Tangent cones of Hermitian Yang–Mills connections with isolated singularities

Adam Jacob Henrique Sá Earp Thomas Walpuski

2018-01-26

Abstract

We give a simple direct proof of uniqueness of tangent cones for singular projectively Hermitian Yang–Mills connections on reflexive sheaves at isolated singularities modelled on a sum of μ –stable holomorphic bundles over \mathbf{P}^{n-1} .

1 Introduction

A projectively Hermitian Yang-Mills (PHYM) connection A over a Kähler manifold X is a unitary connection A on a Hermitian vector bundle (E, H) over X satisfying

(1.1)
$$
F_A^{0,2} = 0 \text{ and } i\Lambda F_A - \frac{\text{tr}(i\Lambda F_A)}{\text{rk } E} \cdot \text{id}_E = 0.
$$

Since $F_A^{0,2} = 0$, $\mathcal{E} := (E, \bar{\partial}_A)$ is a holomorphic vector bundle, and A is the Chern connection of H.
A Hermitian metric H on a holomorphic vector bundle is called **PHVM** if its Chern connection A Hermitian metric H on a holomorphic vector bundle is called PHYM if its Chern connection A_H is PHYM. The celebrated Donaldson–Uhlenbeck–Yau Theorem [\[Don85;](#page-12-0) [Don87;](#page-13-0) [UY86\]](#page-13-1) asserts that a holomorphic vector bundle $\mathcal E$ on a compact Kähler manifold admits a PHYM metric if and only if it is μ –polystable; moreover, any two PHYM metrics are related by an automorphism of $\mathscr E$ and by multiplication with a conformal factor. If H is a PHYM metric, then the connection A^o on PU(*E*, *H*), the principal PU(*r*)–bundle associated with (*E*, *H*), induced by A_H is Hermitian Napa–Mills (HVM), that is it extisting $F^{0,2} = 0$ and $i \Delta E_{xx} = 0$; it depends only on the conformal **Yang–Mills (HYM), that is, it satisfies** $F_{A^{\circ}}^{0,2} = 0$ and $i\Delta F_{A^{\circ}} = 0$; it depends only on the conformal class of H. Conversely, any HYM connection A° on PU(F, H) can be lifted to a PHYM connection class of H. Conversely, any HYM connection A° on $PU(E, H)$ can be lifted to a PHYM connection A° any two choices of lifts lead to isomorphic holomorphic vector bundles \mathscr{L} and conformal metrics A; any two choices of lifts lead to isomorphic holomorphic vector bundles $\mathscr E$ and conformal metrics H.

An admissible PHYM connection is a PHYM connection A on a Hermitian vector bundle (E,H) over X\sing(A) with sing(A) a closed subset with locally finite $(2n - 4)$ –dimensional Hausdorff measure and $F_A \in L^2_{16}$ er $X\setminus \text{sing}(A)$ with sing(A) a closed subset with locally finite $(2n - 4)$ –dimensional Hausdorff asure and $F_A \in L^2_{loc}(X)$ [.](#page-0-0)¹ Bando [\[Ban91\]](#page-12-1) proved that if A is an admissible PHYM connection,

¹It should be pointed out that our notion of admissible PHYM connection follows Bando and Siu [\[BS94\]](#page-12-2) and not Tian [\[Tia00\]](#page-13-2). The notion of admissible Yang–Mills connection introduced by Tian is stronger: it assumes that the Hermitian vector bundle extends to all of X.

then $(E, \bar{\partial}_A)$ extends to X as a reflexive sheaf & with sing(%) ⊂ sing(A). Bando and Siu [\[BS94\]](#page-12-2) proved that a reflexive sheaf on a compact Kähler manifold admits an admissible PHVM metric if proved that a reflexive sheaf on a compact Kähler manifold admits an admissible PHYM metric if and only if it is μ -polystable.

The technique used by Bando and Siu does not yield any information on the behaviour of the admissible PHYM connection A_H near the singularities of the reflexive sheaf \mathscr{E} —not even at isolated singularities. The simplest example of a reflexive sheaf on \mathbb{C}^n with an isolated singularity at 0 is $i_*\sigma^*\widetilde{\mathcal{F}}$ with $\widetilde{\mathcal{F}}$ a holomorphic vector bundle over P^{n-1} ; cf. Hartshorne [\[Har80,](#page-13-3) Example 1.9.1]. Here we use the obvious maps summarised in the following diagram:

$$
C^n \xleftarrow{i} C^n \setminus \{0\} \xrightarrow{\pi} S^{2n-1} \xrightarrow{\rho} P^{n-1}
$$

The main result of this article gives a description of PHYM connections near singularities modelled on $i_*\sigma^*\mathscr{F}$ with \mathscr{F} a sum of μ –stable holomorphic vector bundles.

Theorem 1.2. Let $\omega = \frac{1}{2i} \bar{\partial} \partial |z|^2 + O(|z|^2)$ be a Kähler form on $\bar{B}_R(0) \subset \mathbb{C}^n$. Let A be an admissible
PHYM connection on a Hermitian vector bundle (E H) over $B_R(0)$ (0) (0) with sing(4) = (0) and **Theorem 1.2.** Let $\omega = \frac{1}{2i} \omega |z|^2 + O(|z|^2)$ be a Kanter form on $B_R(0) \subset \mathbb{C}^n$. Let A be an aamissible PHYM connection on a Hermitian vector bundle (E, H) over $B_R(0) \setminus \{0\}$ with $\sin g(A) = \{0\}$ and $(E, \bar{A}) \approx \sigma^* \mathcal$ $(E, \bar{\partial}_A) \cong \sigma^* \mathcal{F}$ for some holomorphic vector bundle \mathcal{F} over P^{n-1} . Denote by F the complex vector bundle underlying \mathcal{F} bundle underlying \mathcal{F} .

If $\mathcal F$ is a sum of μ –stable holomorphic vector bundles, then there exist a Hermitian metric K on *F*, a connection A_* on $\sigma^*(F, K)$ which is the pullback of a connection on $\rho^*(F, K)$, and an isometry $(F, H) \cong \sigma^*(F, K)$ such that with respect to this isometry we have $(E, H) \cong \sigma^*(F, K)$ such that with respect to this isometry we have

$$
|z|^{k+1}|\nabla_{A_*}^k(A^\circ - A_*^\circ)| \leq C_k |z|^\alpha \quad \text{for each } k \geq 0.
$$

The constants C_k , $\alpha > 0$ depend on ω , \mathscr{F} , $A|_{B_R(0) \setminus B_{R/2}(0)}$, and $||F_A||_{L^2(B_R(0))}$.

