to work out the analogues of Section 1.4 and Section 1.5.)

Definition 1.A.2. Let (𝐷𝑝)𝑝∈P be a family of formally self-adjoint linear elliptic differential

operators. For 𝑑 ∈ N𝑚
0
define the𝔙–equivariant self-adjoint Brill–Noether locusP𝔙

𝑑
by

P𝔙
𝑑
≔

{
𝑝 ∈ P : dimK𝑖

ker𝐷
𝑉

𝑖
𝑝 = 𝑑𝑖

}
. •

Theorem 1.A.3. Let (𝐷𝑝)𝑝∈P be a family of formally self-adjoint linear elliptic differential opera-
tors. For 𝑝 ∈ P define Λ𝔙

𝑝 : 𝑇𝑝P→
⊕𝑚

𝛼=1
SymK𝛼

(ker𝐷
𝑉

𝛼
𝑝 ) by

Λ𝔙
𝑝 (𝑝) ≔

𝑚⊕
𝛼=1

Λ𝛼
𝑝 (𝑝) and Λ𝛼

𝑝 (𝑝)𝑠 ≔ d𝑝𝐷
𝑉

𝛼 (𝑝)𝑠 mod im𝐷
𝑉

𝛼
𝑝 .

Let 𝑑 ∈ N𝑚
0
and 𝑝 ∈ P𝔙

𝑑
. If Λ𝔙

𝑝 is is surjective, then the following hold:

(1) There is an open neighborhoodU of 𝑝 ∈ P such thatP𝔙
𝑑
∩U is a submanifold of codimension

codim(P𝔙
𝑑
∩U) =

𝑚∑︁
𝛼=1

𝑑𝛼 + 𝑘𝛼
(
𝑑𝛼

2

)
.

(2) P𝔙
˜𝑑
≠ ∅ for every ˜𝑑 ∈ N𝑚

0
with ˜𝑑 ⩽ 𝑑 . ■

Proof. There is a straight-forward variation of Lemma 1.1.4 to self-adjoint Fredholm operators.

This reduces the proof to the finite-dimensional situation. The latter is straightforward. The

codimension formula follows from

dim SymK(K𝑑 ) = 𝑑 + 𝑘
(
𝑑

2

)
with 𝑘 ≔ dimR K. ■

Definition 1.A.4. A family of linear elliptic differential operators (𝐷𝑝)𝑝∈P is𝔙–equivariantly
symmetrically flexible in𝑈 at 𝑝★ ∈ P if for 𝐴 ∈ Γ𝑐 (𝑈 , Sym(𝐸)) there is a 𝑝 ∈ 𝑇𝑝★P such that

d𝑝★𝐷
𝑉

𝛼 (𝑝)𝑠 = (𝐴 ⊗ id𝑉
𝛼
)𝑠 mod im𝐷

𝑉
𝛼

𝑝★

for every 𝛼 = 1, . . . ,𝑚 and 𝑠 ∈ ker𝐷
𝑉

𝛼
𝑝 . •

Definition 1.A.5. The𝔙–equivariant symmetric Petri map

𝜍𝔙 :

𝑚⊕
𝛼=1

𝑆2

K𝛼
Γ(𝐸 ⊗ 𝑉

𝛼
) → Γ(𝑆2𝐸)

is defined by 𝜍𝔙 ≔
∑𝑚

𝛼=1
𝜍𝛼 with 𝜍𝛼 denoting the composition of the Petri map

𝜍𝛼 : 𝑆2

K𝛼
Γ(𝐸 ⊗ 𝑉

𝛼
) → Γ(𝑆2𝐸 ⊗ 𝑆2

K𝛼
𝑉

𝛼
)
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and the map induced by the inner product ⟨·, ·⟩ : 𝑆2

K𝛼
𝑉

𝛼
→ R. Let𝑈 ⊂ 𝑀 be an open subset. A

self-adjoint linear elliptic differential operator 𝐷 : Γ(𝐸) → Γ(𝐸) satisfies the𝔙–equivariant
symmetric Petri condition in𝑈 if the map

𝜍𝔙𝐷,𝑈 :

𝑚⊕
𝛼=1

𝑆2

K𝛼
ker𝐷

𝑉
𝛼

𝑝 → 𝐿1Γ(𝑈 , 𝑆2𝐸)

induced by the𝔙–equivariant symmetric Petri map is injective. •

Proposition 1.A.6. Let (𝐷𝑝)𝑝∈P be a family of self-adjoint linear elliptic differential operators. Let
𝑈 ⊂ 𝑀 be an open subset. If (𝐷𝑝)𝑝∈P is𝔙–equivariantly symmetrically flexible in𝑈 at 𝑝★ ∈ P
and 𝐷𝑝★ satisfies the𝔙–equivariant symmetric Petri condition in𝑈 , then the map Λ𝔙

𝑝★
defined in

Theorem 1.A.3 is surjective. ■

Remark 1.3.12 carries over mutatis mutandis; in particular, (1.3.13) it is still sharp for self-

adjoint operators. Finally, these are the analogues of the results from Section 1.6.

Definition 1.A.7. The ∞–jet of a formally self-adjoint linear elliptic differential operator

𝐽∞𝑥 𝐷 : 𝐽∞𝑥 𝐸 → 𝐽∞𝑥 𝐸 satisfies the∞–jet symmetric Petri condition if the map

𝜛 𝐽∞𝑥 𝐷 : ker 𝑆2 𝐽∞𝑥 𝐷 → 𝐽∞𝑥 𝑆
2𝐸

induced by the symmetric Petri map is injective. •

Proposition 1.A.8. Assume Situation 1.3.1. Let 𝑥 ∈ 𝑀 . Let𝑈 ⊂ 𝑀 be an open neighborhood of 𝑥 .
Let 𝐷 : Γ(𝐸) → Γ(𝐸) be a formally self-adjoint linear elliptic differential operator with smooth
coefficients. Suppose that 𝐷 possess the strong unique continuation property at 𝑥 in 𝑈 . If 𝐽∞𝑥 𝐷
satisfies the∞–jet symmetric Petri condition, then 𝐷 satisfies the𝔙–equivariant symmetric Petri
condition in𝑈 .

Definition 1.A.9. The polynomial symmetric Petri map 𝜍 : 𝑆2(𝑆•𝑇 ∗𝑥𝑀 ⊗ 𝐸𝑥 ) → 𝑆•𝑇 ∗𝑥𝑀 ⊗ 𝑆2𝐸𝑥
is defined as the restriction of the polynomial Petri map. A symmetric symbol 𝜎 ∈ 𝑆𝑘𝑇𝑥𝑀 ⊗
Sym(𝐸𝑥 ) satisfies the polynomial symmetric Petri condition if the map

𝜍𝜎 : 𝑆2
ker �̂� → 𝑆•𝑇 ∗𝑥𝑀 ⊗ 𝑆2𝐸𝑥

induced by the polynomial symmetric Petri map is injective. •

Proposition 1.A.10. If 𝐽∞𝑥 𝐷 fails to satisfy the∞–jet symmetric Petri condition, then 𝜎𝑥 (𝐷) fails
to satisfy the polynomial symmetric Petri condition. ■

Definition 1.A.11. Let 𝑘, ℓ ∈ N0. A family of self-adjoint linear elliptic differential oper-

ators (𝐷𝑝)𝑝∈P of order 𝑘 is ℓ–jet symmetrically flexible at 𝑥 and 𝑝★ ∈ P if for every

𝐴 ∈ 𝐽 ℓ𝑥 Sym(𝐸𝑥 , 𝐹𝑥 ) there is a 𝑝 ∈ 𝑇𝑝★P such that

d𝑝★ 𝐽
ℓ
𝑥𝐷 (𝑝)𝑠 = 𝐴𝑠

for every 𝑠 ∈ 𝐽𝑘+ℓ𝑥 𝐸. •
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Definition 1.A.12. Let 𝑘 ∈ N0. A symbol 𝜎 ∈ 𝑆𝑘𝑇𝑥𝑀 ⊗ Sym(𝐸𝑥 ) satisfies the symmetric Wendl
condition if there are 𝑐0 : N0 × N → (0,∞) and ℓ0 : N0 × N → N0 such that for every every

homogeneous 𝐵 ∈ ker 𝜍𝜎 the following hold: there is a right-inverses 𝑅 of �̂� such that the linear

map

L̂𝜎,𝐵 : 𝑆•𝑇 ∗𝑥𝑀 ⊗ Sym(𝐸𝑥 ) → 𝑆•𝑇 ∗𝑥𝑀 ⊗ 𝑆2𝐸𝑥

defined by

L̂𝜎,𝐵 (𝐴) ≔ �̂�
(
( ˆ𝑅𝐴 ⊗ 1 + 1 ⊗ ˆ𝑅𝐴)𝐵

)
satisfies

rk L̂⩽ℓ
𝜎,𝐵
⩾ 𝑐0(𝑑, 𝜌)ℓ𝑛

for every ℓ ⩾ ℓ0(𝑑, 𝜌) with 𝑑 ≔ deg𝐵 and 𝜌 ≔ rk𝐵. Here

L̂⩽ℓ
𝜎,𝐵

:

ℓ⊕
𝑗=0

𝑆 𝑗𝑇 ∗𝑥𝑀 ⊗ Sym(𝐸𝑥 ) →
𝑘+ℓ⊕
𝑗=0

𝑆 𝑗𝑇 ∗𝑥𝑀 ⊗ 𝑆2𝐸𝑥

denotes the truncation of L̂𝜎,𝐵 . •

Remark 1.A.13. Verifying the symmetric Wendl condition appears to be the crucial issue in the

geometric applications alluded to at the beginning of this section. In light of Theorem 2.5.3 it is

tempting to conjecture that a typical twisted Dirac operator on a 3–manifold does satisfy this

condition. ♣

Theorem 1.A.14 (Wendl [Wen19b, Section 5.2]). Let (𝐷𝑝)𝑝∈P be a family of formally self-adjoint
linear elliptic differential operators with smooth coefficients of order 𝑘 . Set

R ≔ {𝑝 ∈ P : 𝐽∞𝑥 𝐷 fails to satisfy the∞–jet symmetric Petri condition}.

Let 𝑝★ ∈ P. If

(1) (𝐷𝑝)𝑝∈P is ℓ–jet symmetrically flexible at 𝑥 and 𝑝★ ∈ P for every ℓ ∈ N0, and

(2) the symbol 𝜎𝑥 (𝐷𝑝★) satisfies the symmetric Wendl condition,

then for every 𝑐 ∈ N0 there is an open neighborhoodU of 𝑝★ ∈ P such thatR∩U has codimension
at least 𝑐 .

Proof. The proof of Theorem 1.6.17 carries over with minor changes. The salient point is that

Tℓ
𝑑,𝜌

≔
{
(𝑝, 𝐵) ∈ 𝑆2Kℓ

: ord(𝐵) ⩽ 𝑑 and rk𝐵 = 𝜌
}
.

is a fiber bundle over P of with fibers of dimension at most 𝑐 (𝑛, 𝑘)𝜌ℓ𝑛−1
. ■
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1.B Codimension in Banach manifolds

There are numerous possible definitions of the concept of codimension of a subset of a Banach

manifold. The following is a minor variation of the definition from [BM15, Section 2.3] and

particularly well-suited for the purposes of this article.

Definition 1.B.1. Let 𝑋 be a Banach manifold and 𝑐 ∈ N0. A subset 𝑆 ⊂ 𝑋 has codimension at
least 𝑐 if there is a 𝐶1

Banach manifold 𝑍 and a 𝐶1
Fredholm map 𝜁 : 𝑍 → 𝑋 such that

sup

𝑧∈𝑍
index d𝑧𝜁 ⩽ −𝑐 and 𝑆 ⊂ im 𝜁 .

The codimension of 𝑆 is defined by

codim 𝑆 ≔ sup{𝑐 ∈ N0 : 𝑆 is of codimension at least 𝑐} ∈ N0 ∪ {∞}. •

The additivity of Fredholm indices implies the following.

Proposition 1.B.2. Let 𝑋,𝑌 be Banach manifolds. If 𝑆 ⊂ 𝑋 and 𝑓 : 𝑋 → 𝑌 is a Fredholm map,
then

codim 𝑓 (𝑆) ⩾ codim 𝑆 − inf

𝑥∈𝑋
index d𝑥 𝑓 . ■

The codimension of a subset can be regarded as a measure of the non-genericity of its

elements. In topology, one considers the following concepts.

Definition 1.B.3. Let 𝑋 be a topological space and 𝑆 ⊂ 𝑋 . 𝑆 is meager if it is contained in a

countable union of closed subsets with empty interior. 𝑆 is comeager if 𝑋\𝑆 is meager. •

Recall from Footnote 2 that Banachmanifolds are assumed to be Hausdorff, paracompact, and

separable. The Baire category theorem asserts that a meager subset of a completely metrizable

space (e.g., a Banach manifold) has empty interior or, equivalently, that every comeager subset

of such a space is dense. In light of this, one often regards a meager subset as consisting of

non-generic points and a comeager subset as consisting of generic points.

Proposition 1.B.4. Let 𝑋 be a Banach manifold and 𝑆 ⊂ 𝑋 . If codim 𝑆 > 0, then 𝑆 is meager.10

Proof. Let 𝑍 and 𝜁 be as in Definition 1.B.1. Since index d𝑧𝜁 < 0, by the Sard–Smale Theorem

[Sma65, Theorem 1.3] im 𝜁 is meager; hence, so is 𝑆 . ■

In practice, one often proves that a subset is meager by proving that it has positive codi-

mension. The latter, however, yields more precise information.

Proposition 1.B.5. Let𝑀 be a finite-dimensional manifold and let 𝑋 be a Banach manifold. For
every 𝑆 ⊂ 𝑋 and 𝑘 ∈ N the following hold:

10The following stronger statement, which will not be used in this article, follows from Sard’s theory of cotypes

[Sar69]: 𝑆 is contained in the countable union of closed subsets, none of which contains a submanifold of codimension

codim 𝑆 − 1. In particular: since such closed subsets have empty interior, this condition implies that 𝑆 is meager.
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(1) The subset 𝑆 ⊂ 𝐶𝑘 (𝑀,𝑋 ) consisting of those 𝑓 such that 𝑓 −1(𝑆) ≠ ∅ satisfies

codim 𝑆 ⩾ codim 𝑆 − dim𝑀.

(2) The subset consisting of those 𝑓 ∈ 𝐶𝑘 (𝑀,𝑋 ) for which codim 𝑓 −1(𝑆) ⩾ codim 𝑆 is comeager.

Proof. Suppose that 𝑆 has codimension at least 𝑐 and let 𝑍 and 𝜁 be as in Definition 1.B.1. Set

𝐹 ≔ 𝑀 ×𝐶𝑘 (𝑀,𝑋 ). The evaluation map ev : 𝐹 → 𝑋 is a 𝐶𝑘
submersion. Therefore,

ev
∗𝑍 ≔

{
(𝑥, 𝑓 ; 𝑧) ∈ 𝐹 × 𝑍 : ev(𝑥, 𝑓 ) = 𝜁 (𝑧)

}
is a 𝐶𝑘

Banach manifold and the map pr
1

: ev
∗𝑍 → 𝐹 is a Fredholm map of index at most −𝑐 .

