
A compactness theorem for Fueter sections

Thomas Walpuski

2017-03-01

Abstract

We prove that a sequence of Fueter sections of a bundle of compact hyperkähler manifolds

X over a 3–manifold M with bounded energy converges (after passing to a subsequence)

outside a 1–dimensional closed recti�able subset S ⊂ M . The non-compactness along S
has two sources: (1) Bubbling-o� of holomorphic spheres in the �bres of X transverse to a

subset Γ ⊂ S , whose tangent directions satisfy strong rigidity properties. (2) The formation of

non-removable singularities in a set of H1
–measure zero. Our analysis is based on the ideas

and techniques that Lin developed for harmonic maps [Lin99]. These methods also apply

to Fueter sections on 4–dimensional manifolds; we discuss the corresponding compactness

theorem in an appendix. We hope that the work in this paper will provide a �rst step towards

extending the hyperkähler Floer theory developed by Hohloch, Noetzel, and Salamon [HNS09]

and Salamon [Sal13] to general target spaces. Moreover, we expect that this work will �nd

applications in gauge theory in higher dimensions.

1 Introduction

Let M be an orientable Riemannian 3–manifold, let X
π
−→ M be a bundle of hyperkähler manifolds

together with a �xed isometric identi�cation I : STM → H(X) of the unit tangent bundle in M
and the bundle of hyperkähler spheres1 of the �bres of X, and �x a connection on X.

De�nition 1.1. A section u ∈ Γ(X) is called a Fueter section if

(1.2) Fu :=

3∑
i=1

I (vi )∇viu = 0 ∈ Γ(u∗VX)

for some local orthonormal frame (v1,v2,v3).2 Here ∇u ∈ Ω1(M,u∗VX) is the covariant derivative

ofu, a 1–form taking values in the pull-back of the vertical tangent bundleVX := ker (dπ : TX → TM).
The operator F is called the Fueter operator.

1Given a hyperkähler manifold (X ,д, I1, I2, I3), for each ξ = (ξ1, ξ2, ξ3) ∈ S2 ⊂ R3
, Iξ :=

∑
3

i=1
ξi Ii is a complex

structure. The set H(X ) := {Iξ : ξ ∈ S2} is called the hyperkähler sphere of X .

2Of course, F does not depend on the choice of (v1,v2,v3).
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The Fueter operator is a non-linear generalisation of the Dirac operator, see Taubes [Tau99]

and Haydys [Hay14, Section 3].

Remark 1.3. A construction similar to (1.2) also exists in dimension four. Since it is more involved,

we relegate its discussion to Appendix B.

Example 1.4. Choose a spin structure s onM . IfX = /S , I is the Cli�ord multiplication and∇ denotes

the induced spin connection, then the Fueter operator is simply the Dirac operator associated with

s.

Example 1.5. Let (X ,д, I1, I2, I3) be a hyperkähler manifold and (v1,v2,v3) a orthonormal frame of

M . A map u : M → X satisfying

(1.6) Fu =
3∑
i=1

Iidu(vi ) = 0

is called a Fueter map. In a local trivialisation the Fueter equation for sections of X, takes the

form (1.6) up to allowing for the Ii to depend on x ∈ M and admitting a lower order perturbation

(coming from the connection 1–form).

One of the main motivations for studying Fueter sections is the work of Hohloch, Noetzel, and

Salamon [HNS09], who introduced a functional whose critical points are precisely the solution of

(1.6) and developed the corresponding Floer theory in the case when the target X is compact and

�at, and the frame on M is divergence free and regular,3 see also Salamon [Sal13]. The requirement

that X be �at is very severe and one would like to remove it. It has been conjectured that the

putative hyperkähler Floer theory should be very rich and interesting, especially in the case when

X is a K3 surface.

A further source of motivation is gauge theory on G2– and Spin(7)–manifolds. Here, Fueter

sections of bundles of moduli spaces of ASD instantons naturally appear in relation with codimen-

sion four bubbling phenomena for G2– and Spin(7)–instantons; see Donaldson–Segal [DS11] and

the author [Wal17; Wal16] for further details.

Remark 1.7. Sonja Hohloch brought to the author’s attention a cryptic remark in Kontsevich and

Soibelman [KS08, Section 1.5 Question 3], which indicates that their invariants of 3D Calabi–Yau

categories with stability structure can be interpreted as “quaternionic Gromov–Witten invariants”

of certain hyperkähler manifold M, which means as a count of Fueter maps from some 4–manifold

to M.

A major issue when dealing with Fueter sections is the potential failure of compactness. This

is demonstrated by the following example due to Hohloch, Noetzel, and Salamon.

Example 1.8. Consider a K3 surface X with a hyperkähler structure such that (X , I1) admits a

non-trivial holomorphic sphere z : S2 → X and take M = SU(2), the unit-sphere in the quaternions

3Every 3–manifold admits a divergence free frame by Gromov’s h–principle [Sal13, Theorem A.1]. A frame is regular

if there are no non-constant Fueter maps M → H with respect to this frame; this is a generic condition,.
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H, with a left-invariant frame (v1,v2,v2) which at id ∈ SU(2) it is given by (i, j,k). Let ·̄ : S2 → S2

denote complex conjugation on S2 = P1
. Let π : S3 → S2

denote the Hopf �bration whose �bres

are the orbits of v1. It is easy to check that u = z ◦ ·̄ ◦ π : S3 → X satis�es

∂v1
u = 0 and ∂v2

u − I∂v3
u = 0,

and thus u is a Fueter map. For λ > 0 de�ne a conformal map sλ : S2 → S2
by sλ(x) = λx for

x ∈ R2 ⊂ S2
and sλ(∞) = ∞. Now, the family of Fueter maps uλ := z ◦ sλ ◦ π blows up along the

Hopf circle π−1(∞) as λ ↓ 0 and converges to the constant map on the complement of the Hopf

circle. Also, note that E(uλ) =
´
S3 |∇uλ |

2
is independent of λ.

The following is the main result of this article.

Theorem 1.9. Suppose X is compact. Let (ui ) be a sequence of solutions of the (perturbed) Fueter
equation

(1.10) Fui = p ◦ ui

with p ∈ Γ(X,VX)4 and

(1.11) E(ui ) :=

ˆ
M
|∇ui |

2 6 cE

for some constant cE > 0. Then (after passing to a subsequence) the following holds:

• There exists a closed subset S with H1(S) < ∞ and a Fueter section u ∈ Γ(M\S,X) such that
ui |M\S converges to u in C∞

loc
.