Remark 1.3. Using a gauge theoretic Łojasiewicz–Simon gradient inequality, Yang [\[Yan03,](#page-13-4) Theorem 1] proved that the tangent cone to a stationary Yang–Mills connection—in particular, a $PU(r)$ HYM connection—with an isolated singularity at x is unique provided

$$
|\mathbf{F}_A| \leq d(x,\cdot)^{-2}.
$$

In our situation, such a curvature bound can be obtained from [Theorem 1.2.](#page-1-0) Our proof of this result, however, proceeds more directly—without making use of Yang's theorem.

The hypothesis that $\mathcal F$ be a sum of μ –stable holomorphic vector bundles is optimal. This is a consequence of the following observation, which will be proved in [Section 6.](#page-11-0)

Proposition 1.4. Let (F, K) be a Hermitian vector bundle over P^{n-1} . If B is a unitary connection on $e^*(F, K)$ such that $A := \pi^*R$ is HVM with respect to $\omega_i = \frac{1}{2} \bar{\partial} \partial |z|^2$, then there is $g k \in N$ and for $\rho^*(F,K)$ such that $A_* := \pi^*B$ is HYM with respect to $\omega_0 := \frac{1}{2i} \bar{\partial} \partial |z|^2$, then there is a $k \in N$ and, for
each i ∈ {1} k), there are $\mu \in \mathbf{P}$, a Hermitian vector bundle (F, K), on \mathbf{P}^{n-1} , and an irreduc $p(\mathbf{r}, \mathbf{K})$ such that $A_* := \pi B$ is HIM with respect to $\omega_0 := \frac{1}{2i} O(|z|^{-1})$, then there is $a \kappa \in \mathbb{N}$ and a , for each $j \in \{1, \ldots, k\}$, there are $\mu_j \in \mathbb{R}$, a Hermitian vector bundle (F_j, K_j) on \mathbb{P}^{n unitary connection B_i on F_i satisfying

$$
\mathbf{F}_{B_j}^{0,2} = 0 \quad \text{and} \quad i\Lambda \mathbf{F}_{B_j} = (2n-2)\pi \mu_j \cdot \mathrm{id}_{F_j}
$$

such that

$$
F = \bigoplus_{j=1}^k F_j \quad \text{and} \quad B = \bigoplus_{j=1}^k \rho^* B_j + i \mu_j \operatorname{id}_{\rho^* F_j} \cdot \theta.
$$

 $j=1$ $j=1$ $j=1$
H[e](#page-2-0)re θ denotes the standard contact structure² on S^{2n−1}. In particular,

$$
\mathscr{E} = (\sigma^* F, \bar{\partial}_{A_*}) \cong \bigoplus_{j=1}^k \sigma^* \mathscr{F}_j
$$

with $\mathcal{F}_j = (F_j,$ ลี $\sum_{j=1}^{n}$ $)$ μ -stable.

To conclude the introduction we discuss two concrete examples in which [Theorem 1.2](#page-1-0) can be applied.

Example 1.5 (Okonek, Schneider, and Spindler [\[OSS11,](#page-13-5) Example 1.1.13]). It follows from the Euler sequence that $H^0(\mathcal{T}_{P^3}(-1)) \cong \mathbb{C}^4$. Denote by $s_v \in H^0(\mathcal{T}_{P^3}(-1))$ the section corresponding to $v \in \mathbb{C}^4$. If $v \neq 0$, then the rank two sheaf $\mathcal{E} = \mathcal{E}_v$ defined by

$$
0 \to \mathcal{O}_{\mathbf{P}^3} \xrightarrow{s_v} \mathcal{T}_{\mathbf{P}^3}(-1) \to \mathcal{E}_v \to 0
$$

is reflexive and sing(\mathcal{E}) = {[v]}.

 $\mathscr E$ is μ –stable. To see this, because $\mu(\mathscr E) = 1/2$, it suffices to show that

$$
\operatorname{Hom}(\mathcal{O}_{\mathbf{P}^3}(k), \mathscr{E}) = H^0(\mathscr{E}(-k)) = 0 \quad \text{for each } k \ge 1.
$$

However, by inspection of the Euler sequence, $H^0(\mathscr{E}(-k)) \cong H^0(\mathscr{T}_{\mathbf{P}^3}(-k-1)) = 0$. It follows that $\mathscr E$ admits a PHYM metric H with $F_H \in L^2$ and a unique singular point at $[v] \in \mathbb P^3$. To see that [Theorem 1.2](#page-1-0) applies, pick a standard affine neighborhood $U \cong C^3$ in which [v] corresponds to 0. In U , the Euler sequence becomes

$$
0 \to \mathcal{O}_{C^3} \xrightarrow{(1,z_1,z_2,z_3)} \mathcal{O}_{C^3}^{\oplus 4} \to \mathcal{T}_{P^3}(-1)|_U \to 0,
$$

and $s_v = [(1, 0, 0, 0)]$; hence,

$$
0 \to \mathcal{O}_{C^3} \xrightarrow{(z_1, z_2, z_3)} \mathcal{O}_{C^3}^{\oplus 3} \to \mathcal{E}_v|_U \to 0.
$$

On C³\{0}, this is the pullback of the Euler sequence on P²; therefore, $\mathcal{E}_v|_U \cong i_*\sigma^* \mathcal{T}_{P^2}$.

With respect to standard coordinates on Cⁿ, the standard contact structure θ on S^{2n-1} is such that $\pi^*\theta$ = $\sum_{j=1}^{n} (\bar{z}_j \mathrm{d}z_j - z_j \mathrm{d}\bar{z}_j)/2i|z|^2$.

Example 1.6. For $t \in \mathbb{C}$, define $f_t: \mathcal{O}_{\mathbb{P}^3}(-2)^{\oplus 2} \to \mathcal{O}_{\mathbb{P}^3}(-1)^{\oplus 5}$ by

$$
f_t := \begin{pmatrix} z_0 & 0 \\ z_1 & z_0 \\ z_2 & z_1 \\ t \cdot z_3 & z_2 \\ 0 & z_3 \end{pmatrix},
$$

and denote by \mathcal{E}_t the cokernel of f_t , i.e.,

$$
(1.7) \t\t 0 \to \mathcal{O}_{\mathbf{P}^3}(-2)^{\oplus 2} \xrightarrow{f_t} \mathcal{O}_{\mathbf{P}^3}(-1)^{\oplus 5} \to \mathcal{E}_t \to 0.
$$

If $t \neq 0$, then \mathscr{E}_t is locally free; \mathscr{E}_0 is reflexive with $\text{sing}(\mathscr{E}_0) = \{ [0 : 0 : 0 : 1] \}$. The proof of this is analogous to that of the reflexivity of \mathcal{E}_v from [Example 1.5](#page-2-1) given in [\[OSS11,](#page-13-5) Example 1.1.13].

