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1 Ordinary Differential Equations

We begin this PDE class with reviewing ODE. The purpose if this is two-fold. First of all, in the
next lecture we will see a class of PDE that can be reduced to ODE. Second, some of the ideas used
to prove Picard–Lindelöf’s theorem on the existence and uniqueness for ODEs can be applied to
certain PDE as well.

Definition 1.1. A (system of) ordinary differential equations (ODEs) of first order is an equation of
the form

(1.2) ẋ(t) = F (t, x(t))

with F : U → Rn and U ⊂ R × Rn open.
We also call (1.2) a dynamical system and call a time-dependent vector field.

Remark 1.3. Any system of ODEs of any order can be converted to a system of ODEs of first order
by introducing auxiliary variables.

Exercise 1.4. If you unfamiliar with the idea of Remark 1.3, please, read up on this.

Let us introduce some language to talk about solutions of (1.2).

Definition 1.5. A solution of (1.2) is a differentiable map φ : I → Rn defined on an interval I ⊂ R
such that for each t ∈ I we have

(t, φ(t)) ∈ U and φ̇(t) = F (t, φ(t)).

We also say that φ : I → Rn is an integral curve of the time-dependent vector field F.

Definition 1.6. A system of ODE of first order (1.2) together with an equation of the form

(1.7) x(t0) = x0

with (t0, x0) ∈ U is called an initial value problem (IVP).
A solution φ : I → Rn to (1.2) is called a solution to the IVP (1.2) and (1.7) if t0 ∈ I and

φ(t0) = x0.

It is often useful to rewrite an ODE as an equivalent integral equation.

Proposition 1.8. Suppose F is continuous. A function φ : I → Rn is a solution to the IVP (1.2) and
(1.7) if and only if for all t ∈ I we have

(1.9) φ(t) = φ(t0) +
ˆ t

t0

F (s, φ(s)) ds.

Proof. If F is continuous, then any solution φ to (1.2) is C1 and, in particular, continuous.
Consequently s 7→ F (s, φ(s)) is continuous and thus integrable. The assertion now follows from the
fundamental theorem of calculus. �
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1.1 Uniqueness of solutions

Example 1.10 (Failure of Uniqueness). Imagine an infinitely high1 cylindrical container filled with
water and a drain at the bottom. Denote by x the water level (in some suitable units). If the container
is empty, then it stays empty and nothing changes; if the water is at level x ≥ 0, then it drains at rate
2
√

x. That is, x is governed by the IVP

ẋ(t) = F (x(t)) and x(0) = 0

with

F (x) :=



−2
√

x x ≥ 0
0 x < 0

.

For each 0 ≤ T ≤ ∞, the function φT : R→ R defined by

φT (t) =



(t + T )2 t ≤ −T
0 t > −T

is a solution of this IVP; it describes the situation where the container has been draining from t = −∞
until it is empty at t = −T .

The above describes a physical situation in which uniqueness cannot possibly hold. It turns out,
however, that solutions to ODE are unique under very mild assumptions on F.

Definition 1.11. A function F : U → Rm is called Lipschitz continuous if there exist a constant
L > 0 such that for all x, y ∈ U

|F (x) − F (y) |
|x − y |

≤ L.

We call
Lip(F) := sup{

|F (x) − F (y) |
|x − y |

: x, y ∈ U } ∈ [0,∞]

the Lipschitz constant of F. Clearly, F is Lipschitz continuous if and only if Lip(F) < ∞.

Remark 1.12. Lipschitz continuity is a rather strong form of continuity. It is closely related with
differentiably: Rademacher’s Theorem asserts that Lipschitz functions are almost everywhere
differentiable. To know what “almost everywhere” means and understand the proof you would have
to know a bit of measure theory (which I don’t expect you to know for this course).

Hypothesis 1.13. Suppose that F : U → Rn, (t, x) 7→ F (t, x) is continuous and for each (t, x) ∈ U
there exists a neighbourhood K of t ∈ R and V of x ∈ Rn such that K × V ⊂ U and there exists a
constant L > 0 such that for all s ∈ K and y, z ∈ V

(1.14)
|F (s, y) − F (s, z) |

|y − z |
≤ L.

1This is ridiculous of course, but the model becomes easier to describe assuming this.
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Remark 1.15. This is might appear like a very technical hypothesis, but it is exactly what is needed
to make the proof work. If you don’t like this hypothesis, assume instead that F is C1.

Theorem 1.16 (Uniqueness Theorem). Assume Hypothesis 1.13. If φ1, φ2 : I → Rn are solutions
to (1.2) and for some t0 ∈ I we have

φ1(t0) = φ2(t0),

then
φ1 = φ2.

Remark 1.17. Note that F in Example 1.10 is not Lipschitz in any neighbourhood of 0.

For the proof we need the following very simple but tremendously useful lemma.

Lemma 1.18 (Grönwall’s Lemma). Let g : I → R be a continuous function with g ≥ 0 and t ∈ I.
If A, B ≥ 0 are constants such that for all t ∈ I

g(t) ≤ A
�����

ˆ t

t0

g(s) ds
�����
+ B,

then for all t ∈ I
g(t) ≤ BeA |t−t0 | .

Proof. We prove this for t ≥ t0 only. The case t < t0 is similar. Please, make sure you understand
how the following argument needs to be adapted in this case.

The function defined by

G(t) := A
ˆ t

t0

g(s) ds + B

satisfies
Ġ(t) ≤ Ag(t) ≤ AG(t).

Here the last inequality is where the hypotheses on g are used. It follows that

G(t) ≤ G(t0)eA(t−t0) = BeA(t−t0) .

This completes the proof because g(t) ≤ G(t). �

Proof of Theorem 1.16. Define

J := {t ∈ I : φ1(t) = φ2(t)}.

We will show that J is a non-empty, closed and open subset of I; hence, it must be the whole interval.
(Do you know why this is true? This is a very simple topological fact, but it is very useful.)

Step 1. By assumption t0 ∈ J; hence, J is non-empty.

Step 2. J is closed.
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Since both φ1 and φ2 are differentiable, they are continuous and so is

δ := φ1 − φ2.

Thus J is closed because it can be written as

J = δ−1(0).

Step 3. J is open.