The projection map pr
2

: 𝐹 → 𝐶𝑘 (𝑀,𝑋 ) is a Fredholm map of index dim𝑀 .

To prove (1), observe that ev
−1(𝑆) ⊂ im pr

1
. Therefore, codim ev

−1(𝑆) ⩾ 𝑐; hence, by

Proposition 1.B.2, 𝑆 = pr
2
(ev
−1(𝑆)) has codimension at least 𝑐 − dim𝑀 .

If 𝑓 ∈ 𝐶𝑘 (𝑀,𝑋 ) is a regular value of pr
2
◦ pr

1
: ev

∗𝑍 → 𝐶𝑘 (𝑀,𝑋 ), then (pr
2
◦ pr

1
)−1(𝑓 ) is

a 𝐶𝑘
submanifold of ev

∗𝑍 of dimension at most dim𝑀 − 𝑐 . Therefore, its projection to𝑀 has

codimension at least 𝑐 . A moment’s thought shows that this projection is 𝑓 −1(im 𝜁 ); hence, it
contains 𝑓 −1(𝑆). Therefore, codim 𝑓 −1(𝑆) ⩾ codim 𝑆 . By the Sard–Smale Theorem, the set of

regular values of pr
2
◦ pr

1
is comeager. This implies (2). ■

Part 2

Application to super-rigidity

2.1 Bryan and Pandharipande’s super-rigidity conjecture

The notion of super-rigidity for holomorphic maps was first introduced in algebraic geometry

by Bryan and Pandharipande [BP01, Section 1.2]. The purpose of this section is to recall the

corresponding notion in symplectic geometry as defined by Eftekhary [Eft16, Section 1] and

Wendl [Wen19b, Section 2.1].

Definition 2.1.1. Let (𝑀, 𝐽 ) be an almost complex manifold. A 𝐽–holomorphic map 𝑢 : (Σ, 𝑗) →
(𝑀, 𝐽 ) is a pair consisting of a closed, connected Riemann surface (Σ, 𝑗) and a smooth map

𝑢 : Σ→ 𝑀 satisfying the non-linear Cauchy–Riemann equation

(2.1.2) 𝜕𝐽 (𝑢, 𝑗) ≔
1

2

(d𝑢 + 𝐽 (𝑢) ◦ d𝑢 ◦ 𝑗) = 0.

Let 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) be a 𝐽–holomorphic map. Let 𝜙 ∈ Diff (Σ) be a diffeomorphism. The

reparametrization of 𝑢 by 𝜙 is the 𝐽–holomorphic map 𝑢 ◦ 𝜙−1
: (Σ, 𝜙∗ 𝑗) → (𝑀, 𝐽 ).

If 𝜋 : (Σ̃, 𝑗) → (Σ, 𝑗) is a holomorphic map of degree deg(𝜋) ⩾ 2, then the composition

𝑢 ◦ 𝜋 : (Σ̃, 𝑗) → (𝑀, 𝐽 ) is said to be a multiple cover of 𝑢. A 𝐽–holomorphic map is simple if it
is not constant and not a multiple cover. •
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Super-rigidity is a condition on the infinitesimal deformation theory of the images of 𝐽–

holomorphic maps (up to reparametrization). To give the precise definition, let us recall the

salient parts of this theory. This material is standard and details can be found, for example, in

[MS12, Chapter 3] and [Wen19a].

Let (𝑀, 𝐽 ) be an almost complex manifold and let 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) be a non-constant
𝐽–holomorphic map. Set

Aut(Σ, 𝑗) ≔ {𝜙 ∈ Diff (Σ) : 𝜙∗ 𝑗 = 𝑗} and 𝔞𝔲𝔱(Σ, 𝑗) ≔ {𝑣 ∈ Vect(Σ) : L𝑣 𝑗 = 0}.

Let J(Σ) be the space of almost complex structures on Σ and let T(Σ) = J(Σ)/Diff0(Σ)
be the Teichmüller space. Let S be a slice of the Diff0(Σ)–action through 𝑗 ; that is: S is a

finite-dimensional Aut(Σ, 𝑗)–invariant submanifold of J(Σ) containing 𝑗 and such that the

map

Diff0(Σ) ×Aut(Σ, 𝑗 ) S→ T(Σ),
[𝜙, 𝑘] ↦→ [𝜙∗𝑘]

is a homeomorphism. Denote by

d𝑢,𝑗 𝜕𝐽 : Γ(𝑢∗𝑇𝑀) ⊕ 𝑇𝑗S→ Ω0,1(𝑢∗𝑇𝑀)

the linearization of the map (𝑢, 𝑗) ↦→ 𝜕𝐽 (𝑢, 𝑗) restricted to𝐶∞(Σ, 𝑀) ×S at at (𝑢, 𝑗). The action
of Aut(Σ, 𝑗) on 𝐶∞(Σ, 𝑀) ×S preserves 𝜕−1

𝐽
(0). Therefore, there is an inclusion 𝔞𝔲𝔱(Σ, 𝑗) ↩→

ker d𝑢,𝑗 𝜕𝐽 . The moduli space of 𝐽–holomorphic maps up to reparametrization containing [𝑢, 𝑗]
has virtual dimension

index d𝑢,𝑗 𝜕𝐽 − dim𝔞𝔲𝔱(Σ, 𝑗) = (𝑛 − 3)𝜒 (Σ) + 2⟨[Σ], 𝑢∗𝑐1(𝑀, 𝐽 )⟩.

Definition 2.1.3. Let (𝑀, 𝐽 ) be an almost complex manifold of dimension 2𝑛. The index of a

𝐽–holomorphic map 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) is

•(2.1.4) index(𝑢) ≔ (𝑛 − 3)𝜒 (Σ) + 2⟨[Σ], 𝑢∗𝑐1(𝑀, 𝐽 )⟩.

Infinitesimal deformations of 𝑗 do not affect im𝑢. Therefore, we restrict our attention to

𝔡𝑢,𝐽 : Γ(𝑢∗𝑇𝑀) → Ω0,1(Σ, 𝑢∗𝑇𝑀), the restriction of d𝑢,𝑗 𝜕𝐽 to Γ(𝑢∗𝑇𝑀). A brief computation

shows that

(2.1.5) 𝔡𝑢,𝐽 𝜉 =
1

2

(∇𝜉 + 𝐽 ◦ (∇𝜉) ◦ 𝑗 + (∇𝜉 𝐽 ) ◦ d𝑢 ◦ 𝑗) .

Here ∇ denotes any torsion-free connection on 𝑇𝑀 and also the induced connection on 𝑢∗𝑇𝑀 .

If (𝑢, 𝑗) is a 𝐽–holomorphic map, then the right-hand side of (2.1.5) does not depend on the

choice of ∇; see [MS12, Proposition 3.1.1]. The operator 𝔡𝑢,𝐽 has the property that if 𝜉 ∈ Γ(𝑇Σ),
then 𝔡𝑢,𝐽 (d𝑢 (𝜉)) is a (0, 1)–form taking values in d𝑢 (𝑇Σ) ⊂ 𝑢∗𝑇𝑀 . If 𝑢 is non-constant, then

there is a unique complex subbundle

𝑇𝑢 ⊂ 𝑢∗𝑇𝑀
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of rank one containing d𝑢 (𝑇Σ) [IS99, Section 1.3]; see also [Wen10, Section 3.3] and Section 2.A

for a detailed discussion. Since 𝑇𝑢 agrees with d𝑢 (𝑇Σ) outside finitely many points, 𝔡𝑢,𝐽 maps

Γ(𝑇𝑢) to Ω0,1(Σ,𝑇𝑢). Infinitesimal deformations along Γ(𝑇𝑢) also do not affect im𝑢. This leads

us to the following.

Definition 2.1.6. Let (𝑀, 𝐽 ) be an almost complex manifold. Let 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) be a

non-constant 𝐽–holomorphic map. Set

𝑁𝑢 ≔ 𝑢∗𝑇𝑀/𝑇𝑢.

The normal Cauchy–Riemann operator associated with 𝑢 is the linear map

𝔡𝑁𝑢,𝐽 : Γ(𝑁𝑢) → Ω0,1(Σ, 𝑁𝑢)

induced by 𝔡𝑢,𝐽 . •

The following illuminates the role of the normal Cauchy–Riemann operator in the infinites-

imal deformation theory of 𝐽–holomorphic maps.

Proposition 2.1.7 ([IS99, Lemma 1.5.1; Wen10, Theorem 3]; see also Section 2.A). Let (𝑀, 𝐽 ) be an
almost complex manifold. Let 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) be a non-constant 𝐽–holomorphic map. Denote
by 𝑍 (d𝑢) the number of critical points of 𝑢 counted with multiplicity. The following hold:

(1) There is a surjection
ker d𝑢,𝑗 𝜕𝐽 ↠ ker𝔡𝑁𝑢,𝐽

whose kernel contains 𝔞𝔲𝔱(Σ, 𝑗) and has dimension dim𝔞𝔲𝔱(Σ, 𝑗) + 2𝑍 (d𝑢).11

(2) There is an isomorphism
coker d𝑢,𝑗 𝜕𝐽 � coker𝔡𝑁𝑢,𝐽 .

(3) The index of 𝔡𝑁
𝑢,𝐽

satisfies

index𝔡𝑁𝑢,𝐽 = index(𝑢) − 2𝑍 (d𝑢) ⩽ index(𝑢) .

Finally, everything is in place to define super-rigidity.

Definition 2.1.8. Let (𝑀, 𝐽 ) be an almost complex manifold. A non-constant 𝐽–holomorphic

map 𝑢 is rigid if ker𝔡𝑁
𝑢,𝐽

= 0. •

A multiple cover �̃� of 𝑢 may fail to be rigid, even if 𝑢 itself is rigid.

Definition 2.1.9. Let (𝑀, 𝐽 ) be an almost complex manifold. A simple 𝐽–holomorphic map

𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) is called super-rigid if it is rigid and all of its multiple covers are rigid. •
11The summand 2𝑍 (d𝑢) corresponds to infinitesimally deforming the location of the critical points of 𝑢 without

deforming im𝑢.
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Remark 2.1.10. A generic simple pseudo-holomorphic map 𝑢 satisfies index(𝑢) ⩾ 0. If 𝑢 is also a

rigid immersion, then Proposition 2.1.7 implies that index(𝑢) = 0. Conversely, for a generic 𝐽

every simple 𝐽–holomorphic map of index zero is a rigid immersion. In light of this, henceforth,

we focus on index zero map. ♣
Definition 2.1.11. Let𝑀 be a manifold of dimension at least six. An almost complex structure 𝐽

on𝑀 is called super-rigid if the following hold:

(1) Every simple 𝐽–holomorphic map has non-negative index.

(2) Every simple 𝐽–holomorphic map of index zero is an embedding, and every two sim-

ple 𝐽–holomorphic maps of index zero either have disjoint images or are related by a

reparametrization.

(3) Every simple 𝐽–holomorphic map of index zero is super-rigid. •
Remark 2.1.12. If dim𝑀 = 4, one should weaken condition (2) and require only that every

simple 𝐽–holomorphic map of index zero is an immersion with transverse self-intersections, and

that two such maps are either transverse to one another or are related by a reparametrization.

However, we will only be concerned with dimension at least six. ♣
Let (𝑀,𝜔) be a symplectic manifold. Bryan and Pandharipande [BP01, Section 1.2] conjec-

tured that a generic almost complex structure compatible with 𝜔 is super-rigid. This conjecture

has recently been proved by Wendl [Wen19a]. This part of the present article is an exposition of

Wendl’s proof using the theory developed in Part 1

Theorem 2.1.13 (Wendl [Wen19b]). Let (𝑀,𝜔) be a closed, connected symplectic manifold with
dim𝑀 ⩾ 6. Denote by J(𝑀,𝜔) the Fréchet manifold of smooth almost complex structures
compatible with 𝜔 . The subspace J♦(𝑀,𝜔) ⊂ J(𝑀,𝜔) of super-rigid almost complex structures is
comeager.

Remark 2.1.14. By the Baire category theorem, J♦(𝑀,𝜔) is dense in J(𝑀,𝜔). Therefore, every
𝐽 ∈ J(𝑀,𝜔) can be arbitrarily slightly perturbed into a super-rigid almost complex structure.

The analogue is for paths (𝐽𝑡 )𝑡 ∈[0,1] fails. This is discussed in detail in Section 2.10. ♣
The proof of Theorem 2.1.13 occupies the bulk of the remainder of Part 2. Throughout the

remainder of this part, let (𝑀,𝜔) be a closed, connected symplectic manifold with dim𝑀 ⩾ 6.

2.2 Floer’s 𝐶𝜀 spaces and Taubes’ trick

A technical but important issue in the proof of Theorem 2.1.13 is that J(𝑀,𝜔) is not a Banach
manifold; hence, the theory developed in Part 1 cannot directly be brought to bear on it.

The initial impulse might be to work with 𝐶𝑘
(instead of smooth) almost complex structures.

However, Section 1.6 requires the linear elliptic differential operators under consideration to have

smooth coefficients. The solution of this conundrum is to work with the 𝐶𝜀
spaces introduced

by Floer [Flo88, Section 5] and employ Taubes’ trick, which allows one to pass from the 𝐶𝜀

topology to the 𝐶∞ topology; see [Tau96, Section 5] and [Wen19a, Appendix B] for applications

to super-rigidity. Wendl’s blog post [Wen21] clarifies how to properly use the 𝐶𝜀
spaces. The

purpose of this section is to marshal the salient facts required for the proof of Theorem 2.1.13.
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Definition 2.2.1. Denote by
𝔰 ≔ (0,∞)N0

the set of sequences in (0,∞). Define the preorder ≼ on 𝔰 by

(𝜀𝑘 ) ≼ (𝛿𝑘 ) if and only if lim sup

𝑘→∞

𝜀𝑘

𝛿𝑘
< ∞. •

The following observation is nearly trivial but crucial.

Proposition 2.2.2. Every countable subset 𝔰0 ⊂ 𝔰 has a lower bound; that is: there is a 𝛿 ∈ 𝔰 with
𝛿 ≼ 𝜀 for every 𝜀 ∈ 𝔰0.

Proof. Enumerate 𝔰0 = {𝜀ℓ : ℓ ∈ N} and set 𝛿𝑘 ≔ min{𝜀ℓ
𝑘

: ℓ ∈ {1, . . . , 𝑘}}. ■

Definition 2.2.3. Suppose that a Riemannian metric on𝑀 has been chosen. Let 𝐸 be a Euclidean

vector bundle over𝑀 equipped with an orthogonal connection. For 𝜀 = (𝜀𝑘 ) ∈ 𝔰 and 𝑠 ∈ Γ(𝐸)
set

∥𝑠 ∥𝐶𝜀 ≔

∞∑︁
𝑘=0

𝜀𝑘 ∥∇𝑘𝑠 ∥𝐶0 .