• There exist a constant ε0 > 0 and an upper semi-continuous function Θ : S → [ε0,∞) such that
the sequence of measures µi := |∇ui |

2 H3 converges weakly to µ = |∇u |2 H3 + ΘH1bS .

• S decomposes as
S = Γ ∪ sing(u)

with

Γ := supp(ΘH1bS) and

sing(u) :=

{
x ∈ M : lim sup

r ↓0

1

r

ˆ
Br (x )
|∇u |2 > 0

}
.

Γ isH1–recti�able, andH1(sing(u)) = 0.

4This sort of deformation of (1.2) is important for applications; e.g., Hohloch, Noetzel, and Salamon perturb (1.2)

using a Hamiltonian function to achieve transversality.
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• For each smooth point5 x ∈ Γ, there exists a non-trivial holomorphic sphere zx : S2 → (Xx :=

π−1(x),−I (v)) with v a unit tangent vector in Tx Γ. Moreover,

Θ(x) > E(zx ) :=

ˆ
S2

|dzx |
2.

• IfX is a bundle of simple hyperkähler manifolds withb2 > 6, then there is a subbundle d ⊂ PTM ,
depending only on supΘ, whose �bres are �nite sets such that Tx Γ ∈ d for all smooth points
x ∈ Γ.

Remark 1.12. The analysis of (1.2) is similar to Lin’s work on the compactness problem for harmonic

maps [Lin99]. We follow his strategy quite closely; however, there are a number of simpli�cations

in our case, many of the arguments have to be approached from a di�erent angle and our result is

stronger.

Remark 1.13. In the situation of Example 1.5 if X is �at and (v1,v2,v3) is regular, then the uniform

energy bound (1.11) is automatically satis�ed; see Salamon [Sal13, Lemma 3.2 and Remark 3.5].

Remark 1.14. If I is parallel (which is very rarely the case, but holds, e.g., in the situation of

Example 1.5 if M = T 3
equipped with a �at metric and thevi are parallel), then there are topological

energy bounds; see Remark 2.10. In this case Fueter sections are stationary harmonic sections and

one can derive most of Theorem 1.9 from [Lin99]; cf. Li and Tian [LT98, Section 4] and Chen and

Li [CL00], who study triholomorphic/quaternionic maps between hyperkähler manifolds. More

recently, very important progress in the study of triholomorphic maps was made by Bellettini and

Tian [BT15].

Remark 1.15. In the situation of Example 1.5 if X is �at, then S = �; see Hohloch, Noetzel, and

Salamon [HNS09, Section 3] and Remark 3.5. This does not immediately follow from Theorem 1.9;

however, since π2(T
n) = 0, �at hyperkähler manifolds admit no non-trivial holomorphic spheres

and we can rule out bubbling a priori, i.e., Γ = �. See also Remark 3.5.

Remark 1.16. By Bogomolov’s decomposition theorem (after passing to a �nite cover) any hyper-

kähler manifold is a product a �at torus and simple hyperkähler manifolds. Hohloch, Noetzel,

and Salamon’s compactness result says that nothing interesting happens in the torus-factors.

Thus the assumption of X being a bundle of simple hyperkähler manifolds is not restrictive. The

requirement b2 > 6 is an artefact of a result of Amerik and Verbitsky that we use in Section 8.

As stated, Theorem 1.9 is very likely far from optimal. Here are some conjectural improvements:

• We believe that the limiting section u ∈ Γ(M\S,X) extends to M\sing(u) and, moreover, that

sing(u) is �nite (possibly countable and closed).

• We believe that Γ enjoys much better regularity than just being H1
–recti�able. It seems

reasonable to expect that Γ is a graph (possibly with countably many vertices) embedded in

5We call a point x ∈ Γ smooth if the tangent space Tx Γ exists and x < sing(u). Since Γ is recti�able, Tx Γ exists

almost everywhere.
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M and Θ is constant along the edges of Γ; moreover, we expect that the vertices (Γ,Θ) are

balanced.

Remark 1.17. In the situation of Remark 1.14, Bethuel’s removable singularities theorem for station-

ary harmonic maps [Bet93, Theorem I.4] shows that u extends to M\sing(u) and a result of Allard

and Almgren [AA76] a�rms the conjecture in the third bullet.

The holomorphic sphere zx can be replaced by a bubble-tree, cf. Parker and Wolfson [PW93],

such that the energy of the entire bubble tree equals Θ(x). In an earlier version of this article it

was conjectured that there can be no energy stuck on the necks; in, particular Θ(x) is the sum

of energies of holomorphic spheres in (Xx ,−I (v)). Shortly after the �rst version of this article

was posted on the arXiv, Bellettini and Tian [BT15] proved the analogue of this conjecture for

triholomorphic maps, and after a brief discussion with the author, in an updated version also the

author’s earlier conjecture. We refer the reader to [BT15, Section 7] for details.

It is an interesting and important question to ask: what happens for a generic choice of

I : STM → H(X) and perturbation p? One would hope (perhaps too optimistically) that generically

the situation is much better and possibly good enough to count solutions of (1.10) and thus de�ne

the Euler characteristic of the conjectural hyperkähler Floer theory.

Assumptions and conventions Throughout the rest of the article we assume the hypotheses

of Theorem 1.9. We use c to denote a generic constant. We write x . y for x 6 cy and {·, . . . , ·}

denotes a generic (multi-)linear expression which is bounded by c . We �x a constant 0 < r0 � 1;

in particular, r0 is much smaller than the injectivity radius of M and we take all radii to be at most

r0.

2 Mononicity formula

The foundation of the analysis of (1.2) is the monotonicity formula which asserts that the renor-

malised energy

1

r

ˆ
Br (x )
|∇u |2.

is almost monotone in r > 0:

Proposition 2.1. If u ∈ Γ(M,X) satis�es (1.10), then for all x ∈ M and 0 < s < r 6 r0

ecr

r

ˆ
Br (x )
|∇u |2 −

ecs

s

ˆ
Bs (x )
|∇u |2 >

ˆ
Br (x )\Bs (r )

1

ρ
|∇ru |

2 − c(r 2 − s2).

Here ρ := d(x , ·).