Suppose we are given a point in J. We may as well denote this point by t0. We will prove that
a small neighbourhood of t0 in I is also contained in J. Choose neighbourhoods K of t ∈ R and
V ⊂ Rn of x0 = φ1(t0) = φ2(t0) ∈ Rn such that K × V ⊂ U and (1.14) holds for all t ∈ K and
y, z ∈ U. Using the integral form of the ODE (1.9), for t ∈ K ∩ I, we can write

|δ(t) | ≤
�����

ˆ t

t0

|F (s, φ1(s)) − F (s, φ2(s)) | ds
�����
≤ L

�����

ˆ t

t0

|δ(t) | ds
�����
.

By Lemma 1.18 with B = 0, δ = 0 in K ∩ I; hence, J ⊃ K ∩ I. �

1.2 Local existence theorems

Exercise 1.19. Find a function F : R→ R such that there is no solution to the IVP

ẋ(t) = F (t) and x(0) = 0.

Theorem 1.20 (Picard–Lindelöf). Assume Hypothesis 1.13. For every (t0, x0) ∈ U there is an
interval I containing t0 on which the IVP

(1.21) ẋ = F (t, x) and x(t0) = x0

has a solution.

Note how the proof is constructive and may (in principle) be used to compute solutions. The
relevant iteration is sometimes called Picard–Lindelöf iteration.

Proof. The actual proof may appear a bit technical, but the idea is very simple: Note that the integral
form

φ(t) = x0 +

ˆ t

t0

F (s, φ(s)) ds

has the shape of a fixed point equation
φ = Tφ

where T : X → X is defined by

(1.22) T (φ)(t) := x0 +

ˆ t

t0

F (s, φ(s)) ds

8



and X is a suitable space of functions. If we arrange things carefully T will be a contraction and we
can deduce the existence of a fixed point from Theorem B.17.

Now, let’s roll our sleeves up and prove this make this rigorous.

Step 1. Because of Hypothesis 1.13, we can fix δ, ε, L > 0 such that (1.14) holds for all s ∈
[t0 − δ, t0 + δ] and y, z ∈ B̄2ε (x0). We can also assume, by making ε and δ smaller, that

γ := δL

and
δ(Lε + M) ≤ ε

where M := sup{|F (s, x0) | : s ∈ [t0 − δ, t0 + δ]}.

Step 2. Set I := [t0 − δ, t0 + δ] and

X := C0(I; B̄ε (x0)) = {φ : I → B̄ε (x0) continuous}

The formula (1.22) defines a map T : X → X .

(1.22) certainly defines a map X → C0(I; Rn). To see that it maps into X , note that

|Tφ(t) − x0 | ≤
�����

ˆ t

t0

|F (s, φ(s)) − F (s, x0) | + |F (s, x0) | ds
�����

≤ δ(Lε + M) ≤ ε.

Step 3. C0(I; B̄ε (x0)) is a complete metric space.

This is a question on problem set #1.

Step 4. T : X → X is a contraction.

It follows from (1.14) that

d(Tφ1,Tφ2) = sup
I

�����

ˆ t

t0

F (s, φ1(s)) − F (s, φ2(s)) ds
�����

≤ sup
I

�����

ˆ t

t0

|F (s, φ1(s)) − F (s, φ2(s)) | ds
�����

≤ sup
I

ˆ t

t0

L |φ1(s) − φ2(s) | ds

≤ δLd(φ1, φ2) = γd(φ1, φ2).

This completes the proof. �

Remark 1.23. The conclusion of Theorem 1.20 holds under weaker assumptions: Peano’s theorem
asserts that it suffices for F to be continuous.
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1.3 Dependence of solutions on initial conditions

Theorem 1.24. Suppose F is C1. If ε > 0 and V ⊂ Rn is a bounded open subset, such that
[−ε, ε] × V̄ ⊂ U , then there is a δ ∈ (0, ε) and a C1 map Φ : (−δ, δ) × V → U such that

(1.25) Φ(0, x0) = x0

and for each x0 ∈ V , t 7→ Φ(t, x0) is an integral curve of (1.2).

Although we are going to use this theorem later, we will not give a proof here. You might want
to try to prove this yourself. If you struggle, it will help to consult [Duistermaat2000]*Lemma B.4.
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2 First-order PDE

In this lecture I will explain one approach to first order quasi-linear PDE, called the method of
characteristics. This approach can be extended to fully-nonlinear first order PDE. A beautiful
exposition can be found in Arnold’s book [1]*Lectures 1 and 2.

Definition 2.1. A first order quasi-linear PDE is a PDE of the form

(2.2) b(x, u(x)) · ∇u(x) + c(x, u(x))u(x) = 0

for a function u : U → R with U ⊂ Rn an open set, b : U ×Rn → Rn and c : U ×Rn → R smooth.

Remark 2.3. Note that if b, c do not depend on the second variable, then (2.2) is a first order linear
PDE.
Remark 2.4. We think of x as a “space variable”. Sometimes, however, we work on space-time. In
these cases we replace Rn above by Rn+1 and x by (t, x).

2.1 Change of coordinates

The method of characteristics is based on the observation that the notion of first order quasi-linear
PDE is stable under coordinate change and the hope that one can find find a good coordinate system
in which (2.2) becomes very simple.

Proposition 2.5. Let Ψ : V → U be a C1–diffeomorphism and u : U → R. Define ũ : V → R by

ũ(x) := u(Ψ(x)).

The function u satisfies (2.2) if and only if the function ũ satisfies the first order quasi-linear PDE

b̃(x, ũ(x)) · ∇ũ(x) + c̃(x, ũ(x)) · ũ(x) = 0.

with

b̃(x, y) := (dΨ(x))−1b(Ψ(x), y)

c̃(x, y) := c(Ψ(x), y).

Proof. By the chain rule
∇ũ(x) = dΨ(x)t∇u(Ψ(x)),

or, equivalently,
∇u(Ψ(x)) =

(
dΨ(x)−1

) t
∇ũ(x);

hence,
b(Ψ(x), u(Ψ(x))) · ∇u(Ψ(x)) = b̃(x, ũ((x))) · ∇ũ(x).

Trivially, we also have
c(Ψ(x), y)u(Ψ(x)) = c̃(x, y)ũ(x).