For each t, $H^0(\mathscr{E}_t) = H^0(\mathscr{E}_t^*(-1)) = 0$; hence, \mathscr{E}_t is μ -stable according to the criterion of Okonek, Schneider, and Spindler [\[OSS11,](#page-13-5) Remark 1.2.6(b)]. The former vanishing is obvious since $H^0(\mathcal{O}_{\mathbf{P}^3}(-1)) = H^1(\mathcal{O}_{\mathbf{P}^3}(-2)) = 0$. The latter follows by dualising [\(1.7\),](#page-3-0) twisting by $\mathcal{O}_{\mathbf{P}^3}(-1)$ and observing that the induced map $H^0(f_0^*)\colon H^0(\mathcal{O}_{\mathbf{P}^3})^{\oplus 5} \to H^0(\mathcal{O}_{\mathbf{P}^3}(1))^{\oplus 2}$, which is given by

$$
\begin{pmatrix} z_0 & z_1 & z_2 & t \cdot z_3 & 0 \\ 0 & z_0 & z_1 & z_2 & z_3 \end{pmatrix},
$$

is injective.

In a standard affine neighborhood $U \cong C^3$ of $[0:0:0:1]$, we have $\mathscr{C}_0|_U \cong i_*\sigma^*(\mathcal{F}_{P^2} \oplus \mathcal{O}_{P^2}(1))$. To see this, note that the cokernel of the map $g: \overline{O_{p2}^{\oplus 2}}$ $\widehat{\mathbb{P}}_2^2 \to \widehat{\mathcal{O}_{\mathbf{P}^2}}(1)^{\oplus 4} \oplus \widehat{\mathcal{O}_{\mathbf{P}^2}}$ defined by

$$
g := \begin{pmatrix} z_0 & 0 \\ z_1 & z_0 \\ z_2 & z_1 \\ 0 & z_2 \\ 0 & 1 \end{pmatrix}
$$

is $\mathcal{T}_{\mathbf{P}^2} \oplus \mathcal{O}_{\mathbf{P}^2}(1)$.

Conventions and notation. Set $B_r := B_r(0)$ and $\dot{B}_r := B_r(0) \setminus \{0\}$. We denote by $c > 0$ a generic constant which depends only on \mathcal{F}_r (a) shape H_r and \mathbb{F}_{rel} are constant which depends only on \mathcal{F}_r (constant, which depends only on \mathcal{F}, ω , $s|_{B_1\setminus B_{1/2}}$, H_{\diamond} , and $||F_H||_{L^2(B_R(0))}$ (which will be introduced
in the next section). Its velue might change from one eccurrence to the next. Should a depend in the next section). Its value might change from one occurrence to the next. Should c depend on further data we indicate this by a subscript. We write $x \leq y$ for $x \leq c y$. The expression $O(x)$ denotes a quantity y with $|y| \leq x$. Since reflexive sheaves are locally free away from a closed subset of complex codimension three, without loss of generality, we will assume throughout that $n \geqslant 3$.

Acknowledgements. HSE and TW were partially supported by São Paulo State Research Council (FAPESP) grant 2015/50368-0 and the MIT–Brazil Lemann Seed Fund for Collaborative Projects. HSE is also funded by FAPESP grant 2014/24727-0 and Brazilian National Research Council (CNPq) grant PQ2 - 312390/2014-9.

2 Reduction to the metric setting

In the situation of [Theorem 1.2,](#page-1-0) the Hermitian metric H on $\mathscr E$ corresponds to a PHYM metric on σ^* *π* via the isomorphism $(E, \bar{\partial}_A) \cong \sigma^*$ *F*. By slight abuse of notation, we will denote this metric by *H* as well by H as well.

Denote by $\mathcal{F}_1, \ldots, \mathcal{F}_k$ the μ -stable summands of \mathcal{F} . Denote by K_i the PHYM metric on \mathcal{F}_i with

$$
i\Lambda_{\omega_{FS}}F_{K_j} = \frac{2\pi}{(n-2)! \text{vol}(\mathbf{P}^{n-1})} \mu_j \cdot \text{id}_{F_j} = (2n-2)\pi \mu_j \cdot \text{id}_{F_j}
$$

with ω_{FS} denoting the integral Fubini study form and for $\mu_j := \mu(\mathcal{F}_j)$. The Kähler form ω_0 associated with the standard Kähler metric on C^n can be written as

(2.1)
$$
\omega_0 = \frac{1}{2i} \bar{\partial} \partial |z|^2 = \pi r^2 \sigma^* \omega_{FS} + r \mathrm{d} r \wedge \pi^* \theta
$$

with θ as in [Proposition 1.4.](#page-1-1) Therefore, we have

$$
i\Lambda_{\omega_0} \mathbf{F}_{\sigma^* K_j} = (2n-2)\mu_j r^{-2} \cdot \mathrm{id}_{\sigma^* F_j},
$$

and $H_{\diamond,j} \coloneqq r^{2\mu_j} \cdot \sigma^*K_j$ satisfies

$$
i\Lambda_{\omega_0} F_{H_{\circ,j}} = i\Lambda_{\omega_0} F_{\sigma^* K_j} + i\Lambda_{\omega_0} \bar{\partial} \partial \log r^{2\mu_j} \cdot id_{\sigma^* F_j}
$$

= $i\Lambda_{\omega_0} F_{\sigma^* K_j} + \frac{1}{2} \Delta \log r^{2\mu_j} \cdot id_{\sigma^* F_j} = 0.$

Denote by $A_{\diamond,j}$ the Chern connection associated with $H_{\diamond,j}$ and by B_j the Chern connection associated with K_j . The isometry r^{μ_j} : $(\sigma^* F_j, H_{\diamond, j}) \to \sigma^*(F_j, K_j)$ transforms $A_{\diamond, j}$ into

$$
A_{*,j} \coloneqq (r^{\mu_j})_* A_{\diamond,j} = \sigma^* B_j + i\mu_j \operatorname{id}_{\sigma^* F_j} \cdot \pi^* \theta.
$$

In particular,

$$
A_* \coloneqq \bigoplus_{j=1}^k A_{*,j}
$$

is the pullback of a connection B on S^{2n-1} . Moreover, A_* is unitary with respect to

$$
H_*\coloneqq\bigoplus_{j=1}^k\sigma^*K_j
$$

Proposition 2.2. Assume the above situation. Set $H_{\circ} \coloneqq \bigoplus_{j=1}^{k} H_{\circ,j}$ and fix $R > 0$. We have

(2.3)
$$
\left\||z|^{2+\ell}\nabla_{H_{\circ}}^{\ell}F_{H_{\circ}}\right\|_{L^{\infty}(B_R)} < \infty \quad \text{for each } \ell \geq 0.
$$

Proof. Using the isometry $g := \bigoplus_{j=1}^k r^{\mu_j}$ both assertions can be translated to corresponding statements for A. The first assertion then follows since A. is the pullback of a connection B on statements for A_{*} . The first assertion then follows since A_{*} is the pullback of a connection B on S^{2n-1} <u>.</u>
Desember 1980 – Santa Sant