The vector space

𝐶𝜀Γ(𝐸) ≔ {𝑠 ∈ Γ(𝐸) : ∥𝑠 ∥𝐶∞𝜀 < ∞}

equipped with the norm ∥·∥𝐶𝜀 is a separable Banach space [Wen19a, Theorems B.2, B.5]. •

Proposition 2.2.4. For every 𝜀 ∈ 𝔰 the inclusion 𝐶𝜀Γ(𝐸) → Γ(𝐸) is continuous. Moreover,

Γ(𝐸) =
⋃
𝜀∈𝔰

𝐶𝜀Γ(𝐸) .

Proof. It is obvious that the inclusion𝐶𝜀Γ(𝐸) → Γ(𝐸) is continuous. If 𝑠 ∈ Γ(𝐸), then 𝑠 ∈ 𝐶𝜀Γ(𝐸)
with 𝜀𝑘 ≔ 2

−𝑘 ∥∇𝑘𝑠 ∥−1

𝐶0
. (Indeed, in light of Proposition 2.2.2, every countable subset of Γ(𝐸) is

contained in 𝐶𝜀Γ(𝐸) for some 𝜀 ∈ 𝔰.) ■

The above spaces are used as follows. The tangent space to J(𝑀,𝜔) at 𝐽0 is given by

𝑇𝐽0J(𝑀,𝜔) =
{
𝐽 ∈ Γ(End(𝑇𝑀)) : 𝐽 𝐽0 + 𝐽0 𝐽 = 0 and 𝜔 (𝐽 ·, ·) + 𝜔 (·, 𝐽 ·) = 0

}
.

This means that 𝑇𝐽0J consists of anti-linear endomorphisms which are skew-adjoint with

respect to 𝜔 . There is a 𝛿 > 0 (independent of 𝐽0) such that the map

exp𝐽0
:

{
ˆ𝐽 ∈ 𝑇𝐽0J(𝑀,𝜔) : ∥ ˆ𝐽 ∥𝐶0 < 𝛿

}
→ J(𝑀,𝜔)

defined by

exp𝐽0
( ˆ𝐽 ) ≔ (1 + 1

2
𝐽0 ˆ𝐽 ) 𝐽0(1 + 1

2
𝐽0 ˆ𝐽 )−1.

is a diffeomorphism.
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Definition 2.2.5. For 𝜀 ∈ 𝔰 define the Banach manifold U(𝑀,𝜔 ; 𝐽0, 𝜀) by

U(𝑀,𝜔 ; 𝐽0, 𝜀) ≔
{
exp𝐽0

( ˆ𝐽 ) : ∥ ˆ𝐽 ∥𝐶𝜀 < 𝛿
}

covered by a single chart exp𝐽0
(𝐽 ) ↦→ 𝐽 . •

For every 𝐽0 ∈ J and 𝜀 ∈ 𝔰 the inclusion U(𝑀,𝜔 ; 𝐽0, 𝜀) ⊂ J(𝑀,𝜔) is continuous (but by
no means open).

An almost complex structure 𝐽 ∈ J(𝑀,𝜔) fails to be super-rigid if there is a simple 𝐽–

holomorphic map violating one of the conditions in Definition 2.1.11. The equivalence classes

of theses offending pseudo-holomorphic maps form a topological spaceM×
with a canonical

projection map Π : M× → J(𝑀,𝜔). Therefore, proving Theorem 2.1.13 amounts to establishing

that imΠ is meager. M×
itself stands little chance to be Banach manifold, but its restriction

to U(𝑀,𝜔 ; 𝐽0, 𝜀) does. The upcoming definition and proposition extend Definition 1.B.1 and

Proposition 1.B.4; the latter is an abstract version of Taubes’ trick mentioned earlier.

Definition 2.2.6. Let 𝑋 be a topological space. Let 𝑐 ∈ N0. A subset 𝑆 ⊂ 𝑋 has codimension at
least 𝑐 if there are:

(1) a preordered set (𝐴, ≼) such that every countable subset 𝐵 ⊂ 𝐴 has a lower bound; that

is: there is an 𝛼 ∈ 𝐴 with 𝛼 ≼ 𝛽 for every 𝛽 ∈ 𝐵;

(2) for every 𝑥0 ∈ 𝑋 and 𝛼 ∈ 𝐴 a subset𝑈𝛼 (𝑥0) ⊂ 𝑋 with 𝑥0 ∈ 𝑈𝛼 (𝑥0) and the structure of a

𝐶1
Banach manifold on the set𝑈𝛼 (𝑥0) such that the inclusion𝑈𝛼 (𝑥0) ⊂ 𝑋 is continuous;

(3) a metrizable topological space 𝑍 and a continuous map 𝜁 : 𝑍 → 𝑋 such that

𝑆 ⊂ im 𝜁

and the following conditions hold:

(a) The map 𝜁 is 𝜎–proper; that is: there is a countable cover 𝑍 =
⋃

𝑘∈N 𝑍𝑘 such that

for every 𝑘 ∈ N the restriction 𝜁 |𝑍𝑘
is proper.

(b) For every 𝑥0 ∈ 𝑋 the fiber 𝜁 −1(𝑥0) ⊂ 𝑍 is separable.

(c) For every 𝑧0 ∈ 𝜁 −1(𝑥0) there is a 𝛽 = 𝛽 (𝑧0) ∈ 𝐴 and for every 𝛼 ∈ 𝐴 with 𝛼 ≼ 𝛽
there is an open subset

𝑉𝛼 (𝑧0) ⊂ 𝜁 −1(𝑈𝛼 (𝑥0))

which contains 𝑧0 and has the structure of a Banach orbifold such that the map

𝜁 |𝑉𝛼 (𝑧0 ) : 𝑉𝛼 (𝑧0) → 𝑈𝛼 (𝑥0) is 𝐶1
and index d𝑧𝜁 ⩽ −𝑐 for every 𝑧 ∈ 𝑉𝛼 (𝑧0). •

Proposition 2.2.7. Let 𝑋 be a completely metrizable topological space. If 𝑆 ⊂ 𝑋 has codimension
at least one, then 𝑆 is meager.

Proof. It suffices to prove that 𝜁 (𝑍𝑘 ) is closed and has empty interior. To prove that 𝜁 (𝑍𝑘 ) is
closed, observe that a proper map between metrizable topological spaces is closed. (Indeed, it

suffices that the codomain is metrizable [Pal70].)
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To prove that 𝜁 (𝑍𝑘 ) has empty interior, let 𝑥0 ∈ 𝜁 (𝑍𝑘 ). The task at hand is to exhibit

a sequence (𝑥𝑛) that avoids 𝜁 (𝑍𝑘 ) but converges to 𝑥0. Choose a countable dense subset

{𝑧𝑚 :𝑚 ∈ N} ⊂ 𝜁 −1(𝑥0). Let 𝛼 be a lower bound of {𝛽 (𝜁𝑚) :𝑚 ∈ N}. The subset

𝑊𝛼 ≔
⋃
𝑚∈N

𝑉𝛼 (𝑧𝑚) ⊂ 𝜁 −1(𝑈𝛼 (𝑥0))

is open and contains 𝜁 −1

𝛼 (𝑥0). By Proposition 1.B.4, the subset 𝜁 (𝑊𝛼 ) ⊂ 𝑈𝛼 (𝑥0) is meager. By

the Baire category theorem, 𝜁 (𝑊𝛼 ) is nowhere-dense in 𝑈𝛼 (𝑥0) and there is a sequence (𝑥𝑛)
that avoids 𝜁 (𝑊𝛼 ) but converges to 𝑥0 in𝑈𝛼 (𝑥0). Since the inclusion𝑈𝛼 (𝑥0) ⊂ 𝑋 is continuous,

(𝑥𝑛) converges to 𝑥0 in 𝑋 .

It remains to prove that 𝑥𝑛 ∉ 𝜁 (𝑍𝑘 ) provided 𝑛 ≫ 1. If not, then after passing to a

subsequence there is a sequence (𝑧𝑛) in 𝑍𝑘 with 𝜁 (𝑧𝑛) = 𝑥𝑛 . Since 𝜁 |𝑍𝑘
is proper, after passing

to a further subsequence (𝑧𝑛) converges to a limit 𝑧0 ∈ 𝑍𝑘 with 𝜁 (𝑧0) = 𝑥0. Since𝑊𝛼 is open in

𝜁 −1(𝑈𝛼 (𝑥0)), for 𝑛 ≫ 1, 𝑧𝑛 ∈𝑊𝛼 ; hence: 𝑥𝑛 ∈ 𝜁 (𝑊𝛼 )—a contradiction. ■

2.3 Flexibility

The following observation together with Proposition 2.2.2 implies that the various notions of

flexibility introduced in Part 1 are satisfied. The reader might find it helpful at this point to

review Definition 1.1.9 and to keep in mind that the normal Cauchy–Riemann operator of a

𝐽–holomorphic map 𝑢 is an operator Γ(𝐸) → Γ(𝐹 ) where 𝐸 = 𝑁𝑢 and 𝐹 = HomC(𝑇Σ, 𝑁𝑢) is
the bundle of complex anti-linear maps from 𝑇Σ to 𝑁𝑢.

Lemma 2.3.1. Let 𝐽0 ∈ J(𝑀,𝜔). Let 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) be a simple 𝐽0–holomorphic map.
Consider the set of injective points

𝑈 ≔ {𝑥 ∈ Σ : 𝑢−1(𝑢 (𝑥)) = {𝑥} and d𝑥𝑢 ≠ 0}.

For every
𝐴 ∈ Γ(Hom(𝑁𝑢,HomC(𝑇Σ, 𝑁𝑢))

with support in 𝑈 there are 𝜀 ∈ 𝔰, 𝑇 > 0, and a path of compatible almost complex structures
(𝐽𝑡 )𝑡 ∈ (−𝑇,𝑇 ) through 𝐽0 inU(𝑀,𝜔 ; 𝐽0, 𝜀) such that:

(1) 𝑢 is 𝐽𝑡–holomorphic for every 𝑡 ∈ (−𝑇,𝑇 ), and

(2)
d

d𝑡

��
𝑡=0

𝔡𝑁
𝑢,𝐽𝑡
𝜉 = 𝐴𝜉 for every 𝜉 ∈ Γ(𝑁𝑢).

Proof. As discussed in Section 2.2,

𝑇𝐽0J(𝑀,𝜔) =
{

ˆ𝐽 ∈ Γ(End(𝑇𝑀)) :
ˆ𝐽 𝐽0 + 𝐽0 ˆ𝐽 = 0 and 𝜔 ( ˆ𝐽 ·, ·) + 𝜔 (·, ˆ𝐽 ·) = 0

}
.

For 𝑥 ∈ 𝑈 , 𝑇𝑥𝑀 decomposes as 𝑇𝑥𝑀 = 𝑇𝑥Σ ⊕ 𝑁𝑥Σ. Given 𝑎 ∈ Γ(HomC(𝑇Σ, 𝑁𝑢)), denote by 𝑎†
its adjoint with respect to 𝜔 and set

ˆ𝐽 ≔

(
0 −𝑎†
𝑎 0

)
.
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By construction
ˆ𝐽 𝐽 + 𝐽 ˆ𝐽 = 0 and 𝜔 ( ˆ𝐽 ·, ·) + 𝜔 (·, ˆ𝐽 ·) = 0; that is:

ˆ𝐽 ∈ 𝑇𝐽J(𝑀,𝜔).
Given 𝐴 ∈ Γ(Hom(𝑁𝑢,HomC(𝑇Σ, 𝑁𝑢)) with support in 𝑈 , pick ˆ𝐽 ∈ 𝑇𝐽0J(𝑀,𝜔) with

𝐽 |𝑢 (Σ) = 0 and such that for every 𝜉 ∈ Γ(𝑁𝑢)

1

2

∇𝜉 ˆ𝐽 =

(
0 (𝐴(𝜉) 𝑗)†

−𝐴(𝜉) 𝑗 0

)
.

Let 𝑇 ≪ 1 and define (𝐽𝑡 )𝑡 ∈ (−𝑇,𝑇 ) by

𝐽𝑡 ≔ exp𝐽0
(𝑡 ˆ𝐽 )

By construction 𝑢 is 𝐽𝑡–holomorphic for every 𝑡 ∈ (−𝑇,𝑇 ). It follows from (2.1.5) that

d

d𝑡

����
𝑡=0

𝔡𝑁𝑢,𝐽𝑡 𝜉 = 𝐴𝜉.

for every 𝜉 ∈ Γ(𝑁𝑢). Evidently, (𝐽𝑡 )𝑡 ∈ (−𝑇,𝑇 ) is a path in U(𝑀,𝜔 ; 𝐽0, 𝜀) provided 𝜀 ∈ 𝔰 decays
sufficiently fast. ■

2.4 Unobstructedness and embeddedness

The purpose of this section is to take care of (1) and (2) in Definition 2.1.11.

Definition 2.4.1. Let 𝑘 ∈ Z. The universal moduli space of simple 𝐽–holomorphic maps
of index 𝑘 over J(𝑀,𝜔) is the space M𝑘 (𝑀,𝜔) of pairs (𝐽 ; [𝑢, 𝑗]) consisting of an almost

complex structure 𝐽 ∈ J(𝑀,𝜔), and an equivalence class of simple 𝐽–holomorphic maps

𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) of index 𝑘 up to reparametrization by Diff (Σ). •

Theorem 2.4.2. The subset

W⩾0(𝑀,𝜔) ≔ {𝐽 ∈ J(𝑀,𝜔) : (1) in Definition 2.1.11 fails}

has codimension at least two (in the sense of Definition 2.2.6).

At its core this is a standard transversality result for simple 𝐽–holomorphic maps; cf. [MS12,

Theorem 3.1.5 (ii)]. Let us spell out its proof nevertheless because it illuminates Definition 2.2.6

and serves as a model for proofs of other parts of the super-rigidity theorem.

Proof of Theorem 2.4.2. The task at hand is to verify the conditions in Definition 2.2.6 for

𝐴 ≔ 𝔰, 𝑈𝜀 (𝐽0) ≔ U(𝑀,𝜔 ; 𝐽0, 𝜀), 𝑍 ≔
∐
𝑘<0

M𝑘 (𝑀,𝜔), and

with 𝜁 ≔ Π denoting the projection map. Indeed,W⩾0(𝑀,𝜔) = imΠ.
Proposition 2.2.2 implies (1). (2) holds by construction. The fact that Π is 𝜎–proper (3.a) is a

consequence of the fact that quantitative bounds on the underlying Riemann surface (Σ, 𝑗) and
the map 𝑢 guarantee compactness; see [MS12, Proof of Theorem 3.1.5 (ii)] for details. The fact

that the fibres Π−1(𝐽0) are separable is standard.
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Here is the crucial point: establishing (3.c). A neighborhood of (𝐽0, [𝑢0, 𝑗0]) ∈ Π−1(U(𝑀,𝜔 ; 𝐽0, 𝜀))
is given by

F−1(0)/Aut(Σ0, 𝑗0) .