This completes the proof. �
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2.2 Warm-up: the transport equation

Let us now consider a simple example which will, however, play an important rôle in the theory.

Example 2.6. A transport equation is a PDE of the form

(2.7) v(x) · ∇u(x) = 0

for a function u : U → R with U ⊂ Rn open and v : U → Rn a vector field on U .

The transport equation (2.7) is dual to ODE corresponding to v in the sense of the following
proposition, and this is what makes transport equations easy—at least, theoretically.

Proposition 2.8. Suppose φ : I → U is a solution of the ODE

(2.9) ∂sx(s) = v(x(s)).

If u : U → R is a solution of (2.7), then it is constant along φ, i.e.,

∂su(φ(s)) = 0.

Remark 2.10. The reason we parametrise φ by s and not t is that often in (2.2) one of the components
of x is time and we want to reserve t for that purpose.

Proof. The proof is a simple computation using the chain-rule:

∂su(φ(s)) = ∂sφ(s) · ∇u(φ(s)) = v(φ(s)) · ∇u(φ(s)) = 0. �

Example 2.11. Suppose we want to solve transport equation on Rn+1 with

v =
∂

∂t
+ w

for some non-zero constant w ∈ Rn. (Recall, that we use coordinates (t, x1, . . . , xn) on Rn+1.)
The solutions of (2.9) are the straight lines

x(s) = (s0, x0) + s(1,w);

hence, the solutions to (2.7) must be functions of the form

u(t, x) := f (x − tw)

with f : Rn → R some function.
If we specify u on the hypersurface {t = 0}, that is, we fix u(0, ·) = f , then there is a unique

solution. Even if f is not differentiable, the function u(s, x) := f (x − sw) still satisfies (2.7), since
u still has a derivatives in the direction of the vector v and this is all that is needed to make sense of
(2.7).
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In the light of the previous example we introduce the following notion which will come up over
and over again in this class (it is a generalisation of the notion of boundary or initial condition).

Definition 2.12. Let U ⊂ Rn be an open subset and consider a PDE (??) for a function u : U → R.
Let Γ be a smooth oriented hypersurface with outward-pointing unit normal vector ν, let k ∈ N0
and ( f0, . . . , fk ) : Γ → Rk be a k–tuple of functions. We say that u : U → R solves the Cauchy
problem for (??) with Cauchy hypersurface Γ and Cauchy data ( f0, . . . , fk ) if

• the function u solves the PDE (??), and

• we have
u|Γ = f0, (∂νu) |Γ = f1, · · · (∂kν u) |Γ = fk .

Exercise 2.13. In the situation of Example 2.11, find the general form of a solution of the
inhomogeneous transport equation

v · ∇u(t, x) = g(t, x).

Here we take g : Rn+1 → R to be some continuous function. (Hint: What is the analogue of
Proposition 2.8?)

2.3 The method of characteristics

Suppose that u : U → R is a solution of (2.2). Let I → U, s 7→ x(s) be a path in U. Set
y(s) := u(x(s)).

By the chain rule
∂sy(s) = ∇u(x(s)) · ∂sx(s).

If x where such that
∂sx(s) = b(x, y(s))),

then y solves the ODE
∂sy(s) = −c(x(s), y(s))y(s).

Definition 2.14. The characteristic equation for (2.2) is the ODE

∂sx(s) = b(x(s), y(s)))

∂sy(s) = −c(x(s), y(s))y(s).
(2.15)

If s 7→ (x(s), y(s)) is a solution of (2.15), then we say x is the projected characteristic of (2.2).

Remark 2.16. If the coefficient b(x, u(x)) in (2.2) does not actually depend on u(x) (this is the
case, e.g., for first order linear PDE), then (2.15) partially decouples and the ODE for x no longer
involves y. One consequence of this is that the projected characteristics for a such first-order PDE
never intersect. This simplifies the problem of solving (2.2) quite a bit. In particular, some of the
phenomena we are going to encounter for the inviscid Burgers’ equation cannot occur.
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We will now consider the Cauchy problem with Cauchy hypersurface Γ and Cauchy data
f : Γ → R. The strategy now is to solve (2.15) with initial conditions of the form (x0, f (x0)) for
x ∈ Γ and piece these together to get a solution of (2.2). We cannot always do this for two basic
reasons:

• The projected characteristics may not fill out all of U .

• The projected characteristics may intersect.

One way the projected characteristics could fail fill out all of U is if the projection of the
characteristic through (x0, f (x0)) is tangent to Γ at x0. If there are no such “bad” points on Γ, then
we can at least solve near Γ.

Definition 2.17. A point x0 ∈ Γ is called non-characteristic for (2.2) if

ν(x) · b(x0, f (x0)) , 0.

Theorem 2.18 (Local solvability). Suppose x0 ∈ Γ is non-characteristic. Then there exists a
neighbourhood V of x0 ∈ Γ and a unique solution u : V → R of (2.2) with Cauchy data f on Γ ∩ V .

Proof. We can choose coordinates (s, x1, . . . , xn−1) near x0 such that Γ locally is cut out by s = 0
and x0 has coordinates (0, . . . , 0). By abuse of notation we still denote the coefficients of (2.2) by b
and c. The normal vector-field ν is now nothing but ∂s and we still have ν · b(x0, f (x0)) , 0.

For a sufficiently small neighbourhoodU0 of 0 ∈ Γ and I = (−δ, δ), we can find (Φ,Υ) : I×U0 →

U × R such that
Φ(0, x) = x and Υ(0, x) = f (x)

and

∂sΦ(s, x) = b(Φ(s, x),Υ(s, x)) and
∂sΥ(s, x) = −c(Φ(s, x),Υ(s, x))Υ(s, x).

For x ∈ U0,

dΦ(0, x) =
(
b(x, f (x))

�����
0

idTxΓ

)
with the top-left entry being ν · b((0, x), f (0, x)). Since x0 is non-characteristic, we can assume
that ν · b((0, x), f (0, x)) , 0 for all x ∈ U0. Hence, Φ : I ×U0 → U is a diffeomorphism near x0.
Denote its image by V .