It is instructive to �rst prove the following which contains the essence of Proposition 2.1.
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Proposition 2.2. If u : R3 → X is a Fueter map with vi = ∂
∂x i , then for all x ∈ M and 0 < s < r

(2.3)

1

r

ˆ
Br (x )
|du |2 −

1

s

ˆ
Bs (x )
|du |2 = 2

ˆ
Br (x )\Bs (r )

1

ρ
|∂ru |

2.

Proof. The derivative of

f (ρ) :=
1

ρ

ˆ
Bρ (x )
|du |2

is

f ′(ρ) = −
1

ρ2

ˆ
Bρ (x )
|du |2 +

1

ρ

ˆ
∂Bρ (x )

|du |2.

By a direct computation

(2.4) |du |2 vol = |Fu |2 vol − 2

3∑
i=1

dx i ∧ u∗ωi ,

see [HNS09, Lemma 2.2]. Here ωi = д(Ii ·, ·) denotes the Kähler form on X associated with Ii .
Hence,

−

ˆ
Bρ (x )
|du |2 = 2

ˆ
Bρ (x )

3∑
i=1

dx i ∧ u∗ωi = 2

ˆ
Bρ (x )

3∑
i=1

d(x iu∗ωi )

= 2ρ

ˆ
∂Bρ (x )

u∗ω∂r

(2.5)

with ∂r =
∑

3

i=1

x i
|x |

∂
∂x i denoting the radial vector �eld. On ∂Bρ (x), we can take the local orthonor-

mal frame (v1,v2,v3) to be of the form (∂r , ∂1, ∂2) with (∂1, ∂2) a local positive orthonormal frame

for ∂Bρ (x). Now, twice the integrand in the last term is

2〈I (∂r )∂1u, ∂2u〉 = 2〈I1∂1u, I2∂2u〉

= |I1∂1u + I2∂2u |
2 − |I1∂1u |

2 − |I2∂2u |
2

= 2|∂ru |
2 − |du |2.

(2.6)

Putting everything together yields

f ′(ρ) = 2ρ−1

ˆ
∂Br
|∂ru |

2.

Upon integration this yields (2.3). �

Proof of Proposition 2.1. The map I yields a section of π ∗TM ⊗ Λ2VX which, using the connection

on X, can be viewed as a 3–form Λ ∈ Ω3(X). For sections of X the identity (2.4) is replaced by

(2.7) |∇u |2 vol = |Fu |2 vol − 2u∗Λ.
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If we de�ne f (ρ) as before, then using (2.7) its derivative can be written as

f ′(ρ) = −ρ−2

ˆ
Bρ (x )
|p ◦ u |2 + 2ρ−2

ˆ
Bρ (x )

u∗Λ + ρ−1

ˆ
∂Bρ (x )

|∇u |2.

Let ∂r denote the radial vector �eld emanating from x and set Ω := i(v)Λ with v := π ∗(r∂r ).
We can write Λ as

Λ = dΩ + e

where e is the sum of a form of type (1, 2) and a form of type (2, 1) satisfying

(2.8) |e| = O(δr ) with δ := |∇I | + |FX | + |R |.

Here we use the bi-degree decomposition of Ω∗(X) arising from TX = π ∗TM ⊕ VX, r := d(x ,π (·)),
FX is the curvature of the connection on X and R is the Riemannian curvature of M . Hence,

2

ˆ
Bρ (x )

u∗Λ = 2

ˆ
∂Bρ (x )

u∗Ω +O(ρ2)f (ρ) +O
(
ρ4

)
= 2ρ

ˆ
∂Bρ (x )

i(∂r )u
∗Λ +O(ρ2)f (ρ) +O

(
ρ4

)
.

(2.9)

Arguing as before,

2

ˆ
∂Bρ (x )

i(∂r )u
∗Λ =

ˆ
∂Bρ (x )

|I∂r∇ru − p ◦ u |
2 + |∇ru |

2 − |∇u |2.

Putting everything together one obtains

f ′(ρ) >
1

ρ

ˆ
Bρ (x )
|∇ru |

2 − c f (ρ) − cρ .

Since we can assume that ecr0 6 2 and using ecρ > 1, we have

∂ρ (e
cρ f (ρ)) >

1

ρ

ˆ
Bρ (x )
|∇ru |

2 − 2cρ

This integrates to prove the assertion. �

Remark 2.10. If Λ is closed (which is rarely the case), then

E(u) =

ˆ
M
|∇u |2 =

ˆ
M
|Fu |2 − 2 〈[M], [u∗Λ]〉 .

Since the �rst term on the right-hand side only depends on the homotopy class of u, this yields a

priori energy bounds for Fueter sections.
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Corollary 2.11. In the situation of Proposition 2.1,

1

s

ˆ
Bs (x )
|∇u |2 .

1

r

ˆ
Br (x )
|∇u |2 + r 2

and if Bs (y) ⊂ Br/2(x), then

1

s

ˆ
Bs (y)
|∇u |2 .

1

r

ˆ
Br (x )
|∇u |2 + r 2.

3 ε–regularity

The following is the key result for proving Theorem 1.9. It allows to obtain local L∞–bounds on

∇u provided the renormalised energy is not too large.

Proposition 3.1. There is a constant ε0 > 0 such that if u ∈ Γ(M,X) satis�es (1.10) and

ε :=
1

r

ˆ
Br (x )
|∇u |2 6 ε0,

then

(3.2) sup

y∈Br /4(x )
|∇u |2(y) . r−2ε + 1.

Remark 3.3. Given (3.2), higher derivative bounds over slightly smaller balls can be obtained using

interior elliptic estimates.

Proposition 3.1 follows from the following di�erential inequality and Corollary 2.11 using the

Heinz trick; see Appendix A.

Proposition 3.4. If u ∈ Γ(M,X) satis�es (1.10), then

∆|∇u |2 . |∇u |4 + 1.

Proof. This is proved in [HNS09, Lemma 3.3 and Remark 3.4]. We recall the proof which is a simple

direct computation. Denote by
¯∇ the induced connection on u∗VX and de�ne F : Ω0(M,u∗VX) →

Ω0(M,u∗VX) by

Fû :=

3∑
i=1

I (vi ) ¯∇vi û

for some local orthonormal frame (v1,v2,v3). A simple computation yields

FFu = ¯∇∗∇u + {∇u}
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where {·} makes the dependence on I etc. implicit. Further

¯∇FFu = ¯∇ ¯∇∗∇u + {∇u} + { ¯∇∇u}.