Here F denotes the restriction of

𝑊 1,𝑝Γ(𝑢∗
0
𝑇𝑀) ⊕ 𝑇𝑗0S ×𝑇𝐽0U(𝑀,𝜔 ; 𝐽0, 𝜀) → 𝐿𝑝Ω0,1(𝑢∗

0
𝑇𝑀),

(𝜉, 𝑗 ; 𝐽 ) ↦→ Φ(𝜉)−1𝜕𝐽 (exp𝑢0

(𝜉), 𝑗)

to a sufficiently small Aut(Σ0, 𝑗0)–invariant neigborhood of 0. Here 𝑝 > 2, and

Φ(𝜉) : 𝐿𝑝 (𝑢∗
0
𝑇𝑀) → 𝐿𝑝Γ(exp𝑢0

(𝜉)∗𝑇𝑀)

is the complex bundle isomorphism induced by parallel transport. Since

d𝑢0, 𝑗0𝜕𝐽0 : 𝑊 1,𝑝Γ(𝑢∗𝑇𝑀) ⊕ 𝑇𝑗0S→ 𝐿𝑝Ω0,1(𝑢∗𝑇𝑀)

is Fredholm, it has finite dimensional cokernel. As a consequence of Proposition 2.2.2 and

Lemma 2.3.1, there is a 𝛿 ∈ 𝔰 such that every 𝜀 ≼ 𝛿 the linearization ofF at (0, 𝑗0; 𝐽0) is surjective.
Hence, by the Regular Value Theorem, there is an open neighborhood V( [𝑢0, 𝑗0]; 𝐽0, 𝜀) of
( [𝑢0, 𝑗0]; 𝐽0) ∈ Π−1(U(𝑀,𝜔 ; 𝐽0, 𝜀) which carries the structure of a Banach orbifold. For every,

( [𝑢, 𝑗]; 𝐽 ) ∈ V( [𝑢0, 𝑗0]; 𝐽0, 𝜀) we have

index d[𝑢,𝑗 ];𝐽Π = index(𝑢) ⩽ −2,

since, by the index formula (2.1.4),M−1(𝑀,𝜔) = ∅. Therefore, (3.c) holds. ■

Theorem 2.4.3 ([OZ09, Theorem 1.1; IP18, Proposition A.4]). The subset

W↩→(𝑀,𝜔) ≔ {𝐽 ∈ J(𝑀,𝜔) : (2) in Definition 2.1.11 fails}

has codimension at least 2(𝑛 − 2). ■

2.5 Petri’s condition

The objective of the next five sections is to prove that

W♦(𝑀,𝜔) ≔ {𝐽 ∈ J(𝑀,𝜔) : (3) in Definition 2.1.11 fails}

has codimension at least one in the sense of Definition 2.2.6. This will be achieved using

the theory developed in Part 1 applied to certain families of elliptic operators which will be

introduced in Section 2.6 and Section 2.9. The result of this section, proved byWendl, ensures that

real Cauchy–Riemann operators satisfy the algebraic condition introduced in Definition 1.6.15

and required in Theorem 1.6.17. This will guarantee that in the application the𝔙–equivariant

Petri condition holds away from a subset of infinite codimension.
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Definition 2.5.1. Let (Σ, 𝑗) be a Riemann surface and let 𝐸 be a complex vector bundle over Σ.
A real Cauchy–Riemann operator on 𝐸 is a real linear first order elliptic differential operator

𝐷 : Γ(𝐸) → Ω0,1(Σ, 𝐸) satisfying

(2.5.2) 𝔡(𝑓 𝑠) = 𝜕𝑓 ⊗C 𝑠 + 𝑓 𝔡𝑠

for every 𝑓 ∈ 𝐶∞(Σ,R) and 𝑠 ∈ Γ(𝐸). In the above formula, 𝜕𝑓 ∈ Ω0,1(Σ) is defined by

considering 𝑓 as a C–valued function. •
By (2.1.5), the normal Cauchy–Riemann operator associated with a 𝐽–holomorphic map is a

real Cauchy–Riemann operator.

Theorem 2.5.3 (Wendl [Wen19b, Section 5.3]). Every symbol of a real Cauchy–Riemann operator
satisfies Wendl’s condition.

Before embarking on the proof of this result, let us remind the reader of the following

fact. Let 𝑉 and𝑊 be complex vector spaces. Denote by𝑊 the complex vector space𝑊 with

scalar multiplication (𝜆,𝑤) ↦→ ¯𝜆𝑤 . The tensor product 𝑉 ⊗𝑊 admits two commuting complex

structures: 𝐼1 ≔ 𝑖 ⊗ 1 and 𝐼2 ≔ 1 ⊗ 𝑖 . 𝑉 ⊗𝑊 decomposes into the subspace on which 𝐼1 = 𝐼2
and the subspace on which 𝐼1 = −𝐼2. These can be identified with 𝑉 ⊗C𝑊 and 𝑉 ⊗C𝑊 ; hence:

𝑉 ⊗𝑊 = (𝑉 ⊗C𝑊 ) ⊕ (𝑉 ⊗C𝑊 ) .

The space of real linear maps Hom(𝑉 ,𝑊 ) admits two commuting complex structures given

by pre- and post-composition with 𝑖 . This decomposes Hom(𝑉 ,𝑊 ) into the space of complex

linear map HomC(𝑉 ,𝑊 ) and the space of complex anti-linear maps HomC(𝑉 ,𝑊 ); that is:

Hom(𝑉 ,𝑊 ) = HomC(𝑉 ,𝑊 ) ⊕ HomC(𝑉 ,𝑊 ) .

Proof of Theorem 2.5.3. The symbol

𝜎 ≔ 𝜎𝑥 (𝔡)
at 𝑥 ∈ Σ of a real Cauchy–Riemann operator 𝔡 : Γ(𝐸) → Ω0,1(Σ, 𝐸) = Γ(𝐹 ) depends only on

𝐸𝑥 . Denote by 𝑧 = 𝑠 + 𝑖𝑡 a local holomorphic coordinate around 𝑥 and identify 𝐸𝑥 = C𝑟
with

𝑟 ≔ rkC 𝐸. Identifying

R[𝑠, 𝑡] ⊗ 𝐸𝑥 = R[𝑠, 𝑡] ⊗ 𝐹𝑥 = R[𝑠, 𝑡] ⊗ 𝐸†𝑥 = R[𝑠, 𝑡] ⊗ 𝐹 †𝑥 = C[𝑧, 𝑧] ⊗C C𝑟

the formal differential operators �̂� and −�̂�† both become

𝜕 ⊗C idC𝑟 : C[𝑧, 𝑧] ⊗C C𝑟 → C[𝑧, 𝑧] ⊗C C𝑟 .

Furthermore, identifying

C𝑟 ⊗ C𝑟 = (C𝑟 ⊗C C𝑟 ) ⊕ (C𝑟 ⊗C C̄𝑟 )

via 𝑣 ⊗𝑤 ↦→ (𝑣 ⊗C 𝑤, 𝑣 ⊗C �̄�) the polynomial Petri map �̂� becomes

(�̂�1, �̂�2) : (C[𝑧, 𝑧] ⊗C C𝑟 )⊗2 → C[𝑧, 𝑧] ⊗C (C𝑟 ⊗C C𝑟 ) ⊕ C[𝑧, 𝑧] ⊗C (C𝑟 ⊗C C̄𝑟 )

defined by

�̂�1(𝑝, 𝑞) ≔ 𝑝𝑞 and �̂�2(𝑝, 𝑞) ≔ 𝑝𝑞.

From this it is evident that it suffices to consider the case 𝑟 = 1 to prove Theorem 2.5.3.
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Proposition 2.5.4. If 𝐵 ∈ ker �̂�𝜎 is homogeneous of degree 𝑑 , then it is of the form

(2.5.5) 𝐵 =

𝑑∑︁
𝑗=0

𝑏 𝑗
(
𝑧 𝑗 ⊗ 𝑧𝑑− 𝑗 − 𝑖𝑧 𝑗 ⊗ 𝑖𝑧𝑑− 𝑗

)
+ 𝑏′𝑗

(
𝑖𝑧 𝑗 ⊗ 𝑧𝑑− 𝑗 + 𝑧 𝑗 ⊗ 𝑖𝑧𝑑− 𝑗

)
.

with 𝑏, 𝑏′ ∈ R𝑑 satisfying

(2.5.6)

𝑑∑︁
𝑗=0

𝑏 𝑗 = 0 and
𝑑∑︁
𝑗=0

𝑏′𝑗 = 0.

Proof. Every homogeneous 𝐵 ∈ ker 𝜕 ⊗ ker 𝜕 of degree 𝑑 is of the form

𝐵 =

𝑑∑︁
𝑗=0

𝑏 𝑗𝑧
𝑗 ⊗ 𝑧𝑑− 𝑗 + 𝑏′𝑗𝑖𝑧 𝑗 ⊗ 𝑧𝑑− 𝑗 + 𝑏′′𝑗 𝑧 𝑗 ⊗ 𝑖𝑧𝑑− 𝑗 + 𝑏′′′𝑗 𝑖𝑧 𝑗 ⊗ 𝑖𝑧𝑑− 𝑗

with 𝑏,𝑏′, 𝑏′′, 𝑏′′′ ∈ R𝑑 . 𝐵 satisfies �̂�2(𝐵) = 0 if and only if for every 𝑗 = 0, . . . , 𝑑

𝑏 𝑗 + 𝑏′′′𝑗 = 0 and 𝑏′𝑗 − 𝑏′′𝑗 = 0;

that is: 𝐵 is of the form (2.5.5). If 𝐵 is of this form, then �̂�1(𝐵) = 0 is equivalent to (2.5.6). ■

Henceforth, let 𝐵 ∈ ker𝜛𝜎 be homogeneous of degree 𝑑 . The right-inverse of �̂� (= −�̂�†) can
be chosen as

(2.5.7) 𝑅(𝑧𝛼𝑧𝛽 ) = 1

𝛽 + 1

𝑧𝛼𝑧𝛽+1.

Define the map L̂𝜎,𝐵 : C[𝑧, 𝑧] ⊗C Hom(C,C) → C[𝑧, 𝑧] ⊗C (C ⊗ C) by

L̂𝜎,𝐵 (𝐴) ≔ �̂�
(
(𝑅𝐴 ⊗ 1 + 1 ⊗ 𝑅†𝐴†)𝐵

)
as in Definition 1.6.15. Hom(C,C) and C ⊗ C decompose as

Hom(C,C) = HomC(C,C) ⊕ HomC(C,C) and C ⊗ C = (C ⊗C C) ⊕ (C ⊗C C).

This induces decompositions of the domain and codomain of L̂𝜎,𝐵 . Each of the summands is

isomorphic to C[𝑧, 𝑧]. With respect to these decompositions, L̂𝜎,𝐵 is a matrix of four operators

C[𝑧, 𝑧] → C[𝑧, 𝑧]. Denote by
Q𝐵 : C[𝑧, 𝑧] → C[𝑧, 𝑧]

the bottom right component of L̂𝜎,𝐵 that is: the restriction of L̂𝜎,𝐵 to C[𝑧, 𝑧] ⊗C HomC(C,C)
composed with the projection to C[𝑧, 𝑧] ⊗C (C ⊗C C).12 (The other components of L̂𝜎,𝐵 can be

12This operator is different from the one in [Wen19b, Section 5.3]. The origin of this difference is that Wendl

defines the formal adjoint 𝔡∗ using the Hermitian metric in contrast to our definition of 𝔡† in Definition 1.1.10. Both

operators are related by 𝔡† = ∗̄ ◦𝔡∗ ◦ ∗̄ with ∗̄ : Λ𝑝,𝑞𝑇 ∗Σ⊗C 𝐸 → Λ1−𝑝,1−𝑞𝑇 ∗Σ⊗C 𝐸∗ denoting the anti-linear Hodge
star operator.
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seen to vanish.) For ℓ ∈ N0 denote by C[𝑧, 𝑧]⩽ℓ the ring of polynomials in 𝑧 and 𝑧 of degree

at most ℓ and denote by Q⩽ℓ : C[𝑧, 𝑧]⩽ℓ → C[𝑧, 𝑧]⩽ℓ+1 the truncation of Q𝐵 . The map Q𝐵 is

complex linear. Since

rk L̂⩽ℓ
𝜎,𝐵
⩾ rkCQ⩽ℓ𝐵 ,

it suffices to estimate the latter.

Proposition 2.5.8. The map Q𝐵 satisfies

rkCQ⩽ℓ𝐵 ⩾
1

16

ℓ2

for ℓ ⩾ 8𝑑 .

Proof. The map Q𝐵 can be computed explicitly. To do so, observe that HomC(C,C) = C acts on

C via 𝜆 · 𝜇 ≔ 𝜆𝜇 and its adjoint is 𝜆† · 𝜇 ≔ ¯𝜆𝜇; furthermore, recall that
ˆ𝑅† = − ˆ𝑅 and that

ˆ𝑅 is

given by (2.5.7). With this in mind it is easy to verify that for

𝐴 = 𝑧𝛼𝑧𝛽 and 𝐵 =

𝑑∑︁
𝑗=0

𝑏 𝑗
(
𝑧 𝑗 ⊗ 𝑧𝑑− 𝑗 − 𝑖𝑧 𝑗 ⊗ 𝑖𝑧𝑑− 𝑗

)
+ 𝑏′𝑗

(
𝑖𝑧 𝑗 ⊗ 𝑧𝑑− 𝑗 + 𝑧 𝑗 ⊗ 𝑖𝑧𝑑− 𝑗

)
the map Q𝐵 satisfies

Q𝐵 (𝐴) = �̂�2

(
( ˆ𝑅𝐴 ⊗ 1 + 1 ⊗ ˆ𝑅†𝐴†)𝐵

)
=

𝑑∑︁
𝑗=0

2(𝑏 𝑗 − 𝑖𝑏′𝑗 )𝑅(𝑧𝛼𝑧𝛽+𝑗 )𝑧𝑑− 𝑗 − 2(𝑏 𝑗 + 𝑖𝑏′𝑗 )𝑧 𝑗 ˆ𝑅(𝑧𝛽𝑧𝛼+𝑑− 𝑗 )

=

𝑑∑︁
𝑗=0

2(𝑏 𝑗 − 𝑖𝑏′𝑗 )
𝛽 + 𝑗 + 1

𝑧𝛼𝑧𝛽+𝑑+1 −
2(𝑏 𝑗 + 𝑖𝑏′𝑗 )
𝛼 + 𝑑 − 𝑗 + 1

𝑧𝛼+𝑑+1𝑧𝛽

=

(
𝑝𝐵
𝛽
𝑧𝑑+1 + 𝑞𝐵𝛼𝑧𝑑+1

)
𝑧𝛼𝑧𝛽

with

𝑝𝐵
𝛽
≔

𝑑∑︁
𝑗=0

2(𝑏 𝑗 − 𝑖𝑏′𝑗 )
𝛽 + 𝑗 + 1

𝑧𝑑+1 and 𝑞𝐵𝛼 ≔ −
𝑑∑︁
𝑗=0

2(𝑏 𝑗 + 𝑖𝑏′𝑗 )
𝛼 + 𝑑 − 𝑗 + 1

𝑧𝑑+1.