A function u : V → R solves (2.2) with Cauchy data f on V0 = V ∩ Γ if and only the function
ũ : I ×U0 → R defined by

ũ(s, x) := u(Φ(s, x))

solves the equation
∂sũ(s, x) = −c(Φ(s, x), ũ(s, x))ũ(s, x)
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and ũ(0, x) = f (x). For this PDE the asserted statement is clear.
Equivalently, the computation preceding this theorem asserts that if a solution u exists then it

must be of the form
u(s, x) = Υ(Φ−1(s, x));

moreover, this formula also does define a solution as a consequence of the computation in the proof
of Proposition 2.5. �

Although, the previous theorem guarantees the existence of unique local solutions, the question
of global solvability quite involved. Many issues can already arise in the linear case.

Example 2.19. Suppose v = r∂r =
∑n

i=1 xi∂i and Γ = ∂B1(0). Then the Cauchy problem of (2.7)
with Cauchy data f : Γ → R has a solution on all of B̄1(0) if and only if f is constant.

Example 2.20. Suppose v = ∂1 and Γ = {0} ×Rn−1∪ {1} ×Rn−1. Then the Cauchy problem of (2.7)
with Cauchy data f : Γ → R has a solution on all of [0, 1] × Rn−1 if and only if f (0, ·) = f (1, ·).

15



3 The inviscid Burgers’ equation

We will now see another example where serious issues arise due to non-linearities.

Definition 3.1. The inviscid Burgers’ equation is the following PDE for a function u : [0,∞)×R→ R

(3.2) ∂tu + u∂xu = 0.

Remark 3.3. You might want to think of this is a transport equation where the speed depends on u
itself.

Remark 3.4 (Burgers’ equation and Navier–Stokes). The incompressible Navier–Stokes equation is
the PDE2

∂tu + (u · ∇)u + ν∆u = −∇p

div u = 0.
(3.5)

for a pair of maps u : [0,∞) ×Rn → Rn, the flow velocity, and p : [0,∞) ×Rn → R, the pressure.3
Here ν is a constant. This is a model for the motion of an incompressible viscous fluid.

The second equation in (3.5) is the continuity equation and asserts that no material is created by
the flow. If we want to force ∇p = 0, then we can no longer expect this second equation to hold. In
dimension one, the equation we arrive at by setting ∇p = 0 and dropping the second equation is
Burger’s equation

∂tu + u∂xu − ν∂2
xu = 0.

Setting ν = 0 we obtain (3.2).
Roughly speaking, in (3.5), (u · ∇)u is a bad term, while the viscosity term ν∆u is good.

Remark 3.6. The inviscid Burgers’ equation can be written as

∂tu + ∂x

(
u2

2

)
= 0;

hence, it is a special case of a conservation law, i.e., a PDE of the form

∂tu(t, x) + ∂xF (u(t, x)) = 0

for some function F.4
2Here u · ∇ =

∑n
i=1 ui∂i . The whole expression ∂t + (u · ∇) is sometimes called the material derivative. It is the time

derivative from the perspective of a particle moving along the flow.
3The role of the pressure is somewhat secondary since it can be recovered from the flow velocity using the equation

∆p = − div ((u · ∇)u + ∆u)

and the boundary conditions.
4The name conservation law comes from the fact that solutions have the property ∂t

´
R u(t, x) dx = 0 (subject to some

technical hypotheses of course).
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Wewill be concerned with the Cauchy problem for (3.2) with Cauchy data f : R→ R prescribed
along the Cauchy hypersurface {0} × R, that is, we prescribe

u(0, x) = f (x).

Exercise 3.7 (Conservation of the spatial L2–norm). Suppose u : [0,T ) × R→ R is a solution of
(3.2) and ˆ

R
|u(0, x) |2 dx =

ˆ
R
| f (x) |2 dx < ∞.

Prove that the spatial L2–norm is conserved, that is, for all for all t ∈ [0,T ) we have
ˆ

R
|u(t, x) |2 dx =

ˆ
R
|u(0, x) |2 dx.

Let us now apply themethod of characteristics to the inviscid Burgers’ equation. The characteristic
equation takes the particularly simple form

∂st(s) = 1,
∂sx(s) = y(s),

∂sy(s) = 0.

Moreover, note that
∂2
s x(s) = ∂sy(s) = 0.

Thus for the projected characteristic (t(s), x(s)) emanating from (0, x0) we have

∂sx(s) = f (x0).

We conclude that the projected characteristics are of the form

t(s) = s and x(s) = x0 + f (x0)s.

From this we can easily compute the solution to (3.2) in concrete examples.

Example 3.8. Suppose f (x) = x. Then the characteristic curves are

t(s) = s and x(s) = x0(1 + s).

The projected characteristics never intersect (in positive time); hence, we can construct a global
solution to (3.2): u : [0,∞) × R→ R defined by

u(t, x) :=
x

1 + t
.
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Example 3.9. Let’s slightly change the previous example. Suppose f (x) = −x. Then the
characteristic curves are

t(s) = s and x(s) = x0(1 − s).

All the projected characteristics intersect at s = 1. Thus (unless f is constant) we can only solve
(3.2) up to s = 1 by u : [0, 1) × R→ R defined by

u(t, x) =
x

t − 1
.

Exercise 3.10. Find an example of Cauchy data for which no solution u : [0, ε) × R→ R exists for
any value of ε > 0.

Example 3.11. Suppose

f (x) =




1 x ≤ 0
1 − x x ∈ [0, 1]
0 x ≥ 1.

(If the fact that f is not smooth, just piece-wise linear, bothers you can smooth out the kinks. This
doesn’t drastically change what is going to happen, but makes the analysis more cumbersome.)

The projected characteristics are

s 7→




(s, x + s) x ≤ 0
(s, x + (1 − x)s) x ∈ [0, 1]
(s, x) x ≥ 1.

For t ≥ 1, these start to intersect.
So initially we only get the “solution” u : [0, 1) × R→ R defined by

(3.12) u(t, x) :=




1 x ≤ t
1−x
1−t x ∈ [t, 1]
0 x ≥ 1

I wrote “solution” because u(t, x) is not C1.

Exercise 3.13. Suppose φ ∈ C∞c ((0, 1)×R) is a smooth function on (0, 1)×R with compact support.
We call such a φ a test function. If u is a C1–solution of (3.2), then integration by parts shows that

(3.14)
ˆ

(0,1)×R
(∂tφ)u + (∂xφ)

u2

2
dt dx = 0.