Using

¯∇vk
¯∇vi∇viu =

¯∇vi
¯∇vk∇viu + {∇u,∇u,∇u}

= ¯∇vi
¯∇vi∇vku + {∇u,∇u,∇u} + {

¯∇∇u}

and Fu = p ◦ u we derive

¯∇∗ ¯∇∇u = ¯∇FFu + {∇u,∇u,∇u} + { ¯∇∇u}

= {∇u,∇u,∇u} + { ¯∇∇u} +O(1).

From this it follows that

∆|∇u |2 = 2

〈
¯∇∗ ¯∇∇u,∇u

〉
− 2| ¯∇∇u |2

6 c(|∇u |4 + |∇u | + | ¯∇∇u | |∇u |2) − 2| ¯∇∇u |2

. |∇u |4 + 1. �

Remark 3.5. If X = M × X and X is �at, then one can prove that

∆|∇u |2 . |∇u |3 + 1

and the Heinz trick for subcritical exponents shows that ‖∇u‖L∞(M ) is bounded in terms of the

energy E(u); see Remark A.2 and [HNS09, Appendix B].

4 Convergence away from the blow-up locus

Proposition 4.1. There exists a subsequence (ui )i ∈I ⊂ (ui )i ∈N0
and a subset S ⊂ M , called the

blow-up locus, with the following properties:

• S is closed andH1(S) < ∞.

• The sequence
(
ui |M\S

)
i ∈I converges to a section u ∈ Γ(M\S,X) in C

∞
loc
.

• If there is a subset S ′ ⊂ M such that a subsequence
(
ui |M\S ′

)
i ∈I ′⊂I converges in C∞

loc
, then

S ′ ⊃ S .

Proof. We proceed in four steps.

Step 1. Construction of S .
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With ε0 as in Proposition 3.1, for r ∈ (0, r0] and i ∈ N0, de�ne

Si,r :=

{
x ∈ M :

ecr

r

ˆ
Br (x )
|∇ui |

2 + cr 2 >
ε0

2

}
.

Note that, by Proposition 2.1, Si,s ⊂ Si,r whenever s 6 r .

Since the Si,r are compact, for each r , we can pick Jr ⊂ N0 such that the subsequence (Si,r )i ∈Jr
converges to a closed subset Sr in the Hausdor� metric. By a diagonal sequence argument, we can

�nd J ⊂ N0 such that

(
Si,2−k r0

)
i ∈J

converges to a closed subset S
2
−k r0

for each k ∈ N0. Set

S :=
⋂
k ∈N0

S
2
−k r0

.

By construction S is closed.

Step 2. H1(S) < ∞.

Given 0 < δ 6 r0, cover S by a collection of balls {B4r j (x j ) : j = 1, . . . ,m} with x j ∈ S , r j 6 δ

and B2r j (x j ) pairwise disjoint. Pick k � 1 such that 2
−kr0 < min{r j }. For i � 1, we can �nd

x ′j ∈ Si,2−k r0

with d(x ′j ,x j ) < δ . Then the balls B5r j (x
′
j ) still cover S while the smaller balls Br j (x

′
j )

are pairwise disjoint. By de�nition of Si,r ,

m∑
j=1

r j 6
2ecr0

ε0

m∑
j=1

ˆ
Brj (x

′
j )

|∇ui |
2 + cr 2

j 6
2ecr0

ε0

ˆ
M
|∇ui |

2 + cr0

m∑
j=1

r j .

Since we can assume that cr0 6 1/2 and ecr0 6 2, it follows that

m∑
j=1

r j 6
8cE
ε0

.

Since this bound is uniform in δ ∈ (0, r0], the assertion follows.

Step 3. Selection of (ui )i ∈I and construction of u ∈ Γ(M\S,X).

If x ∈ M\S , then there exists r ∈ (0, r0] such that for all i ∈ J su�ciently large

1

r

ˆ
Br (x )
|∇ui |

2 6 ε0.

By Proposition 3.1, for all i ∈ J , |∇ui | is uniformly bounded on Br/4(x). It follows using standard

elliptic techniques and Arzelà–Ascoli that we can chose J ⊂ I such that the subsequence of (ui )i ∈I
converges in C∞

loc
on M\S .

Step 4. M\S is the maximal open subset on which a subsequence (ui )i ∈I ′⊂I can converge in C∞
loc
.

Suppose (ui )i ∈I ′⊂I converges in C1
in a neighbourhood of x ∈ M . Then |∇ui | is uniformly

bounded in this neighbourhood. Hence, there is a slightly smaller neighbourhood of x ∈ M which

is contained in M\Si,r for each su�ciently small r > 0 and each i ∈ I ′. Since limi ∈I ′ Si,r = Sr ⊂ S ,

it follows that x ∈ M\S . �
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5 Decomposition of the blow-up locus

We assume that we have already passed to a subsequence so that the convergence statement in

Proposition 4.1 holds. Consider the sequence of measures (µi ) de�ned by

µi := |∇ui |
2 H3.

Here H3
is the 3–dimensional Hausdor� measure on M , which is simply the standard measure on

M . By (1.11) the sequence of Radon measures (µi ) is of bounded mass; hence, it converges weakly

to a Radon measure µ. By Fatou’s lemma we can write

µ = |∇u |2 H3 + ν

for some non-negative Radon measure ν .

De�nition 5.1. We call ν the defect measure and

Γ := suppν

the bubbling locus.6 We call

sing(u) :=

{
x ∈ M : Θ∗u (x) := lim sup

r ↓0

1

r

ˆ
Br (x )
|∇u |2 > 0

}
the singular set of u.

If we denote by Θ∗µ (x) the upper density of µ at the point x ∈ M , then it follows from

Proposition 3.1 that S = {x ∈ M : Θ∗µ (x) > 0} ⊂ Γ ∪ sing(u). The reverse inclusion also holds;

hence, we have the following.

Proposition 5.2. The blow-up locus S decomposes as

S = Γ ∪ sing(u).

This means that there are two sources of non-compactness: one involving a loss of energy and

another one without any loss of energy.

6 Regularity of the bubbling locus

As a �rst step towards understanding the non-compactness phenomenon involving energy loss,

we show that the set Γ at which this phenomenon occurs is relatively tame.

6The justi�cation for this terminology will be provided in Section 7.
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Proposition 6.1. Γ isH1–recti�able and ν can be written as

ν = ΘH1bΓ

with Θ : M → [0,∞) upper semi-continuous. Moreover,H1(sing(u)) = 0.