The same formula holds for Q⩽ℓ
𝐵

provided 𝛼 + 𝛽 + 𝑑 ⩽ ℓ .
Set

𝑆 ≔

{
(𝛼, 𝛽) ∈ N2

0
: 𝛼 + 𝛽 + 𝑑 ⩽ ℓ and (𝑝𝐵

𝛽
, 𝑞𝐵𝛼 ) ≠ (0, 0)

}
.

Choose a subset 𝑆★ ⊂ 𝑆 such that #𝑆★ ⩾ 1

2
#𝑆 and such that if (𝛼, 𝛽) ∈ 𝑆 , then (𝛼−𝑑−1, 𝛽+𝑑+1) ∉

𝑆 . The restriction of Q⩽ℓ
𝐵

to C⟨𝑧𝛼𝑧𝛽 : (𝛼, 𝛽) ∈ 𝑆★⟩ is injective. The latter is evident from the

construction of 𝑆★ and

Q𝐵
©«

∑︁
𝛼,𝛽∈𝑆★

𝜆𝛼,𝛽𝑧
𝛼𝑧𝛽

ª®¬ =
∑︁

𝛼,𝛽∈𝑆★
𝜆𝛼,𝛽

(
𝑝𝐵
𝛽
𝑧𝛼𝑧𝛽+𝑑+1 + 𝑞𝐵𝛼𝑧𝛼+𝑑+1𝑧𝛽

)
.
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Therefore,

rkCQ𝐵 ⩾
1

2

#𝑆.

It remains to find a lower bound on #𝑆 . At most 𝑑 of the numbers 𝑝𝐵
0
, 𝑝𝐵

1
, . . . are non-zero.

This is a consequence of the following. If 𝛽0, . . . , 𝛽𝑑+1 are 𝑑 + 1 distinct positive numbers, then

the matrix ©«
1

𝛽0+1
1

𝛽0+2 . . . 1

𝛽0+𝑑+1
1

𝛽0+1
1

𝛽1+2 . . . 1

𝛽1+𝑑+1
. . . . . . . . . . . .
1

𝛽𝑑+1
1

𝛽𝑑+2 . . . 1

𝛽𝑑+𝑑+1

ª®®®®¬
is a Cauchy matrix and, therefore, invertible. If 𝑝𝐵

𝛽0

= · · · = 𝑝𝐵
𝛽𝑑

= 0, then the product of the

above matrix with (𝑏0 − 𝑖𝑏0, . . . , 𝑏𝑑 − 𝑖𝑏𝑑 ) would vanish: a contradiction. A variation of this

argument shows that at most 𝑑 of the numbers 𝑞𝐵
0
, 𝑞𝐵

1
, . . . are non-zero. Therefore,

#𝑆 ⩾
(ℓ − 𝑑)2

4

− (ℓ − 𝑑)𝑑.

This implies the assertion. ■

This finishes the proof of Theorem 2.5.3 with 𝑐0(𝜌,𝑑) = 1

16
and ℓ0(𝜌, 𝑑) = 8𝑑 . ■

2.6 Rigidity of unbranched covers

The purpose of this section is to prove the following.

Proposition 2.6.1 (cf. [GW17, Theorem 1.3]). Denote byW♢(𝑀,𝜔) the subset of those 𝐽 ∈ J(𝑀,𝜔)
for which there is a simple 𝐽–holomorphic map 𝑢 of index zero such that an unbranched cover of 𝑢
fails to be rigid. W♢(𝑀,𝜔) has codimension at least one (in the sense of Definition 2.2.6).

This is a only warm-up because it does not account for branched covers. However, it is

instructive to see the proof in the special case as it will be a model for the general case. The

following discussion puts us in a position to prove Proposition 2.6.1 using Theorem 1.3.5.

Definition 2.6.2. Let (Σ, 𝑗) and (Σ̃, 𝑗) be Riemann surfaces, let 𝐸 be a complex vector bundle over

Σ, and let 𝔡 : Γ(𝐸) → Ω0,1(Σ, 𝐸) be a real Cauchy–Riemann operator. Let 𝜋 : (Σ̃, 𝑗) → (Σ, 𝑗) be
a non-constant holomorphic map. The pullback of 𝔡 by 𝜋 is the real Cauchy–Riemann operator

𝜋★𝔡 : Γ(𝜋∗𝐸) → Ω0,1(Σ̃, 𝜋∗𝐸)

characterized by

(𝜋★𝔡) (𝜋∗𝑠) = 𝜋∗(𝔡𝑠) . •

The following is proved as Proposition 2.A.3 in Section 2.A.

Proposition 2.6.3. Let 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) be a non-constant 𝐽–holomorphic map. If 𝜋 : (Σ̃, 𝑗) →
(Σ, 𝑗) is a non-constant holomorphic map and �̃� ≔ 𝑢 ◦𝜋 , then there is an isomorphism 𝑁 (𝑢 ◦𝜋) �
𝜋∗𝑁𝑢 with respect to which 𝔡𝑁

𝑢◦𝜋,𝐽 = 𝜋
★𝔡𝑁

𝑢,𝐽
.
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In the situation of Definition 2.6.2, if 𝜋 is covering map, then 𝜋★𝔡 and 𝜋∗𝔡 defined in

Definition 1.2.1 are related by the commutative diagram

Γ(𝜋∗𝐸) Γ(𝜋∗𝑇 ∗Σ0,1 ⊗C 𝜋∗𝐸)

Γ(𝜋∗𝐸) Ω0,1(Σ̃, 𝜋∗𝐸)

𝜋∗𝔡

𝜋∗

𝜋★𝔡

with 𝜋∗ being an isomorphism. (This explains the intentionally confusing choice of notation.)

Therefore and by Proposition 1.2.9, if 𝐽 ∈W♢, then there exists a simple 𝐽–holomorphic map

𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) of index zero and an irreducible Euclidean local system𝑉 whose monodromy

representation factors through a finite quotient of 𝜋1(Σ, 𝑥0) such that

ker𝔡
𝑉

𝑢,𝐽
≠ 0.

Proof of Proposition 2.6.1. As in the proof of Theorem 2.4.2, the only nontrivial part is to verify

condition (3.c) from Definition 2.2.6. To that end, let (𝐽0, [𝑢0, 𝑗0]) ∈M0(𝑀,𝜔) and let 𝜀 ∈ 𝔰 be a
sequence converging to zero. By Theorem 2.4.3 it suffices to consider the case when 𝑢0 : Σ→ 𝑀

is an embedding. Let V be an open neighborhood of (𝐽0, [𝑢0, 𝑗0]) in the universal moduli space

of simple maps over U = U(𝑀,𝜔 ; 𝐽0, 𝜀) ⊂ J(𝑀,𝜔) with the following two properties. First,

for every (𝐽 , [𝑢, 𝑗]) ∈ V the map 𝑢 is an embedding. Second, V is liftable in the sense that

there is an Aut(Σ, 𝑗0)–invariant slice S of Teichmüller space through 𝑗0 such that for every

(𝐽 , [𝑢, 𝑗]) ∈ V there is a unique lift 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) with 𝑗 ∈ S.

Consider the family of normal Cauchy–Riemann operators 𝔡𝑁
𝑢,𝐽

: Γ(𝑁𝑢) → Ω0,1(𝑁𝑢)
parametrized by V. Strictly speaking, this is not a family of linear elliptic differential op-

erators as in Definition 1.1.1. Indeed, 𝑁𝑢 and HomC(𝑇Σ, 𝑁𝑢) depend on 𝑢 and 𝑗 and thus define

vector bundles E and F over V × Σ. However, after shrinking V, one can construct isomor-

phisms E � pr
∗
Σ𝐸 and F � pr

∗
Σ𝐹 with 𝐸 ≔ 𝑁𝑢0 and 𝐹 ≔ HomC(𝑇Σ, 𝑁𝑢0) for (𝐽0, [𝑢0, 𝑗0]) ∈ V.

Employing these isomorphisms, the normal Cauchy–Riemann operators form a family of linear

elliptic differential operators

𝔡 : V → F(𝑊 1,2Γ(𝐸), 𝐿2Γ(𝐹 ))

as in Definition 1.1.1. A moment’s thought shows that the map Λ𝔙
𝑝 defined in Theorem 1.3.5,𝔙–

equivariant flexiblity defined in Definition 1.3.8, and the𝔙–equivariant Petri condition defined

in Definition 1.3.9 are independent of the choice of isomorphisms E � pr
∗
Σ𝐸 and F � pr

∗
Σ𝐹 .

Therefore, the results from Section 1.3 apply without reservation.

By Lemma 2.3.1, there is 𝛿 ∈ 𝔰 such that 𝔡 is𝔙–equivariantly flexible in𝑈 provided 𝜀 ≼ 𝛿 .
Furthermore, by Theorem 1.6.17 and Theorem 2.5.3, the subset of (𝐽 , [𝑢, 𝑗]) ∈ V for which 𝔡𝑁

𝑢,𝐽

fails to satisfy the𝔙–equivariant Petri condtion in𝑈 has infinite codimension.

Let 𝑉 be an irreducible Euclidean local system on Σ whose monodromy representation

factors through a finite quotient of 𝜋1(Σ, 𝑥0) and consider𝔙 as in Situation 1.3.1 consisting only

of 𝑉 . Denote by

WΛ;𝑉
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the subset of those 𝑝 ≔ (𝐽 , [𝑢, 𝑗]) ∈ V for which the map Λ𝔙
𝑝 defined in Theorem 1.3.5 fails to

be surjective. Evidently, WΛ;𝑉 is closed; in particular, V\WΛ;𝑉 is a Banach manifold. By the

preceding paragraph,WΛ;𝑉 has infinite codimension. Set

W♢;𝑉 ≔

{
(𝐽 , [𝑢, 𝑗]) ∈ V\WΛ;𝑉 : ker𝔡

𝑁,𝑉

𝑢,𝐽
≠ 0

}
.

Since

index𝔡
𝑁,𝑉

𝑢,𝐽
= rk𝑉 · index𝔡𝑁𝑢,𝐽 ⩽ rk𝑉 · index(𝑢) = 0,

by Theorem 1.3.5,W♢;𝑉 has codimension at least one. Since (𝐽0, [𝑢0, 𝑗0]) was arbitrary and there

are countably many isomorphism classes of irreducible Euclidean local systems, condition (3.c)

from Definition 2.2.6 is satisfied.

■

The next two sections develop tools with which the above argument can be carried over to

branched covering maps.

2.7 Branched covering maps as orbifold covering maps

An orbifold Riemann surface can be constructed from a smooth Riemann surface and a collection

of points equipped with multiplicities.13 The starting point of this construction is the following

observation. Denote by D the unit disk in C. For 𝑘 ∈ N denote by

𝜇𝑘 ≔ {𝜁 ∈ C : 𝜁𝑘 = 1}

the group of 𝑘 th roots of unity. The map 𝜋 : D→ D defined by 𝜋 (𝑧) ≔ 𝑧𝑘 induces a homeomor-

phism D/𝜇𝑘 � D. Denote by [D/𝜇𝑘 ] the orbifold with D as the underlying topological space

and 𝜋 as chart. The map 𝜋 also induces an orbifold map 𝛽 : [D/𝜇𝑘 ] → D which induces the

identity map on the underlying topological spaces. The identity map D→ D defines an orbifold

map 𝜋 : D→ [D/𝜇𝑘 ]. This map is a covering map because D � [(D × 𝜇𝑘 )/𝜇𝑘 ]; cf. Footnote 7
on page 11. By construction, 𝜋 = 𝛽 ◦ 𝜋 . This can be globalized as follows.

Definition 2.7.1. Let (Σ, 𝑗) be a Riemann surface. Amultiplicity function is a function 𝜈 : Σ→ N
such that the set

𝑍𝜈 ≔ {𝑥 ∈ Σ : 𝜈 (𝑥) > 1}

is discrete. Given a multiplicity function 𝜈 , denote by (Σ𝜈 , 𝑗𝜈 ) the orbifold Riemann surface

whose underlying topological space is Σ and such that for every 𝑥 ∈ Σ and every holomorphic

chart 𝜙 : D→ Σ with 𝜙 (0) = 𝑥 the map 𝜙𝜈 (𝑥 ) : D→ Σ defined by

𝜙𝜈 (𝑥 ) (𝑧) ≔ 𝜙 (𝑧𝜈 (𝑥 ) )

is a holomorphic orbifold chart. Denote by 𝛽𝜈 : (Σ𝜈 , 𝑗𝜈 ) → (Σ, 𝑗) the holomorphic orbifold map

given by 𝑧 ↦→ 𝑧𝜈 (𝑥 ) with respect to these charts. The underlying continuous map of topological

spaces is the identity map Σ→ Σ. •
13For an introduction to complex orbifolds we refer the reader to [Kaw79; FS92, Section 1; KM95, Section 8(ii)].

53



Remark 2.7.2. An orbifold is effective if the local stabilizer group of every point acts effectively.

Every effective orbifold Riemann surface is isomorphic to one constructed as in Definition 2.7.1.

♣
This construction allows us to canonically associate an orbifold cover with every branched

cover of Riemann surfaces.

Proposition 2.7.3. Let (Σ, 𝑗) and (Σ̃, 𝑗) be Riemann surfaces and let 𝜋 : (Σ̃, 𝑗) → (Σ, 𝑗) be a
non-constant holomorphic map. For every 𝑥 ∈ Σ̃ denote by 𝑟 (𝑥) ∈ N the ramification index of 𝜋 at
𝑥 . Define 𝜈 : Σ→ N and 𝜈 : Σ̃→ N by

𝜈 (𝑥) ≔ lcm{𝑟 (𝑥) : 𝑥 ∈ 𝜋−1(𝑥)} and 𝜈 (𝑥) ≔ 𝜈 (𝜋 (𝑥))/𝑟 (𝑥).

Let (Σ̃�̃� , 𝑗) and (Σ𝜈 , 𝑗𝜈 ) be the corresponding orbifold Riemann surfaces constructed in Defini-
tion 2.7.1. There is a unique holomorphic covering map 𝜋 : (Σ̃�̃� , 𝑗�̃� ) → (Σ𝜈 , 𝑗𝜈 ) such that the
diagram

(2.7.4)

(Σ̃�̃� , 𝑗�̃� ) (Σ𝜈 , 𝑗𝜈 )

(Σ̃, 𝑗) (Σ, 𝑗)

𝜋

𝛽�̃� 𝛽𝜈

𝜋

commutes.