Show that this is also true for (3.12).
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Remark 3.15. We say that u is a weak solution of the inviscid Burgers’ equation if (3.14) holds for
all test functions. Weak solutions play a very important role in PDE. One is often told to first find a
weak solution (this is surprisingly often possible using functional analysis methods) and then prove
using regularity theory that the solution is smooth.

Sometimes one can only prove a certain amount of regularity for solutions, like in the above
example.

Another perspective on weak solutions is that in general asking for a smooth solution is too much
because the actual values of u(t, x) are not physically accessible (= measurable with experiments),
while quantities like ˆ

φu,
ˆ

(∂xφ)u2, . . .

are—at least in principle. From this standpoint, (3.14) appears quite natural.

Remark 3.16. The solution u can be extended to t ≥ 1 by

(3.17) u(t, x) =



1 x ≤ 1+t
2

0 x > 1+t
2

as a weak solution.

Whenever singularities in a PDE can occur, it is interesting and important to understand when
they will occur. For the inviscid Burger’s equation the answer is rather simple.

Theorem 3.18 (Criterion for singularity formation). Let f ∈ C1(R). There is a C1 solution
u : [0,∞) × R→ R to the Cauchy problem for (3.2) with Cauchy data f if and only if f ′(x) ≥ 0.

Proof. Suppose f ′(x) < 0 for some x ∈ R. Then we can find points x0, x1 ∈ R with

x0 < x1 and f (x0) > f (x1).

The characteristic curves emanating from these points are

ξ0(s) = (s, x0 + f (x0)s) and ξ1(s) = (s, x1 + f (x1)s).

Since
x0 + f (x0)s = x1 + f (x1)s ⇐⇒ x0 − x1 = ( f (x1) − f (x0))s

has a solution for some s = s0 > 0, ξ1 and ξ2 intersect which prohibits a C1 solution from existing
up until time s0.

Conversely, let us show that a global solution exists if f ′(x) ≥ 0. We can define a map
Φ : [0,∞) × R→ [0,∞) × R by

Φ(s, x) := (s, x + f (x)s)
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This is a C1–map and its derivative is

dΦ =
(

1 0
f (x) 1 + f ′(x)s

)
.

Since
det dΦ = 1 + f ′(x)t > 0

for all s ≥ 0,Φ is a diffeomorphism (initially locally, but one can see that it is a global diffeomorphism).
Thus the method of characteristics provides the desired solution. �
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4 Introduction to the Heat Equation

The next three or four lectures will be concerned with the study of the heat equation.

Definition 4.1. The heat equation is the PDE

(4.2) ∂tu(t, x) + ∆u(t, x) = 0

for a function u : [0,T ) ×U → R with U ⊂ Rn and T > 0.

Often one also has to deal with the following inhomogeneous version of (4.2).

Definition 4.3. Let U ⊂ Rn, T > 0 and σ : [0,T ) ×U → R. The heat equation with source term σ

is the PDE

(4.4) ∂tu(t, x) + ∆u(t, x) = σ(t, x).

for a function u : [0,T ) ×U → R.

Remark 4.5. Of course, ∆ denotes the Laplace operator (or the Laplacian, for short). It acts on the
spacial variables only:

∆u(t, x) = −
n∑
i=1

∂2
xi

u(t, x).

I prefer to put the minus sign in ∆, because it makes the operator ∆ positive. Also, various
natural Laplace type operators in geometry come with a minus sign. ∆ as defined here is often
called the geometer’s Laplacian. (The other sign convention is popular among analysts; hence, the
so defined Laplacian is often called the analysts’ Laplacian.)

Remark 4.6. The heat equation models the time-evolution of temperature distributions. Since this
is not a physics class, I will refrain from discussing how exactly one arrives at the heat equation,
but here is a sketch: Consider a small space region U and denote by EU (t) the amount of thermal
energy contained in U. If u(t, x) is the temperature distribution, then in suitable units

EU (t) =
ˆ
U

u(t, x).

On the one hand we have, some what trivially,

∂tEU =

ˆ
U

∂tu(t, x);

on the other hand if q is the heat flux vector, then by the divergence theorem

∂tEU = −

ˆ
∂U
〈q, ν〉 = −

ˆ
U

div q.
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Now by Fourier’s law of heat conduction:

q(t, x) = −∇u(t, x);

hence, ˆ
U

∂tu(t, x) = ∂tEU = −

ˆ
U

∆u.

Since this is supposed to hold for every space region U, u better be a solution of (4.2).
Observe that there are two key assumptions here: (1) there is such a thing as the heat flux vector

and (2) the heat flux vector is given by Fourier’s law. One can summarise this colloquially as: u
diffuses.

The heat equation is a constant coefficient linear equation and consequently it is invariant under
spacetime-translations. It has a further interesting symmetry.

Proposition 4.7 (Parabolic rescaling). If u solves (4.2), then for each λ > 0 so does

uλ(t, x) := u(λ2t, λx).

Exercise 4.8. Prove Proposition 4.7!

4.1 Boundary conditions

We will usually be interested in solving the heat equation (4.2) subject to an initial condition

(4.9) u(0, x) = f (x) for all x ∈ U .

If U is a bounded domain in Rn with boundary ∂U, one typically imposes one of the following
boundary conditions.

Definition 4.10. Given g : ∂U → R, we consider the following type of boundary conditions:

• Dirichlet boundary conditions

(4.11) u(t, x) = g(x) for all (t, x) ∈ (0,T] × ∂U,

• Neumann boundary conditions

(4.12) ∂νu(t, x) = g(x) for all (t, x) ∈ (0,T] × ∂U,

• and, given also α > 0, Robin boundary conditions

(4.13) ∂νu(t, x) + αu(t, x) = g(x) for all (t, x) ∈ (0,T] × ∂U .

If ∂U is disconnected, we can impose mixed boundary conditions, that is, we impose one of the
above boundary conditions on each component of ∂U .
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B Remark 4.14. Mostly we will consider homogeneous boundary conditions, that is, f = 0. (The
general case can easily be reduced to this case.) If I write some thing like “we impose Dirichlet
boundary conditions” and make no mention of f at all, then f = 0.