The interested reader can �nd a detailed discussion of the concept of recti�ablity in DeLellis’

lecture notes [De 08]. For our purposes it shall su�ce to recall the de�nition.

De�nition 6.2. A subset Γ ⊂ M is called Hk–recti�able if there exists a countable collection {Γi }
of k–dimensional Lipschitz submanifolds such that

Hk
(
Γ\

⋃
i
Γi
)
= 0.

A measure µ on M is called Hk–recti�able if there exist a non-negative Borel measurable function

Θ and a Hk
–recti�able set Γ such that for any Borel set A

µ(A) =

ˆ
A∩Γ

ΘHk .

Since Γ is H1
–recti�able, at H1

–a.e. point x ∈ Γ, it has a well-de�ned tangent space Tx Γ and ν
has a tangent measure, i.e., the limit

Txν := lim

ε→0

1

ε
(exp ◦ sε )

∗ν

exists and

Txν = Θ(x)H1bTx Γ.

Here sε (x) := εx .

To prove Proposition 6.1 we will make use of the following deep theorem, whose proof is

carefully explained in [De 08].

Theorem 6.3 (Preiss [Pre87]). If µ is a locally �nite measure onM andm ∈ N0 is such that for µ–a.e.
x ∈ M the density

Θm
µ (x) := lim

r ↓0

µ(Br (x))

rm
.

exists and is �nite, then µ isHm–recti�able.

Proof of Proposition 6.1. The proof has �ve steps.

Step 1. With the same constant as in Proposition 2.1 and for all x ∈ M and 0 < s 6 r

ecss−1µ(Bs (x)) 6 ecrr−1µ(Br (x)) + cr
2.

12



This is not quite a trivial consequence of Proposition 2.1 because (µi ) only weakly converges to µ;

hence, we only know that µ(B̄r (x)) > lim supi→∞ µi (B̄r (x)) and lim inf i→∞ µi (Br (x)) > µ(Br (x)).
For x ∈ M set

Rx := {r ∈ (0, r0] : µ(∂Br (x)) > 0}.

If r <Rx , then it follows from Proposition 2.1 that

ecss−1µ(Bs (x)) 6 ecrr−1µ(Br (x)) + cr
2.

The general case follows by an approximation argument. Note that Rx is at most countable. Thus,

given r ∈ Rx , we can �nd a sequence (ri ) such that s < ri < r , ri < Rx , and r := limi→∞ ri . By

dominated convergence

µ(Br (x)) = lim

i→∞
µ(Bri (x)).

Step 2. The limit
Θ(x) := lim

r ↓0
r−1µ(Br (x))

exists for all x ∈ M . The function Θ : M → [0,∞) is upper semi-continuous, it vanishes outside S , is
bounded and Θ(x) > ε0 for all x ∈ S .

The existence of the limit is a direct consequence of Step 1.

To see that Θ is upper semi-continuous, let (xi ) be a sequence of points in M converging to a

limit point x = limi→∞ xi . Let r <Rx and ε > 0. For i � 1

Θ(xi ) 6 ecrr−1µ(Br (xi )) + cr
2 6 ecrr−1µ(Br+ε (x)) + cr

2.

Therefore, lim supi→∞ Θ(xi ) 6 ecrr−1µ(Br (x)) + cr
2
. Taking the limit as r → 0 shows that Θ is

upper semi-continuous.

The last part is clear.

Step 3. Θ∗u vanishesH1–a.e. inM , i.e.,H1(sing(u)) = 0.

Given ε > 0, set

Eε := {x ∈ M : Θ∗u (x) > ε}.

Given δ > 0, choose {x1, . . . ,xm} ⊂ Eε and {r1, . . . , rm} ⊂ (0,δ ] such that the balls B2r j (x j ) cover

Eε , but the balls Br j (x j ) are pairwise disjoint. Moreover, we can arrange that

1

r j

ˆ
Brj (x j )

|∇u |2 > ε .

Since u is smooth on M\S , we must have Eε ⊂ S . Hence,

m∑
j=1

r j 6
1

ε

m∑
j=1

ˆ
Brj (x j )

|∇u |2 6
1

ε

ˆ
Nδ (S )
|∇u |2

where Nδ (S) = {x ∈ M : d(x , S) < δ }. The right-hand side goes to zero as δ goes to zero. Thus

H1(Eε ) = 0 for all ε > 0. This concludes the proof.
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Step 4. ν isH1–recti�able.

By Step 2 for any x ∈ M\sing(u) the density

Θν (x) = lim

r ↓0

ν (Br (x))

r

exists and agrees with Θ(x). In general Θ∗ν 6 Θ < ∞, which implies that ν � H1
(see, e.g., [KP08,

Proposition 2.2.2]). By Step 3, H1(sing(u)) = 0 and, hence, ν (sing(u)) = 0. Applying Theorem 6.3

yields the assertion.

Step 5. We prove the proposition.

We have already proved the assertion about sing(u). Since ν is H1
–recti�able and Γ = supp(ν ),

it follows that Γ is H1
–recti�able and ν can be written as

ν = Θ̃H1bΓ

for some Θ̃. By Step 3, Θν (x) = Θ̃(x) for H1
–a.e. x ∈ Γ. �

7 Bubbling analysis

We will now show that the “lost energy” goes into the formation of bubbles transverse to Γ. To state

the main result recall that an orientation on Nx Γ induces a canonical complex structure and an

orientation of Nx Γ is canonically determined by the choice of a unit tangent vectorv ∈ Tx Γ ⊂ TxM
since M is oriented.

Proposition 7.1. If x ∈ Γ is smooth, i.e., Tx Γ exists and x < sing(u), then there exists a (−I (v))–
holomorphic sphere zx : Nx Γ ∪ {∞} → X := Xx with

(7.2) E(zx ) :=

ˆ
S2

|dzx |
2 6 Θ(x).

Here we have picked some unit vector v ∈ Tx Γ.

Remark 7.3. It is immaterial whether we choose v or its opposite −v since this results in changing

the complex structures on both Nx Γ and X . In particular, the above cannot be used to �x an

orientation of Γ; however, the existence of zx does restrict the possible tangent directions, see

Section 8.