Proof. For every 𝑥 ∈ Σ there is a holomorphic chart 𝜙 : D → Σ with 𝜙 (0) = 𝑥 and for every

𝑥 ∈ 𝜋−1(𝑥) there is a holomorphic chart
˜𝜙 : D→ Σ̃ such that

˜𝜙 (0) = 𝑥 and 𝜋 ◦𝜙 (𝑧) = 𝜙 (𝑧𝑟 (�̃� ) ).
There is a unique orbifold map 𝜋 : Σ̃�̃� → Σ𝜈 which is given by the identity map with respect to

the charts 𝜙 �̃� (�̃� ) and 𝜙𝜈 (𝑥 ) . Evidently, this map is holomorphic. It is a covering map because

[D/𝜇�̃� (�̃� ) ] � [(D ×𝜇�̃� (�̃� ) 𝜇𝜈 (𝑥 ) )/𝜇𝜈 (𝑥 ) ]

and the canonical map

D ×𝜇�̃� (�̃� ) 𝜇𝜈 (𝑥 ) → D

is a 𝜇𝜈 (𝑥 )–equivariant covering map. ■

Remark 2.7.5. Every covering map of effective orbifold Riemann surfaces arises from a branched

cover of the underlying smooth Riemann surfaces by the above construction. ♣

2.8 A criterion for the failure of super-rigidity

Proposition 2.8.3 below shows that the orbifoldization process from Definition 2.7.1 does not

affect the kernel and cokernel of real Cauchy–Riemann operators.

Remark 2.8.1. The notion of a real Cauchy–Riemann operators from Definition 2.5.1 can be

easily adapted to the orbifold setting. A complex bundle 𝐸 over an orbifold Riemann surface Σ
is given, in a local orbifold chart D/Γ, where Γ is the local stabilizer group, by a Γ–equivariant
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bundle over the disc D. In this chart, sections of 𝐸 correspond to Γ–equivariant sections over
D. A real Cauchy–Riemann operator is a linear map 𝔡 : Γ(𝐸) → Ω0,1(Σ, 𝐸) which for sections

supported in a local orbifold chart agrees with a Γ–equivariant real Cauchy–Riemann operator

on D. The pullback construction from Definition 2.6.2 generalizes in an obvious way, by pulling

back Γ–equivariant operators in in every orbifold chart. For more details on vector bundles and

elliptic operators over orbifolds, see, for example [Kaw79; Kaw81], [SY19, Sections 2-3]; see also

[Moe02, Section 5] for a groupoid perspective.14 ♣
Definition 2.8.2. Let (Σ, 𝑗) be a Riemann surface with a multiplicity function 𝜈 . Given a complex

vector bundle 𝐸 over Σ and a real Cauchy–Riemann operator 𝔡 : Γ(𝐸) → Ω0,1(Σ, 𝐸), set

𝐸𝜈 ≔ 𝛽∗𝜈𝐸 and 𝔡𝜈 ≔ 𝛽★𝜈 𝔡

with 𝛽★𝜈 𝔡 : Γ(𝐸𝜈 ) → Ω0,1(Σ𝜈 , 𝐸𝜈 ) as in Definition 2.6.2. •
Proposition 2.8.3. If (Σ, 𝑗) is a closed Riemann surface with a multiplicity function 𝜈 , 𝐸 is a
complex vector bundle over Σ, and 𝔡 : Γ(𝐸) → Ω0,1(Σ, 𝐸) is a real Cauchy–Riemann operator, then

ker𝔡𝜈 � ker𝔡 and coker𝔡𝜈 � coker𝔡.

Proof. The pullback map 𝛽∗𝜈 : Γ(𝐸) → Γ(𝐸𝜈 ) induces an injection ker𝔡 ↩→ ker𝔡𝜈 . In fact, this

map is an isomorphism. To see this, the following local consideration suffices. Let 𝑥 ∈ Σ and

set 𝑘 ≔ 𝜈 (𝑥). Define 𝛽 : D→ D by 𝛽 (𝑧) ≔ 𝑧𝑘 . Choose a holomorphic chart 𝜙 : D→ Σ with

𝜙 (0) = 𝑥 and a trivialization of 𝐸 over 𝜙 (D). With respect to these 𝔡 and 𝔡𝜈 can be written as

𝔡 = 𝜕 + 𝔫 and 𝔡𝜈 = 𝜕 + 𝛽∗𝔫

for some 𝔫 ∈ Ω0,1(D, EndR (C𝑟 )). If 𝑠 ∈ 𝐶∞(D,C𝑟 ) is 𝜇𝑘–invariant, then there is a bounded map

𝑠 ∈ 𝐶∞(D\{0},C𝑟 ) such that 𝑠 = 𝑠 ◦ 𝛽 . If (𝜕 + 𝛽∗𝔫)𝑠 = 0, then (𝜕 + 𝔫)𝑠 = 0; hence, 𝑠 extends to

D by elliptic regularity.

Since coker𝔡 � (ker𝔡†)∗ and similarly for 𝔡𝜈 , it suffices to produce an isomorphism ker𝔡† �
ker𝔡

†
𝜈 . The formal adjoints 𝔡† : Ω1,0(Σ, 𝐸∗) → Ω1,1(Σ, 𝐸∗) and 𝔡†𝜈 : Ω1,0(Σ𝜈 , 𝐸

∗
𝜈 ) → Ω1,1(Σ𝜈 , 𝐸

∗
𝜈 )

are real Cauchy–Riemann operators acting on (1, 0)–forms and locally of the form 𝔡† = 𝜕+𝔫 and

𝔡
†
𝜈 = 𝜕 + 𝛽∗𝔫. The pullback map 𝛽∗𝜈 : Ω1,0(Σ, 𝐸) → Ω1,0(Σ𝜈 , 𝐸𝜈 ) induces an injection ker𝔡† ↩→

ker𝔡
†
𝜈 . This map is an isomorphism by the following local consideration. If 𝑠 ∈ 𝐶∞(D,C𝑟 ) is

such that 𝑠 d𝑧 is 𝜇𝑘–invariant, then there is a map 𝑠 ∈ 𝐶∞(D\{0},C𝑟 ) such that 𝑠 = 𝑘𝑧𝑘−1𝑠 ◦ 𝛽 .
If (𝜕 + 𝛽∗𝔫)𝑠 = 0, then (𝜕 + 𝔫)𝑠 = 0 and a consideration of the Taylor expansion of 𝑠 shows that

𝑠 is bounded. Therefore, 𝑠 extends to D and 𝑠 d𝑧 = 𝛽∗(𝑠 d𝑧). ■

This together with the discussion in Section 2.7 leads to the following criterion for the

failure of super-rigidity.

Definition 2.8.4. Let (Σ, 𝑗) be a Riemann surface with a multiplicity function 𝜈 and let 𝑥0 ∈ Σ\𝑍𝜈 .

For every 𝑥 ∈ 𝑍𝜈 there is a conjugacy class of a subgroup 𝜇𝜈 (𝑥 ) ⩽ 𝜋1(Σ𝜈 , 𝑥0), generated by the

homotopy class of a loop in Σ\𝑍𝜈 based at 𝑥0 which is contractible in (Σ\𝑍𝜈 ) ∪ {𝑥} and goes

around 𝑥 once. If 𝑉 is a Euclidean local system on Σ𝜈 , then its monodromy around 𝑥 is the

representation 𝜇𝜈 (𝑥 ) → O(𝑉 ) induced by the monodromy representation. •
14It is worth keeping in mind that a vector bundle over an orbifold does not have to induce a vector bundle over

the underlying topological space; for that reason, some authors prefer the term orbi-bundle.
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Proposition 2.8.5. Let 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) be a simple 𝐽–holomorphic map. If 𝑢 is not super-rigid,
then there are a multiplicity function 𝜈 : Σ→ N and an irreducible Euclidean local system 𝑉 on
Σ𝜈 such that:

(1) the monodromy representation of 𝑉 factors through a finite quotient of 𝜋1(Σ𝜈 , 𝑥0),

(2) 𝑉 has non-trivial monodromy around every point of 𝑍𝜈 , and

(3) the twist
𝔡
𝑉
𝜈 : Γ((𝑁𝑢)𝜈 ⊗ 𝑉 ) → Ω0,1(Σ𝜈 , (𝑁𝑢)𝜈 ⊗ 𝑉 ) with 𝔡 ≔ 𝔡𝑁𝑢,𝐽

has non-trivial kernel.

Proof. Let (Σ̃, 𝑗) be a closed Riemann surface and 𝜋 : (Σ̃, 𝑗) → (Σ, 𝑗) a non-constant holomor-

phic map such that �̃� ≔ 𝑢 ◦ 𝜋 is not rigid, that is: ker𝔡𝑁
�̃�,𝐽

is non-trivial.

Let 𝜋 : (Σ̃�̃� , 𝑗�̃� ) → (Σ𝜈 , 𝑗𝜈 ) be the corresponding holomorphic covering map between

orbifold Riemann surfaces constructed in Proposition 2.7.3. Set 𝔡 ≔ 𝔡𝑁
𝑢,𝐽

and
˜𝔡 ≔ 𝔡𝑁

𝑢◦𝜋,𝐽 . By
Proposition 2.8.3, Proposition 2.6.3, and Proposition 1.2.9,

ker
˜𝔡 � ker

˜𝔡�̃� � ker𝜋∗𝔡𝜈 � ker𝔡
𝜋∗R
𝜈 .

Therefore, ker𝔡
𝜋∗R
𝜈 is non-trivial.

Since 𝜋∗R decomposes into irreducible local systems, there is an irreducible local system 𝑉

such that ker𝔡
𝑉
𝜈 is non-trivial. Define the multiplicity function 𝜈 ′ : Σ→ N by

𝜈 ′(𝑥) ≔
{
𝜈 (𝑥) if 𝑉 has non-trivial monodromy around 𝑥

1 otherwise.

𝑉 descends to an irreducible local system 𝑉 ′ on Σ𝜈 ′ with non-trivial monodromy around every

𝑥 ∈ 𝑍𝜈 ′ . By Proposition 2.8.3, ker𝔡
𝑉 ′

𝜈 ′ � ker𝔡
𝑉
𝜈 . ■

The following index formula is the final preparation required for the proof of Theorem 2.1.13.

Its proof is presented in Section 2.B.

Proposition 2.8.6. Let (Σ, 𝑗) be a closed Riemann surface with a multiplicity function 𝜈 , let 𝐸 be a
complex vector bundle over Σ, and let 𝔡 : Γ(𝐸) → Ω0,1(Σ, 𝐸) a real Cauchy–Riemann operator on
𝐸. If 𝑉 is a Euclidean local system on Σ𝜈 , then

index𝔡
𝑉
𝜈 = dim𝑉 index𝔡 − rkC 𝐸

∑︁
𝑥∈𝑍𝜈

dim(𝑉 /𝑉 𝜌𝑥 ).

Here 𝜌𝑥 denotes the monodromy of 𝑉 around 𝑥 , and 𝑉 𝜌𝑥 ⊂ 𝑉 is the subspace of 𝜌𝑥–invariant
vectors.
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2.9 The loci of failure of super-rigidity

Denote by W♦(𝑀,𝜔) the set of those 𝐽 ∈ J(𝑀,𝜔) for which there exists an index zero 𝐽–

holomorphic embedding 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) which is not super-rigid. To prove Theorem 2.1.13

it remains to prove that W♦(𝑀,𝜔) has codimension at least one in the sense of Definition 2.2.6.

The proof makes use of the moduli spaces introduced in the following two definitions.

Definition 2.9.1. Let 𝑘 ∈ Z and 𝑠 ∈ N0. Denote byMO𝑘,𝑠 (𝑀,𝜔) the space of pairs (𝐽 , [𝑢, 𝑗 ;𝜈])
consisting of an almost complex structure 𝐽 ∈ J(𝑀,𝜔), and an equivalence class [𝑢, 𝑗 ;𝜈] of

(1) a simple 𝐽–holomorphic map 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) of index 𝑘 , and

(2) a multiplicity function 𝜈 : Σ→ N with #𝑍𝜈 = 𝑠

up to reparametrization by Diff (Σ). The set of multiplicity functions 𝜈 is an infinite cover of

the regular subset set of the symmetric product Sym
𝑠 Σ. MO𝑘,𝑠 (𝑀,𝜔) is equipped with the

topology induced by Sym
𝑠 Σ and M(𝑀,𝜔). •

By Proposition 2.8.5, the failure of super-rigidity is detected by the following subsets.

Definition 2.9.2. Let 𝑠 ∈ N0. Denote byW♦,𝑠 (𝑀,𝜔) the subset of those (𝐽 , [𝑢, 𝑗 ;𝜈]) ∈MO0,𝑠 (𝑀,𝜔)
for which there exists an irreducible Euclidean local system 𝑉 on Σ𝜈 such that:

(1) the monodromy representation of 𝑉 factors through a finite quotient of 𝜋1(Σ, 𝑥0),

(2) 𝑉 has non-trivial monodromy around every 𝑥 ∈ 𝑍𝜈 , and

(3) ker𝔡
𝑁,𝑉

𝑢,𝐽 ;𝜈
≠ 0.

Denote byW
top

♦,𝑠 (𝑀,𝜔) the subset of those (𝐽 , [𝑢, 𝑗 ;𝜈]) ∈MO0,𝑠 (𝑀,𝜔) for which there exists 𝑉

with all of the above properties and satisfying additionally:

(4) dim ker𝔡
𝑁,𝑉

𝑢,𝐽 ;𝜈
= 1,

(5) if 𝑉 ′ is any irreducible Euclidean local system on Σ𝜈 not isomorphic to 𝑉 and whose

monodromy representation factors through a finite quotient of 𝜋1(Σ, 𝑥0), then

dim ker𝔡
𝑁,𝑉 ′

𝑢,𝐽 ;𝜈
= 0.

(6) if 𝑛 = 3, then dim(𝑉 /𝑉 𝜌𝑥 ) = 1 for every 𝑥 ∈ 𝑍𝜈 ; otherwise, 𝑠 = 0. •

To prove that W♦(𝑀,𝜔) has codimension at least one, we will verify that condition (3.c)

from Definition 2.2.6 holds; the other conditions are verified in the same way as in the proof of

Theorem 2.4.2. To that end, consider, as in the proof of Proposition 2.6.1, a point (𝐽0, [𝑢0, 𝑗0]) ∈
M0(𝑀,𝜔) with 𝑢0 being an embedding, and a sequence 𝜀 ∈ 𝔰 converging to zero. Let V

be an open neighborhood of (𝐽0, [𝑢0, 𝑗0]) in the universal moduli space of simple maps over

U = U(𝑀,𝜔 ; 𝐽0, 𝜀) ⊂ J(𝑀,𝜔).
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Notation 2.9.3. Given a subset V ⊂M𝑘 (𝑀,𝜔), denote by MO𝑘,𝑠 (V), W♦,𝑠 (V), and Wtop

♦,𝑠 (V)
the subsets of the corresponding spaces consisting of (𝐽 , [𝑢, 𝑗 ;𝜈]) such that (𝐽 , [𝑢, 𝑗]) ∈ V. ◦

In the situation at hand, we equip these spaces with the topology induced from the Banach

space topology on U. We can choose 𝜀,U, and V so that the following hold:

• V maps ontoU under the projectionM0(𝑀,𝜔) → J(𝑀,𝜔).