The Dirichlet, Neumann, Robin, or mixed initial-boundary value problem for the heat equation
is the is the condition for u to solve (4.2), (4.9) and either (4.11), (4.12), (4.13) or a mixed boundary
condition. It turns out that each of these problems is a “good” (that is well-posed) problem; in
particular, they have (essentially) unique solutions.

Remark 4.15 (Duhamel’s principle). The problem of solving (4.4) can be reduced to the homogeneous
equation via Duhamel’s principle.

Suppose we want to solve
∂tu + ∆u = σ

with Dirichlet boundary data g and initial data f . At the expense of changing σ, we can assume that
g = 0. Moreover, by subtracting the solution to the Dirichlet initial-boundary value problem with
initial data f , we can also assume that f = 0.

Let uτ denote the solution to (4.2) with Dirichlet boundary conditions and initial condition
σ(τ, ·), and define

u(t, x) =
ˆ t

0
uτ (t − τ, x) dτ.

This function clearly satisfies the initial and boundary conditions; moreover,

(∂t + ∆)u(t, x) = (∂t + ∆)
ˆ t

0
uτ (t − s, x) ds

= ut (0, x) +
ˆ t

0
(∂t + ∆)uτ (t − τ, x) dτ

= σ(t, x).

4.2 A toy model

Initially very formally, although a lot of this can be made rigorous, we can think of u as a map
U : [0,T]→ C2(U), i.e., as a path in the infinite dimensional vector space C2(U,R) and think of
(4.2) as an ODE. As a toy model replace C2(U) by a finite dimensional vector space Rn and ∆ by a
matrix A ∈ Rn×n. The ODE

∂t x(t) + Ax(t) = 0

can be solved very easily. One extremely concise version of writing the solution is as

(4.16) x(t) = e−At x(0).

If we knew more about A, then we could also say more about the trajectories defined by (4.16).

Proposition 4.17. If f , g ∈ C2(Ū) satisfy
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• f |∂U = g |∂U = 0,

• ∂ν f |∂U = ∂νg |∂U = 0 or

• ∂ν f |∂U + α f |∂U = ∂νg |∂U + αg |∂U = 0 with α > 0,

then ˆ
U

(∆ f )g =
ˆ
U

f (∆g) and
ˆ
U

(∆ f ) f ≥ 0.

Proof. The first assertion is a consequence of Theorem A.4 provided that
ˆ
∂U

f (∂νg) − (∂ν f )g = 0.

Given either of the first two boundary conditions this clearly holds. For the last boundary condition
the integrand is equal to α( f g − f g) = 0.

The second assertion too is a consequence of Theorem A.4 provided that
ˆ
∂U
−(∂ν f ) f ≥ 0.

Again, given either of the first two boundary conditions this clearly holds. For the last boundary
condition the integrand is equal to α f 2 ≥ 0. This is where α > 0 comes in. �

This justifies specialising to the case where A (our model for ∆) is a symmetric matrix with
non-negative spectrum. In this case we can understand (4.16) more concretely. From linear algebra
we know that there is a orthonormal basis (ei) of Rn consisting of eigenvectors. Denote the
corresponding eigenvalues by λi ≥ 0. We can this write (4.16) as

(4.18) x(t) =
n∑
i=1

e−λi t 〈ei, x(0)〉 · ei .

In particular, every solution decays (fast) as t → ∞, except for the potential zero eigenvalues which
stay put. For the heat equation this corresponds to everything decaying to zero temperature (for
Dirichlet and Robin boundary conditions) or a finite temperature (for Neumann boundary conditions).

To make at least some of the preceding discussion rigorous one needs the spectral theory of
unbounded operators on Banach spaces, which is a somewhat advanced topic in functional analysis.
On the interval [0, 1], the spectral theory of the Laplace operator is very simple and is completely
captured by the theory of Fourier series. In the next section we will give a very satisfactory answer
the heat equation on [0, 1] under Dirichlet boundary conditions.
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4.3 Solution of the heat equation with Dirichlet boundary conditions in dimension
one

Theorem 4.19. Let f ∈ L2([0, 1]). There is a unique function u : (0,∞) × [0, 1] → R which is
smooth, solves (4.2), satisfies the Dirichlet boundary conditions

u(t, 0) = u(t, 1) = 0 for all t > 0,

and the initial condition f in the sense that

lim
t→0

u(t, ·) → f in L2([0, 1]).

Proof. We proceed in four steps.

Step 1. Suppose there is such a function u. Define a continuous map U : [0,∞) → L2([0, 1]) by

U (t) :=



u(t, ·) t > 0,
f t = 0.

Then, for each t ∈ [0,∞),

U (t) =
∞∑
n=1

e−(nπ)2t 〈 fn, f 〉 fn in L2.

For n ∈ N, define continuous functions an : [0,∞) → R by

an(t) = 〈U (t), fn〉 .

Since u solves (4.2), for t > 0
∂tan + (nπ)2an = 0.

Hence, for t > 0
an(t) = cne−(nπ)2t

for some constant cn. Since an is continuous, cn = an(0) = 〈 fn, f 〉. This proves the asserted
identity.

Step 2. There is at most one function u with the asserted properties.

The assignment u 7→ U is injective and by the previous step U is uniquely determined by f .

Step 3. For each k ∈ N0 and T0 > 0, the series

(4.20) u(t, x) :=
∞∑
n=1

e−(nπ)2t 〈 fn, f 〉 fn(x)

converges inCk ([T0,∞)× [0, 1]). In particular, (4.20) defines a smooth function u : (0,∞)× [0, 1]→
R.
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This follows from the same kind of argument as Proposition C.10 and the observation that for
` ≥ 0 and t ≥ T0 > 0

∞∑
n=1

(πn)`e−(πn)2t | 〈 fn, f 〉 | ≤ *
,

∞∑
n=1

(πn)2`e−2(πn)2T0 +
-

1/2
*
,

∞∑
n=1
| 〈 fn, f 〉 |2+

-

1/2

< ∞.

Step 4. The function u has the asserted properties.

Each of the functions (t, x) 7→ e−n
2t 〈 fn, f 〉 fn(x) solves (4.2) and satisfies the Dirichlet boundary

conditions. The assertion of about the initial value is obvious. �

Remark 4.21. The formula for u can be written more verbosely as

u(t, x) = 2
∞∑
n=1

e−n
2t

(ˆ 1

0
sin(nπx) f (x) dx

)
sin(nπx).