In the situation of [Theorem 1.2,](#page-1-0) after a conformal change, which does not affect A° , we can assume that det $H = \det H_{\diamond}$. Setting

Setting
\n
$$
s := \log(H_o^{-1}H) \in C^\infty(\dot{B}_r, i\mathfrak{su}(\sigma^*F, H_o))^3
$$
\nand
$$
\Upsilon(s) := \frac{e^{ad_s} - 1}{ad_s},
$$

we have

$$
e_*^{s/2}H = H_\diamond \quad \text{and} \quad e_*^{s/2}A = A_\diamond + a
$$

with
$$
a := \frac{1}{2}\Upsilon(-s/2)\partial_{A_\diamond} s - \frac{1}{2}\Upsilon(s/2)\overline{\partial}_{A_\diamond} s;
$$

see, e.g., [\[JW18,](#page-13-6) Appendix A]. Moreover, with $g \coloneqq \bigoplus_{j=1}^k r^{\mu_j}$ we have

$$
g_*e_*^{s/2}A = A_* + gag^{-1}
$$

Since

$$
|\nabla_{A_*}^k gag^{-1}|_{H_*} = |\nabla_{H_*}^k a|_{H_*} \quad \text{for each } k \geq 0,
$$

[Theorem 1.2](#page-1-0) will be a consequence of [Proposition 2.2](#page-5-1) and the following result.

Theorem 2.4. Suppose $\omega = \frac{1}{2i} \bar{\partial} \partial |z|^2 + O(|z|^2)$ is a Kähler form on $\bar{B}_R \subset \mathbb{C}^n$, \mathscr{E} is a holomorphic
vector bundle over \dot{B}_R , and H, is a Hermitian metric on \mathscr{E} which is HVM with respect to \dot **Theorem 2.4.** Suppose $\omega = \frac{1}{2i} \sigma \sigma |z|^2 + O(|z|^2)$ is a Kanier form on $B_R \subset \mathbb{C}^n$, ϵ is a holomorphic
vector bundle over \dot{B}_R , and H_{ϕ} is a Hermitian metric on \mathcal{E} which is HYM with respect to ω_0 satisfies [\(2.3\)](#page-5-2). If H is an admissible HYM metric on $\mathscr E$ with $\text{sing}(A_H) = \{0\}$ and $\det H = \det H_{\diamond}$, then

$$
s \coloneqq \log(H_{\diamond}^{-1}H) \in C^{\infty}(\dot{B}_R, i\mathfrak{su}(\pi^*F, H_{\diamond}))
$$

satisfies

$$
|s| \leq C_0 \quad \text{and} \quad |z|^k |\nabla_{H_\circ}^k s| \leq C_k |z|^\alpha \quad \text{for each } k \geq 1.
$$

The constants C_k , $\alpha > 0$ depend on ω , H_{\diamond} , $s|_{B_R \setminus B_{R/2}}$, and $||F_H||_{L^2(B_R)}$.

The next three sections of this paper are devoted to proving [Theorem 2.4.](#page-5-3) Without loss of generality, we will assume that the radius R is one. We set $B := B_1$ and $\dot{B} := \dot{B}_1$.

 3 If H, K are two Hermitian inner products on a complex vector space V, then there is a unique endomorphism $T \in End(V)$ which is self-adjoint with respect to H and K, has positive spectrum, and satisfies $H(Tv, w) = K(v, w)$. It is customary to denote T by $H^{-1}K$, and thus $\log(H^{-1}K) = \log(T)$.

3 A priori C^0 estimate

As a first step towards proving [Theorem 2.4](#page-5-3) we bound $|s|$, using an argument which is essentially contained in Bando and Siu [\[BS94,](#page-12-2) Theorem 2(a) and (b)].

Proposition 3.1. We have $|s| \in L^{\infty}(B)$ and $||s||_{L^{\infty}(B)} \leq c$.

Proof. The proof relies on the differential inequality

(3.2)
$$
\Delta \log \text{tr} H_0^{-1} H_1 \lesssim |K_{H_1} - K_{H_0}|
$$

for Hermitian metrics H_0 and H_1 with det $H_0 = \det H_1$, and with

$$
K_H := i\Lambda F_H - \frac{\text{tr}(i\Lambda F_H)}{\text{rk } E} \cdot \text{id}_E;
$$

see [\[Siu87,](#page-13-7) p. 13] for a proof.

Step 1. We have $\log \text{tr } e^s \in W^{1,2}(B)$ and $\|\log \text{tr } e^s\|_{W^{1,2}(B)} \leq c$.

Choose $1 \le i < j \le n$ and define the projection $\pi: B \to \mathbb{C}^{n-2}$ by

$$
\pi(z) \coloneqq (z_1, \ldots, \hat{z}_i, \ldots \hat{z}_j, \ldots, z_n).
$$

For $\zeta \in \mathbb{C}^{n-2}$, denote by ∇_{ζ} and Δ_{ζ} the derivative and the Laplacian on the slice $\pi^{-1}(\zeta)$ respectively. Set $f_{\zeta} := \log \text{tr } e^s|_{\pi^{-1}(\zeta)}$. Applying [\(3.2\)](#page-6-0) to $H|_{\pi^{-1}(\zeta)}$ and $H_{\diamond}|_{\pi^{-1}(\zeta)}$ we obtain

$$
\Delta_{\zeta} f_{\zeta} \lesssim |\mathbf{F}_H| + |\mathbf{F}_{H_{\circ}}|.
$$

Fix $\chi \in C^{\infty}(C^2; [0, 1])$ such that $\chi(\eta) = 1$ for $|\eta| \le 1/2$ and $\chi(\eta) = 0$ for $|\eta| \ge 1/\sqrt{2}$. For $0 < |\zeta| \leq 1/\sqrt{2}$ and $\varepsilon > 0$, we have

$$
\int_{\pi^{-1}(\zeta)} |\nabla_{\zeta} (\chi f_{\zeta})|^2 \lesssim \int_{\pi^{-1}(\zeta)} \chi^2 f_{\zeta} (|\mathbf{F}_H| + |\mathbf{F}_{H_{\circ}}|) + 1
$$

$$
\leq \varepsilon \int_{\pi^{-1}(\zeta)} |\chi f_{\zeta}|^2 + \varepsilon^{-1} \int_{\pi^{-1}(\zeta)} |\mathbf{F}_H|^2 + |\mathbf{F}_{H_{\circ}}|^2 + 1.
$$

Using the Dirichlet–Poincaré inequality and rearranging, we obtain

$$
\int_{\pi^{-1}(\zeta)} |\chi f_{\zeta}|^2 + |\nabla_{\zeta} (\chi f_{\zeta})|^2 \lesssim \int_{\pi^{-1}(\zeta)} |F_H|^2 + |F_{H_{\circ}}|^2 + 1.
$$

Integrating over $0 < |\zeta| \leqslant 1/\sqrt{2}$ yields

$$
\int_B |\log \text{tr } e^s|^2 + |\nabla' \log \text{tr } e^s|^2 \le \int_B |\mathbf{F}_H|^2 + |\mathbf{F}_{H_0}|^2 + 1
$$

with ∇' denoting the derivative along the fibres of π . Using [\(2.3\)](#page-5-2) and $n \ge 3$, $F_{H_0} \in L^2(B)$. Since the choice of *i*, *j* defining π was arbitrary, the asserted inequality follows.