Remark 7.4. The reason that (7.2) may be strict is that we only extract one bubble of what is an

entire bubbling-tree, cf. Parker and Wolfson [PW93] for the general notion of a bubbling tree, and

Bellettini and Tian [BT15, Section 7] for a discussion on how to extract a bubbling tree in the our

situation.
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The holomorphic sphere zx is obtained by blowing-up (ui ) around the point x ∈ Γ. We assume

a trivialisation of X in a neighbourhood U of x has been �xed; see Example 1.5. We use the

following notation: given any map u : U → X and a scale factor λ > 0, we de�ne a rescaled map

uλ : B3

r0/λ
(0) → X by

(7.5) uλ := u(exp ◦ sλ).

with sλ(y) := λy. We write (z,w) to denote points inTx Γ ×Nx Γ = TxM and work with generalised

cubes of the form

Qr,s (z0,w0) := Br (z0) × Bs (w0) ⊂ Tx Γ × Nx Γ = TxM .

Proof of Proposition 7.1. We proceed in four steps.

Step 1 (Preliminary scale �xing). There exists a null-sequence (εi ) ⊂ (0, 1) such that

|dui ;εi |
2 H3 ⇀ Txν = Θ(x)H1bTx Γ.

By de�nition, Txν is the weak limit of ε−1(exp ◦ sε )
∗ν as ε tends to zero. Since x < sing(u), we

have

lim

ε→0

1

ε
(exp ◦ sε )

∗ν = lim

ε→0

1

ε
(exp ◦ sε )

∗µ .

Thus

Txν = lim

ε→0

lim

i→∞

1

ε
(exp ◦ sε )

∗µi = lim

i→∞

1

ε
(exp ◦ sεi )

∗µi

for some null-sequence (εi ). This implies the assertion since

1

εi
(exp ◦ sεi )

∗µi = |dui ;εi |
2 H3.

Step 2 (Asymptotic translation invariance). After passing to a subsequence, we can assume that
there exists a null-sequence (zi ) such that

(7.6) lim

i→∞
sup

s61

1

s

ˆ
Qs,1(zi ,0)

|∂vui ;εi |
2 = 0.

Step 2.1. We have

lim

i→∞

ˆ
Q2,1(0)

|∂vui,εi |
2 = 0.

Denote by ∂ρ the radial vector �eld emanating from 4v . By Proposition 2.1, for for 0 < s 6 r

(7.7)

ˆ
Br (4v)\Bs (4v)

ecεiττ−1 |∂ρui ;εi |
2

6 ecεi rr−1

ˆ
Br (4v)

|dui ;εi |
2 − ecεi ss−1

ˆ
Bs (4v)

|dui ;εi |
2 + cε2

i r
2.
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As i tends to in�nity the �rst two terms on the right-hand side both converge to Θ(x), since

Txν = Θ(x)H1bTx Γ and the last term tends to zero.

Since Q2,1(0) ⊂ B8(4v)\B1(4v), it follows that

lim

i→∞

ˆ
Q2,1(0)

|∂ρui,εi |
2 = 0.

This completes the proof, because along Tx Γ ∩ B2(0) the vector �elds ∂ρ and v are colinear and

|∂vui,εi |
2 H3

converges to zero outside Tx Γ.

Step 2.2. For H1–a.e. z ∈ B1(0) ⊂ Tx Γ

(7.8) lim

i→∞
sup

s61

1

s

ˆ
Qs,1(z,0)

|∂vui ;εi |
2 = 0.

De�ne fi : B2(0) ⊂ Tx Γ → [0,∞) by

fi (z) :=

ˆ
B1(0)⊂Nx Γ

|∂vui ;εi |
2(z, ·)

and denote by Mfi : B1(0) ⊂ Tx Γ → [0,∞) the Hardy–Littlewood maximal function associated

with fi :

Mfi (z) := sup

s61

1

s

ˆ
Bs (z)⊂Tx Γ

fi .

We need to show that the set

A = {z ∈ B1(0) : lim inf

i→∞
Mfi (z) > 0}

is such that H1(A) = 0. If we set

Ai,δ := {z ∈ B1(0) : Mfi (z) > δ },

then

A =
⋃
δ>0

⋃
I ∈N

∞⋂
i=I

Ai,δ .

By the weak-type L1
estimate for the maximal operator, for each δ > 0

H1(Ai,δ ) .
‖ fi ‖L1

δ
.

Since ‖ fi ‖L1 → 0, we have

H1

(
∞⋂
i=I

Ai,δ

)
= 0;

hence, H1(A) = 0 by monotonote convergence.
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Step 2.3. We prove (7.6).

By Step 2.2, for each j ∈ N we can �nd zj ∈ B1/j (0) such that

lim

i→∞
sup

s61

1

s

ˆ
Qs,1(zj ,0)

|∂vui ;εi |
2 = 0.

Now apply a diagonal sequence argument.

Step 3 (Bubble detection). There exists a null-sequence (δi ) ∈ (0, 1/2) such that, for each i � 1,

(7.9) max

w ∈B̄
1/2(0)

1

δi

ˆ
Bδi (zi ,w )

|dui,εi |
2 = ε0/8;

moreover, if wi ∈ B̄1/2(0) denotes a point at which this maximum is already, then (wi ) is a null-
sequence.

By Step 1, we have

lim inf

i→∞
max

w ∈B̄
1/2(0)

1

δ

ˆ
Bδ (zi ,w )

|dui ;εi |
2 = Θ(x) > ε0

for all δ > 0, while for �xed i ∈ N and w ∈ B̄1/2(0) ⊂ Nx Γ

lim

δ ↓0

1

δ

ˆ
Bδ (zi ,w )

|dui ;εi |
2 = 0.

Hence, we can �nd a null sequence (δi ) such that

max

w ∈B̄
1/2(0)

1

δi

ˆ
Bδi (zi ,w )

|dui,εi |
2 = ε0/8.

If (after passing to a subsequence) we can �nd σ > 0 and (wi ) ∈ B̄1/2(0)\Bσ (0) such that the

maximum in (7.9) is achieved at w = wi , then by Proposition 2.1 the density of Txν at (0,w) would

be positive, contradicting Step 1.

Step 4. We prove Proposition 7.1.

Let (wi ) be as in Step 3. De�ne

ũi := ũi (·) := ui ;δi εi
(
δ−1

i (zi ,wi ) + ·
)
.

By construction

max

w ∈B(1/2−|wi |)δi (0)

ˆ
B1(0,w )

|dũi |
2 = ε0/8

with the maximum achieved at w = 0.
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From Proposition 3.1 and Remark 3.3 we obtain C∞
loc

–bounds on ũi which allow us to pass to a

limit u : B1(0) × Nx Γ → X , which solves the Fueter equation. It follows from Step 2, that

lim

i→∞

ˆ
Q

1,1/2δi (0,0)
|∂ν ũi |

2 = 0.