Exercise 4.22. Prove that if the sequence 〈 fn, f 〉 is sumable, i.e.,
∞∑
n=1
| 〈 fn, f 〉 | < ∞,

then u extends to a continuous function u : [0,∞) × [0, 1]→ R satisfying the initial value

u(t, ·) = f .

Exercise 4.23. Prove the analogue of Theorem 4.19 for Neumann boundary conditions. (Hint: The
key is to find a suitable analogue of Theorem C.8.)

Exercise 4.24. Suppose σ ∈ C∞([0,∞) × [0, 1]). Give a formula for the solution of (4.4) with
homogeneous Dirichlet boundary conditions and initial condition f = 0. Hint: Use Duhamel’s
principle.

Exercise 4.25. Define f ∈ L2([0, 1]) by

f (x) =



x x ≤ 1/2
1/2 − x x ≥ 1/2.

Find a smooth function u : (0,∞) × [0, 1]→ R which solves (4.2), satisfies the Dirichlet boundary
conditions

u(t, 0) = u(t, 1) = 0 for all t > 0,
and with initial condition f in the sense that

lim
t→0

u(t, ·) = f in L2([0, 1]).

Exercise 4.26. Is there a f ∈ L2([0, 1]) such that if u : (0,∞) × [0, 1] is as in Theorem 4.19, then
the Fourier series of u(1, x) is

u(1, x) =
∞∑
n=1

fn
n2 ?
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5 Uniqueness for the Heat Equation

In this lecture we will address the uniqueness question for the heat equation in two separate ways:
via the energy method and via the weak maximum principle.

To properly state the main theorems, we need to make some definitions. Let U be a bounded
open subset of Rn and T > 0. Set

UT := (0,T] ×U, ŪT := [0,T] × Ū, and ∂pUT := ŪT \UT .

Moreover, we write Ck,` (ŪT ) for the space continuous functions f : ŪT → R which are k–
times continuously differentiable in the t–direction and `–times continuously differentiable in the
x–direction.

Theorem 5.1 (Uniqueness). Given functions σ : UT → R, u0 : Ū → R and a choice of either
Dirichlet, Neumann, Robin or mixed boundary conditions, there exists at most one u ∈ C1,2(ŪT )
such that

∂tu + ∆u = σ in UT

with
u(0, ·) = u0

and satisfying the chosen boundary conditions.

Theorem 5.2 (Backwards uniqueness). Given functions σ : UT → R, uT : Ū → R and a choice of
either Dirichlet, Neumann, Robin or mixed boundary conditions, there exists at most one u ∈ C∞(ŪT )
such that

∂tu + ∆u = σ in UT

with
u(T, ·) = uT

and satisfying the chosen boundary conditions.

In both of these cases, if there were two solutions u1 and u2 we could subtract them to obtain a
solution v := u1 − u2 of

∂tv + ∆v = 0 in UT

satisfying either Dirichlet, Neumann, Robin or mixed boundary conditions. What we need to prove
is that if either v(0, ·) = 0 or v(T, ·) = 0, then v = 0.

5.1 Energy method

Proof of Theorem 5.1. Suppose v is as above with v(0, ·) = 0. Define an energy function by

E(t) :=
ˆ
U

|v(t, x) |2 dx.
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We know that E(0) = 0.
We compute

Ė(t) = ∂t

ˆ
U

|v(t, x) |2 dx

= 2
ˆ
U

〈∂tv(t, x), v(t, x)〉 dx

= −2
ˆ
U

〈∆v(t, x), v(t, x)〉 dx ≤ 0

by Proposition 4.17. Since E(t) ≥ 0, it follows that E(t) = 0 for all t. Thus v = 0. �

Proof of Theorem 5.2. Suppose v is as above with v(T, ·) = 0. We define the energy as before. We
now know that E(T ) = 0. Since Ė ≤ 0, we know that E(t) ≥ 0 for t ∈ [0,T ). There is no loss in
assuming that, in fact, E(t) > 0 for t ∈ [0,T ).

We compute, using Proposition 4.17,

Ë(t) = −4
ˆ
U

〈∆v(t, x), ∂tv(t, x)〉 dx

= 4
ˆ
U

|∆v(t, x) |2 dx ≥ 0.

So we know that E is a decreasing convex function, but this is not good enough. However, we can
do better: by using Cauchy–Schwarz

(5.3) Ė2 ≤ EË.

The function log E : [0,T ) → R satisfies

lim
t→T

log E(t) = −∞.

But (5.3) means that

∂2
t log E =

Ë
E
−

Ė2

E2 =
EË − Ė2

E2 ≥ 0.

Thus log E is a convex function which tends to −∞ as t → T . This is impossible. �

Exercise 5.4. If f : [0,T ) → R is a C2–function with f ′′ ≥ 0, then

f (t) ≥ f (0) + f ′(0)t .
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5.2 Weak maximum principle

Theorem 5.5. Let u ∈ C1,2(ŪT ) be a subsolution of the heat equation, i.e.,

∂tu + ∆u ≤ 0.

Then u attains its maximum in ŪT on ∂pUT , i.e.,

max
ŪT

u = max
∂pUT

u.

Note that this gives another proof of Theorem 5.1. The function v satisfies the hypothesis of
Theorem 5.5 and v |∂pUT = 0 thus v ≤ 0, and the same holds for −v; hence, v = 0.

Proof of Theorem 5.5.

Step 1. The assertion holds if ∂tu + ∆u < 0.
If the maximum is attained at a point (t0, x0) in UT , then ∂tu(t0, x0) ≥ 0—in fact, the case > 0

is possible only if t0 = T . It follows that

∆u(t0, x0) < 0.

However, x0 ∈ U is also a local maximum for u(t0, ·); hence, the Hessian Hess(u) = (∂i∂ju) is
negative semi-definite; thus, ∆u = − tr Hess(u) ≥ 0. This is a contradiction.

Step 2. We prove the theorem.

For each ε > 0, define a new function uε ∈ C1,2(ŪT ) by

uε (t, x) := u(t, x) − εt .

Since
(∂t + ∆)uε < 0,

the previous step shows that
max
ŪT

uε = max
∂pUT

uε .