Step 2. The differential inequality

$$
\Delta \log \text{tr } e^s \lesssim |K_{H_o}|
$$

holds on B in the sense of distributions.

Fix a smooth function $\chi: [0, \infty) \to [0, 1]$ which vanishes on [0, 1] and is equal to one on [2, ∞). Set $\chi_{\varepsilon} := \chi(|\cdot|/\varepsilon)$. By [\(3.2\),](#page-6-0) for $\phi \in C_0^{\infty}(B)$, we have

$$
\int_{B} \Delta \phi \cdot \log \operatorname{tr} e^{s} = \lim_{\varepsilon \to 0} \int_{B} \chi_{\varepsilon} \cdot \Delta \phi \cdot \log \operatorname{tr} e^{s}
$$

\$\lesssim \int_{B} \phi \cdot |\mathbf{K}_{H_{\circ}}| + \lim_{\varepsilon \to 0} \int_{B} \phi \cdot (\Delta \chi_{\varepsilon} \cdot \log \operatorname{tr} e^{s} - 2 \langle \nabla \chi_{\varepsilon}, \nabla \log \operatorname{tr} e^{s} \rangle).

Since $n \ge 3$, we have $\|\chi_{\varepsilon}\|_{W^{2,2}(B)} \le \varepsilon^2$. Because log tr $e^s \in W^{1,2}(B)$ this shows that the limit vanishes.

Step 3. We have $\log tr e^s \in L^{\infty}(B)$ and $||\log tr e^s||_{L^{\infty}(B)} \leq c$.

Since tr $s = 0$, we have $|s| \leq r k(\mathscr{E}) \cdot \log tr e^s$; in particular, $\log tr e^s$ is non-negative. By hypothesis $K_H = 0$. Since H_0 is HYM with respect to ω_0 and $|F_{H_0}| \lesssim |z|^{-2}$ by hypothesis [\(2.3\),](#page-5-2) we have $|K_{H_0}| \leq c$. The asserted inequality thus follows from [Step 2](#page-7-0) via Moser iteration; see [\[GT01,](#page-13-8) Theorem 8.1] Theorem 8.1]. \square

4 A priori Morrey estimates

The following decay estimate is the crucial ingredient of the proof of [Theorem 2.4.](#page-5-3)

Proposition 4.1. There is a constant $\alpha > 0$, such that for $r \in [0, 1]$ we have

$$
\int_{B_r} |\nabla_{H_\diamond} s|^2 \lesssim r^{2n-2+2\alpha}.
$$

The proof of this proposition relies on a Neumann–Poincaré type inequality, which we describe in what follows. Denote by $\nabla_{T,r}$ the connection on $i\mathfrak{su}(E, H_0)|_{\partial B_r}$ induced by ∇_{H_0} . The linear contractor $\nabla_{\mathcal{F}}$. $\Gamma(\partial B_i)$ is ∇_{H_0} is ∇_{H_0} in $\Gamma(\partial B_i)$ is ∇_{H_0} in ∇_{H_0} is \n operator $\nabla_{T,r}$: $\Gamma(\partial B_r, i \infty) \to \Omega^1(\partial B_r, i \infty)$ $\Gamma(\partial B_r, i \infty) \to \Omega^1(\partial B_r, i \infty)$ $\Gamma(\partial B_r, i \infty) \to \Omega^1(\partial B_r, i \infty)$ has a finite dimensional kernel. Since ∇_{H_0} is conical, we can identify ⁴

$$
\ker \nabla_{T,r} = \ker \nabla_{T,1} =: K.
$$

Moreover, we can regard K as a subset of constant sections: $K \subset \Gamma(\dot{B}_r, i\mathfrak{su}(E, H_\circ))$. Denote by $\pi : \Gamma(B_R, i\mathfrak{su}(E, H)) \to K$ the I^2 -orthogonal projection onto K and define $\Pi : \Gamma(\dot{B}_r, i\mathfrak{su}(E, H))$. $\pi_r: \ \Gamma(\partial B_r, i\mathfrak{su}(E,H_\circ)) \to K$ the L^2 -orthogonal projection onto K and define $\Pi_r: \ \Gamma(\dot{B}_{2r}, i\mathfrak{su}(E,H_\circ)) \to K$ by K by

$$
\Pi_r s \coloneqq \frac{1}{r} \int_r^{2r} \pi_t(s|_{\partial B_t}) dt.
$$

 \overline{K} can be determined explicitly from the from the decomposition of $\mathscr F$ into μ –stable summands, but we will not need a precise description of K.

Proposition 4.2. We have

$$
\int_{B_{2r}\setminus B_r} |s-\Pi_r s|^2 \lesssim r^2 \int_{B_{2r}\setminus B_r} |\nabla_{H_s} s|^2.
$$

Proof. The asserted estimate is scale-invariant; hence, we may assume $r = 1/2$. To prove the estimate in this case it suffices to prove the cylindrical estimate

$$
\int_{1/2}^1 \int_{\partial B} |s(t, \hat{x}) - \Pi s(t, \cdot)|^2 \, d\hat{x} dt \lesssim \int_{1/2}^1 \int_{\partial B} |\partial_t s(t, \hat{x})|^2 + |\nabla_T s(t, \hat{x})|^2 \, d\hat{x} dt
$$

with s denoting a section over $[1/2, 1] \times \partial B$, $\pi := \pi_1$, $\Pi s := 2 \int_{1/2}^{1} \pi s(t, \cdot) dt$, and $\nabla_T := \nabla_{T,1}$. We compute

$$
\int_{1/2}^{1} \int_{\partial B} |s(t, \hat{x}) - \Pi s(t, \cdot)|^2 d\hat{x} dt
$$

= $4 \int_{1/2}^{1} \int_{\partial B} \left| \int_{1/2}^{1} s(t, \hat{x}) - \pi s(u, \cdot) du \right|^2 d\hat{x} dt$
 $\leq \int_{1/2}^{1} \int_{1/2}^{1} \int_{\partial B} |s(t, \hat{x}) - \pi s(u, \cdot)|^2 d\hat{x} du dt$
 $\leq \int_{1/2}^{1} \int_{1/2}^{1} \int_{\partial B} |s(t, \hat{x}) - \pi s(t, \cdot)|^2 + |\pi s(t, \cdot) - \pi s(u, \cdot)|^2 d\hat{x} du dt.$