• For every (𝐽 , [𝑢, 𝑗]) ∈ V the map 𝑢 is an embedding.

• V is liftable in the sense that there is an Aut(Σ, 𝑗0)–invariant sliceS of Teichmüller space

through 𝑗0 such that for every (𝐽 , [𝑢, 𝑗]) ∈ V there is a unique lift 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 )
with 𝑗 ∈ S.

• MO0,𝑠 (V) is a Banach manifold and the map Π0,𝑠 : MO0,𝑠 (V) → U is a Fredholm map

of index 2𝑠 . (The existence of 𝜀 andV satisfying this condition is proved in the same way

as Theorem 2.4.2.)

Proposition 2.9.4. For every 𝑠 ∈ N0 there is a closed subset WΛ
♦,𝑠 (V) ⊂ MO0,𝑠 (V) of infinite

codimension such that the following hold:

(1) W
top

♦,𝑠 (V)\WΛ
♦,𝑠 (V) is contained in a submanifold of codimension 2𝑠 + 1.

(2) W♦,𝑠 (V)\(Wtop

♦,𝑠 (V) ∪WΛ
♦,𝑠 (V)) has codimension at least 2𝑠 + 2.

Proof. As in the proof of Proposition 2.6.1, the operators 𝔡𝑁
𝑢,𝐽 ;𝜈

: Γ((𝑁𝑢)𝜈 ) → Ω0,1(Σ𝜈 , (𝑁𝑢)𝜈 )
for (𝐽 , [𝑢, 𝑗, 𝜈]) ∈ V can be regarded as a family of linear elliptic operators

𝔡 : V → F(𝑊 1,2Γ(𝐸), 𝐿2Γ(𝐹 ))

as in Definition 1.1.1.

Let𝑉
1
,𝑉

2
be a pair of non-isomorphic irreducible Euclidean local systemwhose monodromy

representation factors through a finite quotient of 𝜋1(Σ, 𝑥0) and consider𝔙 as in Situation 1.3.1

consisting of𝑉
1
and𝑉

2
. Denote byWΛ

♦,𝑠 ;𝔙
(V) the subset of those 𝑝 ≔ (𝐽 , [𝑢, 𝑗]) ∈ V for which

the map Λ𝔙
𝑝 defined in Theorem 1.3.5 fails to be surjective. The argument from the proof of

Proposition 2.6.1 shows that WΛ
♦,𝑠 ;𝔙
(V) is a closed subset of infinite codimension. The union of

these subsets is WΛ
♦,𝑠 (V). For 𝑑 ∈ N2

0
set

W𝑑
♦,𝑠 ;𝔙
(V) ≔

{
(𝐽 , [𝑢, 𝑗]) ∈ U\WΛ

♦,𝑠 ;𝔙
(V) : dimK𝛼

ker𝔡
𝑁,𝑉

𝛼

𝑢,𝐽 ;𝜈
= 𝑑𝛼 for 𝛼 = 1, 2

}
.

By Theorem 1.3.5, W𝑑
♦,𝑠 ;𝔙
(V) is a submanifold of codimension

codimW𝑑
♦,𝑠 ;𝔙
(V) =

2∑︁
𝛼=1

𝑘𝛼𝑑𝛼 (𝑑𝛼 − 𝑖𝛼 ) with 𝑖𝛼 ≔ indexK𝛼
𝔡
𝑁,𝑉

𝛼

𝑢,𝐽 ;𝜈
.

By Proposition 2.8.6,

𝑖𝛼 ≔ indexK𝛼
𝔡
𝑁,𝑉

𝛼

𝑢,𝐽 ;𝜈
⩽ −(𝑛 − 1)

∑︁
𝑥∈𝑍𝜈

dimK𝛼
(𝑉𝛼/𝑉 𝜌𝑥

𝛼 ).
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If 𝑉
𝛼
has non-trivial monodromy around every 𝑥 ∈ 𝑍𝜈 , then 𝑖𝛼 ⩽ −(𝑛 − 1)𝑟 . Therefore, if

𝑑𝛼 ⩾ 1, then

codimW𝑑
♦,𝑠 ;𝔙
(V) ⩾ (𝑛 − 1)𝑠 + 1 ⩾ 2𝑠 + 1.

W♦,𝑠 (V)\WΛ
♦,𝑠 (V) is the union of countably many subsets of the form W𝑑

♦,𝑠 ;𝔙
(V) with at least

one 𝛼 = 1, 2 as above. Therefore, it has codimension at least 2𝑠 + 1.

Analysing the chain of inequalities shows that codimW𝑑
♦,𝑠 ;𝔙
(V) = 2𝑠 + 1 if and only if there

is an 𝛼 = 1, 2 such that:

(1) 𝑑𝛼 = 1, K𝛼 = R and 𝑑𝛽 = 0 for 𝛽 ≠ 𝛼 , and

(2) if 𝑛 = 3, then dim(𝑉𝛼/𝑉 𝜌𝑥
𝛼 ) = 1 for every 𝑥 ∈ 𝑍𝜈 ; otherwise, 𝑍𝜈 = ∅.

The union of these subsets isW
top

♦,𝑠 (V)\WΛ
♦,𝑠 (V); hence: (1) holds. Furthermore, onlyW𝑑

♦,𝑠 ;𝔙
(V)

of codimension at least 2𝑠+2 are required to coverW♦,𝑠 (V)\(Wtop

♦,𝑠 (V)∪WΛ
♦,𝑠 (V)). This implies

(2). ■

Proof of Theorem 2.1.13. The subset of 𝐽 ∈ J(𝑀,𝜔) which fail to be super-rigid is

W⩾0(𝑀,𝜔) ∪W↩→(𝑀,𝜔) ∪W♦(𝑀,𝜔).

The first two subsets have already been shown to have codimension at least two. To show

thatW♦(𝑀,𝜔) has codimension at least one, observe that, the intersection ofW♦(𝑀,𝜔) with
U = U(𝑀,𝜔 ; 𝐽0, 𝜀) is contained in ⋃

𝑠∈N0

Π0,𝑠 (W♦,𝑠 (V)) .

This verifies condition (3.c) from Definition 2.2.6 since Π𝑠,0 has index 2𝑠 and, by Proposition 2.9.4,

W♦,𝑠 (V) has codimension at least 2𝑠 + 1 inU. ■

2.10 Super-rigidity along paths of almost complex structures

The following describes in detail how super-rigidity may fail along a generic path of almost

complex structures. In what follows, it is convenient to use the fibered product notation. Given
continuous maps of topological spaces 𝑓 : 𝑋 → 𝑍 and 𝑔 : 𝑌 → 𝑍 , the fibered product of 𝑋 and

𝑌 along 𝑍 is

𝑋 ×𝑍 𝑌 = {(𝑥,𝑦) ∈ 𝑋 × 𝑌 : 𝑓 (𝑥) = 𝑔(𝑦)}.
Definition 2.10.1. LetJ(𝑀,𝜔) be the space of paths J : [0, 1] → J(𝑀,𝜔) which are smooth

as a section over [0, 1] ×𝑀 . EquipJ(𝑀,𝜔) with the 𝐶∞ topology.

For J ∈ J(𝑀,𝜔) set 𝐽𝑡 ≔ J(𝑡). Denote byJ♦(𝑀,𝜔) the subset of all J ∈ J(𝑀,𝜔) for which
the following conditions hold:

(1) The 1–parameter moduli space of pseudo-holomorphic maps

M0(𝑀, J) ≔ [0, 1] ×J (𝑀,𝜔 ) M0(𝑀,𝜔),

is a 1–dimensional manifold with boundary. Here the fibered product is taken with respect

to the path J : [0, 1] → J(𝑀,𝜔) and the projectionM0(𝑀,𝜔) → J(𝑀,𝜔).

59



(2) For every 𝑡 ∈ [0, 1] the following hold:

(a) Every simple 𝐽𝑡–holomorphic map has non-negative index.

(b) Every simple 𝐽𝑡–holomorphic map of index zero is an embedding, and every two

simple 𝐽𝑡–holomorphic maps of index zero either have disjoint images or are related

by a reparametrization.

(3) The set 𝐼♦ of those 𝑡 ∈ [0, 1] for which 𝐽𝑡 fails to be super-rigid is countable; moreover,

𝑡 ∈ 𝐼♦ if and only if

𝐽𝑡 ∈
⋃
𝑠∈N0

Π0,𝑠 (Wtop

♦,𝑠 (𝑀,𝜔)) . •

Theorem 2.10.2 (cf. [Wen19b, Section 2.4]). J♦(𝑀,𝜔) is a comeager subset ofJ(𝑀,𝜔).

Proof of Theorem 2.10.2. The set of J satisfying conditions (1) and (2) from Definition 2.10.1 is

comeager by the same arguments as in the proofs of Theorem 2.4.2 and Theorem 2.4.3; this is

standard.

By Proposition 2.2.7, to prove that condition (3) from Definition 2.10.1 is satisfied for J
from a comeager set it suffices to consider the following local situation. Fix J0, 𝜀 ∈ 𝔰, and

𝑡0 ∈ [0, 1], and let U(𝑀,𝜔 ; J0; 𝜀) be the 𝐶𝜀
neighborhood of J0 in J(𝑀,𝜔); here we think of

elements ofJ(𝑀,𝜔) as sections over [0, 1] ×𝑀 and define the 𝐶𝜀
topology in the same way

as in Definition 2.2.3 and Definition 2.2.5, with 𝑀 replaced by [0, 1] ×𝑀 . Let V be an open

subset of the universal moduli space of simple index zero maps overU(𝑀,𝜔, J0(𝑡0), 𝜀), with the

properties listed in Section 2.9. For a sufficiently small open neighborhood 𝐼 ⊂ [0, 1] of 𝑡0, there
is a well-defined evaluation map

ev : 𝐼 ×U(𝑀,𝜔 ; J0; 𝜀) → U(𝑀,𝜔 ; J0(𝑡0); 𝜀)
ev(𝑡, J) ≔ J(𝑡),

which is a submersion of Banach manifolds. By Proposition 2.9.4, the preimage of⋃
𝑠∈N0

Π0,𝑠 (W♦,𝑠 (V)\(Wtop

♦,𝑠 (V) ∪W
Λ
♦,𝑠 (V)))

under the evaluation map has codimension at least two in 𝐼 ×U(𝑀,𝜔 ; J0; 𝜀). Therefore, its image

in U(𝑀,𝜔 ; J0; 𝜀) has codimension at least one; that is: a generic path in U(𝑀,𝜔 ; J0; 𝜀) either
avoids the subsets Π0,𝑠 (W♦,𝑠 (V)) or intersects them at one of the subsets Π0,𝑠 (Wtop

♦,𝑠 (V)). The
set of points 𝑡 ∈ 𝐼 at which the latter happens is codimension one in 𝐼 , and therefore countable.

■

2.A The normal Cauchy–Riemann operator

The normal Cauchy–Riemann operator for embedded 𝐽–holomorphic maps can be traced back

to the work of Gromov [Gro85, 2.1.B]. It was observed by Ivashkovich and Shevchishin [IS99,

Section 1.3] that the normal Cauchy–Riemann operator can be defined even for non-embedded
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𝐽–holomorphic maps, and that it plays an important role in understanding the deformation

theory of 𝐽–holomorphic curves; see also [Wen10, Section 3]. In this section we will briefly

explain the construction of 𝑇𝑢 and 𝑁𝑢, and discuss the proof of Proposition 2.1.7.

Definition 2.A.1. Let 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) be a non-constant 𝐽–holomorphic map. Denote by

𝔡𝑢,𝐽 the linearization of the 𝐽–holomorphic map equation introduced in (2.1.5). Denote by 𝜕𝑢,𝐽
the complex linear part of 𝔡𝑢,𝐽 . This is a complex Cauchy–Riemann operator and gives 𝑢∗𝑇𝑀
the structure of a holomorphic vector bundle

E ≔ (𝑢∗𝑇𝑀, 𝜕𝑢,𝐽 ) .

Denote byTΣ the tangent bundle of Σ equipped with its natural holomorphic structure. The

derivative of 𝑢 induces a holomorphic map d𝑢 : TΣ→E. The quotient of this map, thought of

as a morphism of sheaves,

Q ≔E/TΣ

is a coherent sheaf on Σ. Denote by Tor(Q) the torsion subsheaf of Q. The quotient

N𝑢 ≔ Q/Tor(Q)

is torsion-free; hence: locally free. The corresponding holomorphic vector bundle (𝑁𝑢, 𝜕𝑁𝑢) is
called the generalized normal bundle of 𝑢. The kernel

T𝑢 ≔ ker(E →N𝑢) .

also is locally free. The corresponding holomorphic vector bundle (𝑇𝑢, 𝜕𝑇𝑢) is called the

generalized tangent bundle of 𝑢. •

Proposition 2.A.2. Denote by 𝐷 the divisor of critical points of d𝑢 counted with multiplicty. There
is a short exact sequence

0→ TΣ→ T𝑢 → O𝐷 → 0;

in particular:
T𝑢 � TΣ(𝐷).

Proof. The following commutative diagram summarizes the construction ofT𝑢 and N𝑢:

Tor(Q)

TΣ E Q

T𝑢 E N𝑢

T𝑢/TΣ.
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Since the columns and rows are exact sequences, it follows from the Snake Lemma that

Tor(Q) � T𝑢/TΣ.

Thus it remains to prove that Tor(Q) � O𝐷 . This is a consequence of the fact that near a critical

point 𝑧0 of order 𝑘 we can write d𝑢 as (𝑧 − 𝑧0)𝑘 𝑓 (𝑧) with 𝑓 (𝑧0) ≠ 0. ■

Proposition 2.A.3. Let𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) be a non-constant 𝐽–holomorphic map. If 𝜋 : (Σ̃, 𝑗) →
(Σ, 𝑗) is a non-constant holomorphic map and �̃� ≔ 𝑢 ◦ 𝜋 , then

T�̃� � 𝜋∗T𝑢 and N�̃� � 𝜋∗N𝑢.

The corresponding isomorphism of vector bundles 𝑁�̃� � 𝜋∗𝑁𝑢 induces a commutative diagram

Γ(Σ̃, 𝑁�̃�) Ω0,1(Σ̃, 𝑁�̃�)

Γ(Σ̃, 𝜋∗𝑁𝑢) Ω0,1(Σ̃, 𝜋∗𝑁𝑢).

�

𝔡𝑁
�̃�,𝐽

�

𝜋★𝔡𝑁
𝑢,𝐽

Proof. T𝑢 ⊂ E is the minimal locally free subsheaf which contains the image of TΣ ↩→E. Set

˜E ≔ (�̃�∗𝑇𝑀, 𝜕�̃�, 𝑗 ). There is a canonical isomorphism
˜E � 𝜋∗E. Through this identification,

𝜋∗T𝑢 can be regarded as a subsheaf of
˜E. It is locally free and contains the image of TΣ̃ ↩→ ˜E.