Hemce,u is going to be constant in z ∈ B1(0) ⊂ Tx Γ; hence,u is the pullback of a map z : Nx Γ → X .

We can choose the orthonormal frame (v1,v2,v3) on TxM constant and with v1 = v ∈ Tx Γ and

v2,v3 ∈ Nx Γ. With respect to this frame the Fueter operator takes the form

F = I (v1)∂v + I (v2) ¯∂

with
¯∂ = ∂v2

+ (−I (v))∂v3
. Thus z is (−I (v))–holomorphic. �

Question 7.10. What happens near non-smooth points of Γ?

8 Constraints on tangent directions

By Proposition 7.1, if x < sing(u) and v ∈ STx Γ, then Xx must admit a non-trivial (−I (v))–
holomorphic sphere zx of area at most Θ(x). Since Θ is upper semi-continuous, it achieves a

maximum Amax on Γ. Thus, the area of zx is bounded by Amax and the following shows that the

possible tangent directions of Γ are strongly constrained.

Proposition 8.1. Let X be a simple hyperkähler manifold with b2(X ) > 6. Given Amax > 0, there
exists only �nitely many Iξ ∈ H(X ) for which there exists a rational curve C in (X , Iξ ) with

area(C) =
〈
[C],ωξ

〉
6 Amax.

Here ωξ = д(Iξ ·, ·).

IfX is aK3 surface, then this is essentially contained in Bryan and Leung [BL00, Proposition 3.1].

Its proof mainly uses some facts about the K3–lattice (H 2(K3,Z),∪). The appropriate replacement

of the cup-product for general simple hyperkähler manifold is the Beauville–Bogomolov–Fujiki
(BBF) form q : S2H 2(X ,Z) → Z. We refer the reader to [Bea83; Bog78; Fuj87] for details about the

BBF form. For our purposes it su�ces to recall that:

• q is non-degenerate, i.e., the induced map H 2(X ,Q) → H 2(X ,Q)∗ is an isomorphism. In

particular, for each C ∈ H2(X ,Z) there exists a unique γ ∈ H 2(X ,Q) such that

(8.2) q(γ , ·) = 〈C, ·〉 ∈ H 2(X ,Q)∗.

• q has signature (3,b2(X ) − 3) with span{[ωξ ] : ξ ∈ S2} forming a maximal positive de�nite

subspace. We denote the perpendicular maximal negative de�nite subspace by N .
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Theorem 8.3 (Amerik–Verbitsky). If X is a simple hyperkähler manifold with b2(M) > 6, then there
exists an positive integer σ ∈ N such that

q(γ ,γ ) > −σ

for all γ ∈ H 2(X ,Q) with (8.2) for someC represented by a Iξ –holomorphic sphere for some Iξ ∈ H(X ).

Proof. This follows by observing that γ is a MBM class in the sense of [AV14, De�nition 2.14] and

then appealing to [AV14, Theorem 5.3]. �

Remark 8.4. Theorem 8.3 generalises the fact that any class representing a holomorphic sphere in

K3 has square −2.

Proposition 8.5. There exists a constant c0 > 0 such that if C is represented by a Iξ –holomorphic
sphere of area A, then γ as in (8.2) is of the form

(8.6) γ = β + c0Aωξ

with β ∈ N and
q(β , β) > −σ − c0A

2.

Proof. It follows from (8.2) that

(8.7) q(γ ,ωη) = 0

for all η ⊥ ξ ; hence, γ = β + c0Aωξ with c0 = 1/q(ωξ ,ωξ ), which does not depend on ξ ∈ S2
, and

β ∈ N . Since q(γ ,γ ) > −σ , we have

q(β , β) > −σ − c0A
2. �

Proof of Proposition 8.1. There are only �nitely many γ as in Proposition 8.5 with A 6 Amax and γ
determines ξ ∈ S2

uniquely. �

A The Heinz trick

Throughout we consider a bounded open subset U ⊂ Rn endowed with a smooth metric д which

extends smoothly to Ū . Implicit constants are allowed to depend on the geometry of U .

Lemma A.1 (Heinz [Hei55]). Fix d > 0 and set

q :=
2

d
+ 1.

Suppose f : U → [0,∞) and p,δ ∈ {0, 1} are such that the following hold:
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1. We have
∆f . f q + f p .

2. If Bs (y) ⊂ Br/2(x) ⊂ U , then

sd−n
ˆ
Bs (y)

f . rd−n
ˆ
Br (x )

f + δr 2.

Then there exists a constant ε0 > 0 such that for all Br (x) ⊂ U with

ε = rd−n
ˆ
Br (x )

f 6 ε0

we have
sup

y∈Br /4(x )
f (y) . r−dε + ((1 − p) + δ ) r 2.

Remark A.2 (Heinz trick in the subcritical case). If n < d ,

ε 6 ε0 whenever r 6

(
ε0´
U f

) 1

d−n

.

In particular, for all compact K ⊂ U , ‖ f ‖L∞(K ) is bounded a priori depending only on

´
U f and

d(K , ∂U ).

We use the following standard result; see [GT01, Theorem 9.20] or [HNS09, Proof of Theorem

B.1].

Proposition A.3. For all Br (x) ⊂ U and every smooth function f : Br (x) → [0,∞)

f (x) . r−n
ˆ
Br (x )

f vol + r 2‖∆f ‖L∞ .

Proof of Lemma A.1. De�ne a function θ : Br/2(x) → [0,∞) by

θ (y) :=
( r
2

− d(x ,y)
)d

f (y).

Since θ is non-negative and vanishes on the boundary of B r
2

(x), it achieves its maximum

M := max

y∈B r
2

(x )
θ (y)

in the interior of B r
2

(x). We will derive a bound for M , from which the assertion follows at once.

Let y0 be a point with θ (y0) = M , set

F := f (y0)
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and denote by

s0 :=
1

2

( r
2

− d(x ,y0)

)
half the distance from y0 to the boundary of B r

2

(x). Each y ∈ Bs0
(y0) has distance from the

boundary of B r
2

(x) at least s0; hence,

f (y) 6 s−d
0
θ (y) 6 s−d

0
θ (y0) . F .