The first summand can be bounded as follows

$$
\int_{1/2}^1 \int_{1/2}^1 \int_{\partial B} |s(t, \hat{x}) - \pi s(t, \cdot)|^2 \, d\hat{x} dt du \lesssim \int_{1/2}^1 \int_{1/2}^1 \int_{\partial B} |\nabla_T s(t, \hat{x})|^2 \, d\hat{x} dt du
$$

$$
\lesssim \int_{1/2}^1 \int_{\partial B} |\nabla_T s(t, \hat{x})|^2 \, d\hat{x} dt.
$$

The second summand can be controlled as in the usual proof of the Neumann–Poincaré inequality. We have

$$
|\pi s(t, \cdot) - \pi s(u, \cdot)| = \left| \int_0^1 \partial_v \pi s(t + v(t - u), \cdot) dv \right|
$$

\n
$$
\leq \left| \int_0^1 \pi(\partial_t s)(t + v(t - u), \cdot) dv \right|
$$

\n
$$
\leq \left(\int_0^1 \int_{\partial B} |(\partial_t s)(t + v(t - u), \hat{x})|^2 d\hat{x} dv \right)^{1/2}
$$

Plugging this into the second summand and symmetry considerations yield

$$
\int_{1/2}^{1} \int_{1/2}^{1} \int_{\partial B} |\pi s(t, \cdot) - \pi s(u, \cdot)|^2 \, d\hat{x} du dt
$$

\$\leq \int_{1/2}^{1} \int_{1/2}^{1} \int_{0}^{1} \int_{\partial B} |(\partial_t s)(t + v(t - u), \hat{x})|^2 \, d\hat{x} dv du dt\$
\$\leq \int_{1/2}^{1} \int_{\partial B} |\partial_t s(t, \hat{x})|^2 \, d\hat{x} dt\$.

This finishes the proof. \Box

The proof of [Proposition 4.1](#page-7-2) also uses the following observation about

$$
\hat{s}_r \coloneqq \log(e^{-\Pi_r s}e^s).
$$

By construction, the section \hat{s}_r is self-adjoint with respect to $H_\diamond e^s$ as well as $H_\diamond e^{\Pi_r s}$, and

$$
H_{\diamond}e^s = (H_{\diamond}e^{\Pi_r s})e^{\hat{s}_r}.
$$

Proposition 4.3. The section \hat{s}_r satisfies

$$
|\nabla_{H_{\circ}}s| \lesssim |\nabla_{H_{\circ}}\hat{s}_r|, \quad |\hat{s}_r| \lesssim |s - \Pi_r s|, \quad \text{and} \quad |\nabla_{H_{\circ}}\hat{s}_r|^2 \lesssim 1 - \Delta |\hat{s}_r|^2.
$$

Proof. The first two inequalities follow by elementary considerations.

Since *s* is bounded in $L^{\infty}(B)$, $\Pi_r s$ is uniformly bounded and, consequently, so is \hat{s}_r . By [JW₁₈, position A ol, we have Proposition A.9], we have

$$
\Delta |\hat{s}_r|^2 + 2|v(-\hat{s}_r)\nabla_{H_\diamond e^{\Pi_r s}}\hat{s}_r|^2 \lesssim |\mathbf{K}_{H_\diamond e^s}| + |\mathbf{K}_{H_\diamond e^{\Pi_r s}}|
$$

with

$$
v(-\hat{s}_r) = \sqrt{\frac{1 - e^{-\operatorname{ad}_{\hat{s}_r}}}{\operatorname{ad}_{\hat{s}_r}}} \in \operatorname{End}(\mathfrak{gl}(E)).
$$

 $H_{\diamond}e^s$ is HYM; that is: K $H_{\circ}e^{s} = 0$ Since $\Pi_{r}s$ is constant with respect to $\nabla_{H_{\circ}}$, we have

$$
K_{H_{\circ}e^{\Pi_{r}s_{r}}} = i\Lambda\bar{\partial}(e^{\Pi_{r}s}\partial_{H_{\circ}}e^{-\Pi_{r}s}) = \mathrm{Ad}(e^{\Pi_{r}s})K_{H_{\circ}},
$$

which is bounded. Moreover, ∇_{H_0} and ∇ $_{H_{\diamond}e^{\Pi_{r}s}}$ differ by a bounded algebraic operator. Given this, the third inequality follows using

$$
\sqrt{\frac{1-e^{-x}}{x}} \gtrsim \frac{1}{\sqrt{1+|x|}},
$$

 $\|K_{H_0}\|_{L^{\infty}} \leq c$, which is a consequence of [\(2.3\),](#page-5-2) and the fact that H_0 is HYM with respect to ω_0 , and the have detailed in Proposition 2. the bound on $|s|$ established in [Proposition 3.1.](#page-6-1)

Proof of [Proposition 4.1.](#page-7-2) Given the above discussion, the proof is very similar to that of $JW18$, Proposition C.2]. Nevertheless, for the reader's convenience we provide the necessary details.

Define $q: [0, 1/2] \rightarrow [0, \infty]$ by

$$
g(r) \coloneqq \int_{B_r} |z|^{2-2n} |\nabla_{H_\circ} s|^2.
$$

We will show that

$$
g(r)\leqslant cr^{2\alpha},
$$

which implies the asserted inequality.

Step 1. We have $q \leq c$.

Fix a smooth function $\chi: [0, \infty) \to [0, 1]$ which is equal to one on [0, 1] and vanishes outside [0, 2]. Set $\chi_r(\cdot) := \chi(|\cdot|/r)$. For $r > \varepsilon > 0$, using [Proposition 4.3](#page-9-0) and [Proposition 3.1,](#page-6-1) and with G denoting Green's function on B centered at 0, we have

$$
\int_{B_r \backslash B_{\varepsilon}} |z|^{2-2n} |\nabla_{H_{\circ}} s|^2 \le \int_{B_r \backslash B_{\varepsilon}} |z|^{2-2n} |\nabla_{H_{\circ}} \hat{s}_r|^2
$$
\n
$$
\le \int_{B_{2r} \backslash B_{\varepsilon/2}} \chi_r (1 - \chi_{\varepsilon/2}) G(1 - \Delta |\hat{s}_r|^2)
$$
\n
$$
\le \int_{B_{2r} \backslash B_r} |z|^{-2n} |s - \Pi_r s|^2 + r^2 + \varepsilon^{-2n} \int_{B_{\varepsilon} \backslash B_{\varepsilon/2}} |s - \Pi_r s|^2
$$
\n
$$
\le c.
$$

Step 2. There are constants $\gamma \in [0, 1)$ and $A > 0$ such that

$$
g(r) \leqslant \gamma g(2r) + Ar^2.
$$

Continuing the inequality from [Step 1](#page-10-0) using [Proposition 4.2,](#page-8-0) we have

$$
\int_{B_r\setminus B_{\varepsilon}} |z|^{2-2n} |\nabla_{H_{\varepsilon}} s|^2 \lesssim \int_{B_{2r}\setminus B_r} |z|^{2-2n} |\nabla_{H_{\varepsilon}} s|^2 + r^2 + \varepsilon^{2-2n} \int_{B_{\varepsilon}\setminus B_{\varepsilon/2}} |\nabla_{H_{\varepsilon}} s|^2
$$

$$
\lesssim g(2r) - g(r) + r^2 + g(\varepsilon).
$$

By Lebesgue's monotone convergence theorem, the last term vanishes as ε tends to zero; hence, the asserted inequality follows with $\gamma = \frac{c}{c+1}$ and $A = c$.