Therefore, T�̃� � 𝜋∗T𝑢. This also implies thatN�̃� � ˜E/T�̃� � 𝜋∗(E/T𝑢) � 𝜋∗N𝑢.
That the isomorphism 𝑁�̃� � 𝜋∗𝑁𝑢 identifies 𝜋∗𝔡𝑁

𝑢,𝐽
and 𝔡𝑁

�̃�,𝐽
is evident away from the

set of critical points of 𝜋 . Since the latter is nowhere dense, the operators are identified

everywhere. ■

Proof of Proposition 2.1.7. Let S be an Aut(Σ, 𝑗)–invariant local slice of the Teichmüller space

T(Σ) through 𝑗 . Recall that d𝑢,𝑗 𝜕𝐽 : Γ(𝑢∗𝑇𝑀) ⊕ 𝑇𝑗S → Ω0,1(Σ, 𝑢∗𝑇𝑀) is the linearization of

𝜕𝐽 , defined in (2.1.2), restricted to 𝐶∞(Σ, 𝑀) × S. Denote by 𝑇𝑢 the complex vector bundle

underlyingT𝑢 and by 𝑁𝑢 the complex vector bundle underlyingN𝑢. As was mentioned before

Definition 2.1.6, 𝑇𝑢 ⊂ 𝑢∗𝑇𝑀 is the unique complex subbundle of rank one containing d𝑢 (𝑇Σ).
Using a Hermitian metric on 𝑢∗𝑇𝑀 we obtain an isomorphism

𝑢∗𝑇𝑀 � 𝑇𝑢 ⊕ 𝑁𝑢.

With respect to this splitting 𝔡𝐽 ,𝑢 , the restriction of d𝑢,𝑗 𝜕𝐽 to Γ(𝑢∗𝑇𝑀), can be written as

𝔡𝐽 ,𝑢 =

(
𝔡𝑇
𝑢,𝐽

∗
† 𝔡𝑁

𝑢,𝐽

)
with 𝔡𝑁

𝑢,𝐽
denoting the normal Cauchy–Riemann operator introduced in Definition 2.1.6. Since

𝜕𝑢,𝐽 ◦ d𝑢 = d𝑢 ◦ 𝜕𝑇Σ and T𝑢 � TΣ(𝐷),

it follows that

𝔡𝑇𝑢,𝐽 = 𝜕𝑇𝑢 and † = 0.
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Denote by 𝜄 : 𝑇𝑗S→ Ω0,1(Σ, 𝑢∗𝑇𝑀) the restriction of d𝑢,𝑗 𝜕𝐽 to 𝑇𝑗S. The tangent space to the

Teichmüller space T(Σ) at [ 𝑗] can be identified with coker 𝜕𝑇Σ � ker 𝜕∗
𝑇Σ. With respect to this

identification, 𝜄 is the restriction of d𝑢 : 𝑇Σ→ 𝑢∗𝑇𝑀 to ker 𝜕∗
𝑇Σ. Consequently, we can write

d𝑢,𝑗 𝜕𝐽 : Γ(𝑇𝑢) ⊕ 𝑇𝑗S ⊕ Γ(𝑁𝑢) → Γ(𝑇𝑢) ⊕ Γ(𝑁𝑢) as

d𝑢,𝑗 𝜕𝐽 =

(
𝜕𝑇𝑢 𝜄 ∗
0 0 𝔡𝑁

𝑢,𝐽

)
.

The short exact sequence

0→ TΣ→ T𝑢 → O𝐷 → 0

induces the following long exact sequence in cohomology

0→ 𝐻 0(TΣ) → 𝐻 0(T𝑢) → 𝐻 0(O𝐷 ) → 𝐻 1(TΣ) → 𝐻 1(T𝑢) → 0.

It follows that

index 𝜕𝑇𝑢 = 2𝜒 (T𝑢) = 2𝜒 (TΣ) + 2ℎ0(O𝐷 ) = index 𝜕𝑇Σ + 2𝑍 (d𝑢),

and, moreover, that ker 𝜕𝑇Σ → ker 𝜕𝑇𝑢 is injective, and coker 𝜕𝑇Σ → coker 𝜕𝑇𝑢 is surjective. The

latter implies that 𝜕𝑇𝑢 ⊕ 𝜄 is surjective. Therefore, there is an exact sequence

0→ ker 𝜕𝑇𝑢 ⊕ 𝜄 → ker d𝑢,𝑗 𝜕𝐽 → ker𝔡𝑁𝑢,𝐽 → 0,

and an isomorphism

coker d𝑢,𝑗 𝜕𝐽 � coker𝔡𝑁𝑢,𝐽 .

The kernel of 𝜕𝑇𝑢 ⊕ 𝜄 contains 𝔞𝔲𝔱(Σ, 𝑗) = ker 𝜕𝑇Σ and

dim ker 𝜕𝑇𝑢 ⊕ 𝜄 = index 𝜕𝑇𝑢 ⊕ 𝜄
= index 𝜕𝑇𝑢 + dim𝑇𝑗S

= index 𝜕𝑇Σ + dim𝑇𝑗S + 2𝑍 (d𝑢)
= dim𝔞𝔲𝔱(Σ, 𝑗) + 2𝑍 (d𝑢) .

This completes the proof of Proposition 2.1.7. ■

2.B Orbifold Riemann–Roch formula

The purpose of this section is to prove Proposition 2.8.6. The proof relies on Kawasaki’s orbifold

Riemann–Roch theorem [Kaw79] and a result due to Ohtsuki [Oht82]. The Riemann–Roch

theorem for complex orbifolds is not easy to digest; however, for orbifold Riemann surfaces it

simplifies significantly and can be proved by an elementary argument based on the discussion

in [FS92, Section 1; NS95, Section 1B; KM95, Sections 8(ii)–(iii)].

This argument relies on the following local considerations. Let 𝜌 : 𝜇𝑘 → GL(𝑉 ) be a

representation and let 𝜇𝑘 act on D ×𝑉 via 𝜁 · (𝑧, 𝑣) ≔ (𝜁𝑧, 𝜌 (𝜁 )𝑣).

𝑉𝜌 ≔ [(D ×𝑉 )/𝜇𝑘 ]
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is a vector bundle over [D/𝜇𝑘 ]. In fact, up to isomorphism, every vector bundle over [D/𝜇𝑘 ] is
of this form. 𝑉𝜌 and 𝑉𝜎 are isomorphic if and only if the representations 𝜌 and 𝜎 are. However,

if 𝜌 is a complex representation, then the restriction 𝑉𝜌 to ¤D ≔ [(D\{0})/𝜇𝑘 ] is trivial. This is
a consequence of the fact that GL𝑟 (C) is connected; more concretely, it can be seen as follows.

Choose an isomorphism 𝑉 � C𝑟
with respect to which 𝜌 is diagonal; that is:

(2.B.1) 𝜌 (𝜁 ) =
©«
𝜁𝑤1

. . .

𝜁𝑤𝑟

ª®®¬
for𝑤 ∈ (Z/𝑘Z)𝑟 . A choice of lift of𝑤 to �̃� ∈ Z𝑟

extends 𝜌 to a representation 𝜌 : C∗ → GL(𝑉 ).
The (inverse of the) map 𝜂 : 𝑉𝜌 | ¤D → ¤D ×𝑉 defined by

(2.B.2) 𝜂 ( [𝑧, 𝑣]) ≔ [𝑧, 𝜌 (𝑧−1)𝑣]

trivializes 𝑉𝜌 over ¤D. The trivial bundle over [D/𝜇𝑘 ] with fiber 𝑉 and the bundle 𝑉𝜌 → [D/𝜇𝑘 ]
have canonical holomorphic structures. Denote by V and V𝜌 the corresponding sheaves

of holomorphic orbifold sections. The map 𝜂 is holomorphic with respect to the canonical

holomorphic structures. If �̃� is chosen in (−𝑘, 0]𝑟 , then𝜂 induces a sheaf morphism𝜂 : V𝜌 →V.

To see this, observe that if 𝑠 is a germ of a section ofV𝜌 at [0], then 𝜂 (𝑠) is bounded and thus

defines a germ of a section of V at [0]. Evidently, 𝜂 is injective. Furthermore, it fits into the

exact sequence

(2.B.3) V𝜌 ↩→V ↠ 𝑉 /𝑉 𝜌 ⊗ O0.

Here O0 denotes the structure sheaf of the point [0]. To see this it suffices to consider the

case 𝑟 = 1. A germ of a section of V𝜌
at [0] is nothing but a germ of a holomorphic map

𝑠 : D→ Cwhich is 𝜇𝑘–equivariant; that is: 𝑠 (𝜁𝑧) = 𝜁𝑤𝑠 (𝑧) for every 𝜁 ∈ 𝜇𝑘 . The map 𝜂 is given

by (𝜂𝑠) (𝑧) ≔ 𝑧−�̃�𝑠 (𝑧). If 𝑤 = 0, then 𝜂 is the identity and the final map in (2.B.3) is trivial. If

𝑤 ≠ 0, then the final map in (2.B.3) is the evaluation map at 0. The Taylor expansion of a germ

of a 𝜇𝑘–invariant holomorphic map 𝑡 : D→ C involves powers of 𝑧𝑘 . Therefore, if 𝑡 vanishes

at 0, then 𝑠 ≔ 𝑧�̃�𝑡 is a germ of a 𝜇𝑘–equivariant holomorphic map such that 𝜂𝑠 = 𝑡 . (Here it is

crucial that �̃� ⩾ −𝑘 .)

Definition 2.B.4. Let (Σ, 𝑗) be a Riemann surface with a multiplicity function 𝜈 and letE =

(𝐸, 𝜕) be a holomorphic vector bundle over Σ. Define (Σ𝜈 , 𝑗𝜈 ) and 𝛽𝜈 : (Σ𝜈 , 𝑗𝜈 ) → (Σ, 𝑗) as
in Definition 2.7.1 and set E𝜈 ≔ 𝛽∗𝜈E. Let 𝜌 = (𝜌𝑥 : 𝜇𝜈 (𝑥 ) → GL(𝐸𝑥 ))𝑥∈𝑍𝜈

be a collection of

representations. A Hecke modification ofE𝜈 of type 𝜌 consists of a holomorphic vector bundle

E𝜈,𝜌 over Σ𝜈 together with a holomorphic map

𝜂 : E𝜈,𝜌 |Σ𝜈\𝑍𝜈
→E𝜈 |Σ𝜈\𝑍𝜈

such that for every 𝑥 ∈ 𝑍𝜈 with respect to suitable holomorphic trivializations ofE𝜈,𝜌 andE𝜈

around 𝑥 the map 𝜂 is of the form (2.B.2) with 𝜌 = 𝜌𝑥 and �̃� ∈ (−𝑘, 0]𝑟 . •

Remark 2.B.5. It is evident from the preceding discussion that every holomorphic vector bundle

on (Σ𝜈 , 𝑗𝜈 ) can be obtained by a Hecke modification. ♣
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Theorem 2.B.6 (Orbifold Riemann–Roch Formula [Kaw79]). In the situation of Definition 2.B.4,

𝜒 (E𝜈,𝜌 ) = 𝜒 (E𝜈 ) −
∑︁
𝑥∈𝑍𝜈

dimC(𝐸𝑥/𝐸𝜌𝑥𝑥 ) .

Proof. The exact sequence (2.B.3) induces the exact sequence

E𝜈,𝜌 ↩→E𝜈 ↠
⊕
𝑥∈𝑍𝜈

(𝐸𝑥/𝐸𝜌𝑥𝑥 ) ⊗ O𝑥 .

This immediately implies the assertion. ■

The proof of Proposition 2.8.6 requires one more piece of preparation. In the situation of

Definition 2.B.4, ifE𝜈,𝜌 carries a holomorphic flat connection ∇𝜈,𝜌 , then it induces a meromor-

phic flat connection ∇𝜈 onE with simple poles. With respect to suitable local holomorphic

coordinates and trivializations around 𝑥

∇𝜈 = d + Res𝑥 (∇𝜈 )
d𝑧

𝑧
with Res𝑥 (∇𝜈 ) ≔

1

𝜈 (𝑥)
©«
�̃�1(𝑥)

. . .

�̃�𝑟 (𝑥)

ª®®¬ .
Here �̃�𝑖 (𝑥) are as in the discussion preceding Definition 2.B.4. By (a very special case of) [Oht82,

Theorem 3], the degree of 𝐸 and the residues Res𝑥 (∇𝜈 ) are related by

(2.B.7) deg𝐸 = −
∑︁
𝑥∈𝑍𝜈

tr Res𝑥 (∇) = −
∑︁
𝑥∈𝑍𝜈

𝑟∑︁
𝑖=1

�̃�𝑖 (𝑥)
𝜈 (𝑥) .

Proof of Proposition 2.8.6. Set 𝑉 C ≔ 𝑉 ⊗ C and 𝑉 C ≔ 𝑉 ⊗ C. For every 𝑥 ∈ 𝑍𝜈 denote by

𝜌C𝑥 : 𝜇𝜈 (𝑥 ) → GLC(𝑉 C) the complexification of the monodromy representation of 𝑉 around

𝑥 . There is a holomorphic vector bundle V over Σ such that 𝑉 C � V𝜈,𝜌C . Equip 𝐸 with the

holomorphic structure 𝜕 satisfying 𝔡 = 𝜕 + 𝔫 with 𝔫 ∈ Ω0,1(Σ, EndC(𝐸)).
By Theorem 2.B.6 and the classical Riemann–Roch formula,

index𝔡
𝑉
𝜈 = 2𝜒 (E𝜈 ⊗C 𝑉

C)
= 2𝜒 (E𝜈 ⊗C V) − 2 rkC 𝐸

∑︁
𝑧∈𝑍𝜈

dim(𝑉 /𝑉 𝜌𝑥 )

= dim𝑉 index𝔡 + 2 rkC 𝐸
(
degV −

∑︁
𝑧∈𝑍𝜈

dim(𝑉 /𝑉 𝜌𝑥 )
)
.

Therefore, it remains prove that

degV =
1

2

∑︁
𝑧∈𝑍𝜈

dim(𝑉 /𝑉 𝜌𝑥 ) .

Let 𝑘 ∈ N. The complexification of the trivial representation 𝜌0 : 𝜇𝑘 → GL(R) is the trivial
representation 𝜌C

0
: 𝜇𝑘 → GLC(C). Therefore, the corresponding weight in (−𝑘, 0] is 0. For
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𝑤 ∈ Z/𝑘Z the complexification of the representation 𝜌𝑤 : 𝜇𝑘 → GL(C) defined by 𝜌𝑤 (𝜁 ) ↦→ 𝜁𝑤

is the representation 𝜌C𝑤 : 𝜇𝑘 → GLC(C2) defined by

𝜌C(𝜁 ) ≔
(
𝜁𝑤

𝜁 −𝑤

)
.

Therefore, the corresponding weights in (−𝑘, 0] are of the form �̃� and −(�̃� + 𝑘). It follows
from this discussion that for every representation 𝜇𝑘 → GL(𝑉 ) the sum of the weights of the

complexification is −𝑘
2

dim(𝑉 /𝑉 𝜌 ). This combined with (2.B.7) proves the desired identity for

degV. ■
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