Proposition A.3 applied to Bs (y0) together with (1) and the above bound yields

F . s−n
ˆ
Bs (y0)

f + s2
(
Fq + Fp

)
for all 0 6 s 6 s0. Combined with (2) this becomes

F . s−dε + s2
(
Fq + Fp

)
+ δr 2,

which can be rewritten as

(A.4) sdF . ε + sd+2
(
Fq + Fp

)
+ δr 2sd .

This inequality will yield the desired bound on M . It is useful to make a case distinction.

Case 1. F 6 1.

In this case a bound on M follows from simple algebraic manipulations. If p = 0 or δ = 1, then

(A.4) with s = s0 yields

M = θ (y0) . sd
0
F . ε + rd+2.

If p = 1 and δ = 0, this bound can be sharpened. (A.4) becomes

sdF 6
cε

1 − cs2
.

If cs2

0
6 1

2
, then we obtain

M . sd
0
F . ε ;

otherwise, setting s := (2c)−
1

2 6 s0 yields

F . ε,

and thus M . ε .

Case 2. F > 1.
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From (A.4) we derive

sdF . ε + sd+2Fq + δr 2sd

for all 0 6 s 6 s0. Set t := t(s) = sF 1/d
. Then the above inequality can be expressed as

td (1 − ct2) 6 c(ε + δr 2).

For su�ciently small ε > 0, the corresponding equation td (1 − ct2) = c(ε + δr 2) has d small

roots t1, . . . , td , which are approximately ±(cε + cδr 2)
1

d , and two large roots. Since t(0) = 0

and by continuity, for each s ∈ [0, s0], t(s) must be less than the smallest positive root; hence,

t(s) . (ε + δr 2)
1

d for all s ∈ [0, s0]. This �nishes the proof. �

B Compactness for Fueter maps with four dimensional source mani-
fold

Proposition B.1. Let V be a 4–dimensional Euclidean vector space, H a quaternionic vector space,
I : SΛ+V ∗ → S(ImH) an isometric identi�cation of the unit length self-dual forms onV with the unit
imaginary quaternions and ι : Λ+V ∗ → so(V ). The endomorphism Ψ ∈ End(Hom(V ,H )) de�ned by

ΨT :=

3∑
i=1

I (ωi ) ◦T ◦ ι(ωi )

has eigenvalues 1 and −3. Here we sum over an orthonormal basis (ω1,ω2,ω3) of Λ+V ∗. We denote
the (−3)–eigenspace by HomI (V ,H ).

Let M be an orientable Riemannian 4–manifold, let X
π
−→ M be a bundle of hyperkähler

manifolds together with a �xed identi�cation I : SΛ+T ∗M → H(X) of the unit sphere bundle of

self-dual forms on M and the bundle of hyperkähler spheres of the �bres of X and �x a connection

on X.

De�nition B.2. A section u ∈ Γ(X) is called a Fueter section if

(B.3) Fu := ∇u − Ψ∇u = 0 ∈ Γ(u∗HomI (π
∗TM,VX)).

Remark B.4. If M = R × N for some 3–manifold N , X is the pullback of a bundle Y of hyperkähler

manifolds on N , I is obtained from an identi�cation J : STM � H(X) and the connection on X is

the pullback of a connection on Y, then (B.3) can be written as

∂tu −Fu = 0

with F denoting the 3–dimensional Fueter operator. This is the form in which the 4–dimensional

Fueter operator appears in [HNS09].
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Remark B.5. Unlike in the 3–dimensional case, Λ+T ∗M need not be trivial.7 Thus the analogue

of the setup in Example 1.5 rarely makes sense globally, and one is almost forced to work with

bundles of hyperkähler manifolds.

The analogue of Theorem 1.9 in the 4–dimensional case is the following result.

Theorem B.6. Suppose X is compact. Let (ui ) be a sequence of solutions of the (perturbed) Fueter
equation

Fui = p ◦ ui

with p ∈ Γ(X,HomI (π
∗TM,VX)) and

E(ui ) :=

ˆ
M
|∇ui |

2 6 cE

for some constant cE > 0. Then (after passing to a subsequence) the following holds:

• There exists a closed subset S with H2(S) < ∞ and a Fueter section u ∈ Γ(M\S,X) such that
ui |M\S converges to u in C∞

loc
.

• There exist a constant ε0 > 0 and an upper semi-continuous function Θ : S → [ε0,∞) such that
the sequence of measures µi := |∇ui |

2 H4 converges weakly to µ = |∇u |2 H4 + ΘH2bS .

• S decomposes as
S = Γ ∪ sing(u)

with

Γ := supp(ΘH1bS) and

sing(u) :=

{
x ∈ M : lim sup

r ↓0

1

r 2

ˆ
Br (x )
|∇u |2 > 0

}
.

Γ isH2–recti�able, andH2(sing(u)) = 0.

• For each smooth point of Γ there exists a non-trivial holomorphic sphere in zx : S2 → (Xx ,−I (ξ ))
with ξ a unit self-dual 2–form onTxM , whose associated complex structure preserves the splitting
TxM = Tx Γ ⊕ Nx Γ. Moreover,

Θ(x) > E(zx ) :=

ˆ
S2

|dzx |
2.

• If X is a bundle of simple hyperkähler manifolds with b2 > 6, then there is a subbundle
i ⊂ {I ∈ End(TM) : I 2 = −id}, depending only on supΘ, whose �bres are �nite sets such that
Tx Γ is complex with respect to a complex structure I ∈ ix for all smooth points x ∈ Γ.

7Λ+T ∗M being trivial is equivalent to 3σ (M) + 2χ (M) = 0 and w2(M) = 0.
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Sketch of the proof. The proof is analogous to that of Theorem 1.9 with a few minor modi�cations:

• The renormalised energy is now

1

r 2

ˆ
Br (x )
|∇u |2.

• In the proof of the monotonicity formula one now uses the 4–form Λ ∈ Ω4(X) obtained

from the section of Λ+π ∗TM ⊗ Λ2VX induced by I . Direct computation shows that (2.7) still

holds. Similarly, one can verify the analogue of (2.6).

• The proof of the ε–regularity and convergence outside S carry over mutatis mutandis.

• In the bubbling analysis, ui ;λi will be asymptotically translation invariant in the direction

of Tx Γ. Fix a unit vector v0 ∈ Tx Γ. Since, asymptotically, everything is invariant in the

direction of v0, we arrive back at the situation in Section 7. �
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