Step 3. We have $g \leqslant cr^{2\alpha}$ for some $\alpha \in (0, 1)$.

This follows from [Step 1](#page-10-0) and [Step 2](#page-10-1) and as in [\[JW18,](#page-13-6) Step 3 in the proof of Proposition C.2]. \Box

5 Proof of [Theorem 2.4](#page-5-3)

For $r > 0$, define $m_r: C^n \to C^n$ by $m_r(z) \coloneqq rz$. Set

$$
s_r := m_r^*(s|_{B_{4r}\setminus B_{r/2}}) \in C^\infty(B_4\setminus B_{1/2}, i\mathfrak{su}(E, H_*)) \quad \text{and} \quad H_{\diamond,r} := m_r^*H_\diamond.
$$

The metric H_{\diamond}, r^{s_r} is HYM with respect to $\omega_r := r^{-2} m_r^* \omega$ and $||F_{H_{\diamond},r}||_{C^k(B_4 \setminus B_{1/2})} \leq c_k$.
Proposition 2.1 (2.9) and interior estimates for HYM metrics [JW₁₈, Theorem C₁

[Proposition 3.1,](#page-6-1) [\(2.3\)](#page-5-2) and interior estimates for HYM metrics [\[JW18,](#page-13-6) Theorem C.1] imply that

$$
||s_r||_{C^k(B_3 \setminus B_{3/4})} \leq c_k.
$$

By [Proposition 4.1,](#page-7-2) we have

$$
\|\nabla_{H_{\diamond,r}}s_r\|_{L^2(B_4\setminus B_{1/2})}\lesssim r^{\alpha}.
$$

Schematically, K $H_{\circ},$, $e^{sr} = 0$ can be written as

$$
\nabla_{H_{\circ},r}^* \nabla_{H_{\circ},r} s_r + B(\nabla_{H_{\circ},r} s \otimes \nabla_{H_{\circ},r} s_r) = C(K_{H_{\circ},r}),
$$

where B and C are linear with coefficients depending on s, but not on its derivatives; see, e.g., [JW18] , Proposition A.1]. Since $||K_{H_{\circ},r}||_{C^{k}(B_3\setminus B_{3/4})} \leq c_k r^2$, as in [\[JW18,](#page-13-6) Step 3 in the proof of Proposition 5.1], standard interior estimates imply that

$$
\|\nabla_{H_{\diamond,r}}^k s_r\|_{L^2(B_2\setminus B_1)} \leqslant c_k r^{\alpha}
$$

and, hence, the asserted inequalities, for each $k \ge 1$. (The asserted inequality for $k = 0$ has already be proven in [Proposition 3.1.](#page-6-1))

6 Proof of [Proposition 1.4](#page-1-1)

We will make use of the following general fact about connections over manifolds with free S^1 actions.

Proposition 6.1. Let M be a manifold with a free S¹–action. Denote the associated Killing field by $\xi \in \text{Vect}(M)$ and let $q: M \to M/S^1$ be the canonical projection. Suppose $\theta \in \Omega^1(M)$ is such that $\theta(\xi) = 1$ and $\mathcal{L}_{\xi} \theta = 0$. Let A be a unitary connection on a Hermitian vector bundle (E H) over M. If $\theta(\xi) = 1$ and $\mathscr{L}_{\xi} \theta = 0$. Let A be a unitary connection on a Hermitian vector bundle (E, H) over M. If $i(\xi)F_A = 0$, then there is a $k \in \mathbb{N}$ and, for each $j \in \{1, ..., k\}$, a Hermitian vector bundles (F_j, K_j)
over M/S^1 such that over M/S^1 such that

$$
E = \bigoplus_{j=1}^{k} E_j \quad and \quad H = \bigoplus_{j=1}^{k} H_j
$$

with $E_j \coloneqq q^* F_j$ and $H_j \coloneqq q^* K_j$; moreover, the bundles E_j are parallel and, for each $j \in \{1, ..., k\}$, there are a unitary connection R_j on F_j and $y_j \in \mathbf{R}$ such that there are a unitary connection B_j on F_j and $\mu_j \in \mathbb{R}$ such that

$$
A = \bigoplus_{j=1}^k q^* B_j + i \mu_j \operatorname{id}_{E_j} \cdot \theta.
$$

Proof. Denote by $\tilde{\xi} \in \text{Vect}(\mathbb{U}(E))$ the A-horizontal lift of ξ . This vector field integrates to an R–action on U(E). Thinking of A as an $u(r)$ –valued 1–form on U(E) and F_A as an $u(r)$ –valued 2–form on $U(E)$, we have

$$
\mathscr{L}_{\tilde{\xi}}A = i(\tilde{\xi})F_A = 0;
$$

hence, A is invariant with respect to the $\overline{\mathbf{R}}$ –action on U(E).

The obstruction to the R-action on $U(E)$ inducing an S^1 -action is the action of 1 ∈ R and corresponds to a gauge transformation $g_A \in \mathcal{G}(U(E))$ fixing A. If this obstruction vanishes, i.e., $g_A = id_{U(E)}$, then $E \cong q^*F$ with $F = E/S^1$ and there is a connection A_0 on F such that $A = q^*A_0$.

If the obstruction does not vanish, we can decompose E into pairwise orthogonal parallel subbundles E_j such that g_A acts on E_j as multiplication with $e^{i\mu_j}$ for some $\mu_j \in \mathbb{R}$. Set $\tilde{A} :=$ $A - \bigoplus_{j=1}^{k} i\mu_j$ id $E_j \cdot \theta$. This connection also satisfies $i(\tilde{\xi})F_{\tilde{A}} = 0 \in \Omega^1(M, g_E)$ and the subbundles E_j $A - \bigoplus_{j=1} I \mu_j$ id $E_j \cdot v$. This connection also satisfies $i(\xi)F_{\tilde{A}} = 0 \in \Omega^-(M, g_E)$ and the subbundles E_j are also parallel with respect to E_j . Since $g_{\tilde{A}} = id_E$, the assertion follows.

In the situation of <code>Proposition</code> 1.4, with $\xi \in S^{2n-1}$ denoting the Killing field for the S^1- action we have $i(\xi)F_{A_0} = 0$; c.f., Tian [Tiaoo, discussion after Conjecture 2]. Therefore, we can write

$$
A_* = \bigoplus_{j=1}^k \sigma^* B_j + i\mu_j \operatorname{id}_{E_j} \cdot \pi^* \theta.
$$

Since $d\theta = 2\pi \rho^* \omega_{FS}$, we have

$$
F_{A_*} = \bigoplus_{j=1}^k \sigma^* F_{B_j} + 2\pi i \mu_j \operatorname{id}_{E_j} \cdot \sigma^* \omega_{FS}.
$$

Using [\(2.1\),](#page-4-0) A_* being HYM with respect to ω_0 can be seen to be equivalent to

$$
\mathbf{F}_{B_j}^{0,2} = 0 \quad \text{and} \quad i\Lambda \mathbf{F}_{B_j} = (2n-2)\pi \mu_j \cdot \mathrm{id}_{E_j}.
$$

The isomorphism $\mathcal{E} = (E, \bar{\partial}, E)$ O_{A_*} $) \cong \bigoplus_{j=1}^k \rho^* \mathcal{F}_j$ with $\mathcal{F}_j = (F_j,$ จิ $\overline{}^{\prime}$) is given by g^{-1} with $g \coloneqq$ $\bigoplus_{j=1}^k r^{\mu_j}$.
1980 - Paul Barbara, politikar eta biztanleria (h. 1980).
1980 - Johann John Barbara, politikar eta biztanleria (h. 1980).

References

- [Ban91] S. Bando. Removable singularities for holomorphic vector bundles. The Tohoku Mathe-matical Journal 43.1 (1991), pp. 61-67. DOI: [10.2748/tmj/1178227535](https://doi.org/10.2748/tmj/1178227535). MR: [1088714](http://www.ams.org/mathscinet-getitem?mr=MR1088714) (cit. on p. [1\)](#page-0-1).
- [BS94] S. Bando and Y.-T. Siu. Stable sheaves and Einstein–Hermitian metrics. Geometry and analysis on complex manifolds. 1994, pp. 39–50. MR: [1463962](http://www.ams.org/mathscinet-getitem?mr=MR1463962) (cit. on pp. [1,](#page-0-1) [2,](#page-1-2) [7\)](#page-6-2).
- [Don85] S. K. Donaldson. Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles. Proceedings of the London Mathematical Society 50.1 (1985), pp. 1–26. doi: [10.1112/plms/s3-50.1.1](https://doi.org/10.1112/plms/s3-50.1.1). MR: [765366](http://www.ams.org/mathscinet-getitem?mr=MR765366). Zbl: [0529.53018](http://zbmath.org/?q=an:0529.53018) (cit. on p. [1\)](#page-0-1).
- [Don87] S. K. Donaldson. Infinite determinants, stable bundles and curvature. Duke Mathematical Journal 54.1 (1987), pp. 231-247. DOI: [10.1215/S0012-7094-87-05414-7](https://doi.org/10.1215/S0012-7094-87-05414-7). MR: [885784](http://www.ams.org/mathscinet-getitem?mr=MR885784) (cit. on p. [1\)](#page-0-1).
- [GT01] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Reprint of the 1998 edition. Berlin, 2001, pp. xiv+517. MR: [MR1814364](http://www.ams.org/mathscinet-getitem?mr=MRMR1814364) (cit. on p. [8\)](#page-7-3).
- [Har80] R. Hartshorne. Stable reflexive sheaves. Math. Ann. 254.2 (1980), pp. 121–176. DOI: [10.1007/BF01467074](https://doi.org/10.1007/BF01467074). MR: [597077](http://www.ams.org/mathscinet-getitem?mr=MR597077) (cit. on p. [2\)](#page-1-2).
- [JW18] A. Jacob and T. Walpuski. Hermitian Yang–Mills metrics on reflexive sheaves over asymptotically cylindrical Kähler manifolds. Communications in Partial Differential Equations (2018). arXiv: [1603.07702](http://arxiv.org/abs/1603.07702). to appear (cit. on pp. [6,](#page-5-4) [10](#page-9-1)[–12\)](#page-11-1).
- [OSS11] C. Okonek, M. Schneider, and H. Spindler. Vector bundles on complex projective spaces. Modern Birkhäuser Classics. Corrected reprint of the 1988 edition, With an appendix by S. I. Gelfand. 2011, pp. viii+239. DOI: [10.1007/978-3-0348-0151-5](https://doi.org/10.1007/978-3-0348-0151-5). MR: [2815674](http://www.ams.org/mathscinet-getitem?mr=MR2815674) (cit. on pp. [3,](#page-2-2) [4\)](#page-3-1).
- [Siu87] Y.-T. Siu. Lectures on Hermitian–Einstein metrics for stable bundles and Kähler–Einstein metrics. Vol. 8. DMV Seminar. 1987, p. 171. DOI: [10.1007/978-3-0348-7486-1](https://doi.org/10.1007/978-3-0348-7486-1). MR: [904673](http://www.ams.org/mathscinet-getitem?mr=MR904673) (cit. on p. [7\)](#page-6-2).
- [Tiaoo] G. Tian. Gauge theory and calibrated geometry. I. Annals of Mathematics 151.1 (2000), pp. 193–268. doi: [10 . 2307 / 121116](https://doi.org/10.2307/121116). arXiv: [math / 0010015](http://arxiv.org/abs/math/0010015). MR: [MR1745014](http://www.ams.org/mathscinet-getitem?mr=MRMR1745014). Zbl: [0957.58013](http://zbmath.org/?q=an:0957.58013) (cit. on pp. [1,](#page-0-1) [13\)](#page-12-3).
- [UY86] K. K. Uhlenbeck and S.-T. Yau. On the existence of Hermitian–Yang–Mills connections in stable vector bundles. Communications on Pure and Applied Mathematics 39.S, suppl. (1986). Frontiers of the mathematical sciences: 1985 (New York, 1985), S257–S293. doi: [10.1002/cpa.3160390714](https://doi.org/10.1002/cpa.3160390714). MR: [861491](http://www.ams.org/mathscinet-getitem?mr=MR861491) (cit. on p. [1\)](#page-0-1).
- [Yano3] B. Yang. The uniqueness of tangent cones for Yang–Mills connections with isolated singu-larities. Adv. Math. 180.2 (2003), pp. 648–691. poi: [10.1016/S0001-8708\(03\)00016-1](https://doi.org/10.1016/S0001-8708(03)00016-1). Zbl: [1049.53021](http://zbmath.org/?q=an:1049.53021) (cit. on p. [2\)](#page-1-2).