Because
uε ≤ u ≤ uε + εT,

we also have
max
∂pUT

u − εT ≤ max
ŪT

u − εT ≤ max
ŪT

uε ≤ max
∂pUT

uε ≤ max
∂pUT

u.

Since this is true for all ε > 0, we have

max
ŪT

u = max
∂pUT

u. �
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Proposition 5.6 (Comparison). If u, v ∈ C1,2(ŪT ) satisfy

∂tu + ∆u = σ and
∂tv + ∆v = τ,

and
u ≤ v on ∂UT and σ ≤ τ,

then
u ≤ v in ŪT .

Proof. This follows from a direct application of Theorem 5.5 to u − v. �

Proposition 5.7 (Stability estimate). If u, v ∈ C1,2(ŪT ) satisfy

∂tu + ∆u = σ and
∂tv + ∆v = τ,

then
max
ŪT

|u − v | ≤ max
∂pUT

|u − v | + T max
ŪT

|σ − τ |.

Proof. Set w := u − v and M := maxŪT
|σ − τ |. Both w − tM and −w − tM are subsolutions of the

heat equation. Apply Theorem 5.5 to both to obtain

max
ŪT

w − tM ≤ max
∂pUT

w − tM ≤ max
∂pUT

w

and
max
ŪT

−w − tM ≤ max
∂pUT

−w − tM ≤ max
∂pUT

−w.

These two inequalities are equivalent to the assertion. �
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6 The Heat Kernel on Rn

In today’s lecture we study the heat kernel on Rn, which is in some sense the universal solution of
the heat equation and thus also often called the fundamental solution.

Definition 6.1. The heat kernel on Rn is the function Φ : (0,∞) × Rn → [0,∞) defined by

(6.2) Φ(t, x) :=
1

(4πt)n/2
e−
|x |2
4t .

The importance of the heat kernel stems from the following fact.

Theorem 6.3. Suppose f ∈ C0(Rn) is bounded. Define u : (0,∞) × Rn → R by

u(t, x) :=
ˆ

Rn

Φ(t, x − y) f (y) dy.

Then the function u is smooth, satisfies

∂tu + ∆u = 0,

and, for each x ∈ Rn,
lim
t↓0

u(t, x) = f (x).

Before we can proof this, we need to verify the following two propositions.

Proposition 6.4. Φ solves the heat equation, i.e.,

∂tΦ + ∆Φ = 0.

Exercise 6.5. Prove Proposition 6.4.

Proposition 6.6. For each t > 0, ˆ
Rn

Φ(t, x) dx = 1.

Proof. In the coordinates ξ = x/2
√

t the integral becomes

1
πn/2

ˆ
Rn

e−|ξ |
2

dξ =
n∏
i=1

1
√
π

ˆ
R

e−ξ
2
i dξi .

To compute the integral in the product note that(ˆ
R

e−s
2

ds
)2
=

ˆ
R2

e−|z |
2

dz =
ˆ 2π

0

ˆ ∞
0

re−r
2

dr = 2π
ˆ ∞

0
re−r

2
dr = π.

The last step uses
d(e−r

2
) = −2re−r

2
. �
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Proof of Theorem 6.3. It is clear that u is smooth and solves the heat equation (by differentiating
under the integral, which is justified because, for each T0 > 0, Φ is bounded in Ck ([T0,∞) ×Rn) for
each k ∈ N0).

So we only need to prove the last assertion. For x0 ∈ Rn, by the previous proposition,
�����

ˆ
Rn

Φ(t, x − y) f (y) dy − f (x0)
�����

=
�����

ˆ
Rn

Φ(t, x − y)( f (y) − f (x0)) dy
�����

≤

ˆ
Rn

Φ(t, x − y) | f (y) − f (x0) | dy

≤

ˆ
Bε (x0)

Φ(t, x − y) | f (y) − f (x0) | dy

+

ˆ
Rn\Bε (x0)

Φ(t, x − y) | f (y) − f (x0) | dy

=: Iε,t + IIε,t

for any ε > 0.
We have

Iε,t ≤ sup
Bε (x0)

| f (y) − f (x0) | → 0 as ε ↓ 0.

Since f is bounded, for s = r/2
√

t

IIε,t ≤ C1

ˆ
|x | ≥ε

1
(4πt)n/2

e−
|x |2
4t dx

= C2t−n/2
ˆ ∞
ε

rn−1e−
r2
4t dr

= C3

ˆ ∞
ε/2
√
t

sn−1e−s
2

ds → 0 as ε/
√

t → ∞.

It follows that
lim
ε→0

lim
t→0

Iε,t + IIε,t = 0,

which establishes the assertion. �

By Duhamel’s principle we also get a formula for the solution of the inhomogeneous heat
equation.

Theorem 6.7. Suppose σ ∈ C∞([0,∞) × Rn). Then u : (0,∞) × Rn → R defined by

u(t, x) :=
ˆ t

0

1
(4π(t − s))n/2

ˆ
Rn

e−
|x−y |2
4(t−s) σ(y, s) dyds
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is smooth, solves
(∂t + ∆)u = σ

and, for all x ∈ Rn,
lim
t↓0

u(t, x) = 0.

The proof of this theorem is similar to (but more involved than) the proof of Theorem 6.3.

Definition 6.8. The heat ball of radius a r > 0 at (t, x) ∈ Rn+1 is the set

Bp
r (t, x) := {(y, s) ∈ Rn+1 : s ≤ t,Φ(x − y, t − s) ≥ r−n}.

Note that this ball is compatible with parabolic rescaling based at (t, x):

(s, y) ∈ Bp
1 (0, 0) ⇐⇒ (r2s, ry) ∈ Bp

r (0, 0).

Theorem 6.9 (Mean-value property). Suppose U ⊂ Rn is open and T > 0. If u ∈ C∞(UT ) is a
solution of (4.2) and Bp

r (t, x) ⊂ UT , then

u(t, x) =
1

4rn

ˆ
B

p
r (t,x)

u(s, y)
|x − y |2

|t − s |2
dyds.

Proof sketch. For the detailed proof, see [Evans2010]*pp. 53–54. The argument presented there
proceeds by proving the following:

• The map

r 7→
1

4rn

ˆ
B

p
r (t,x)

u(s, y)
|x − y |2

|t − s |2
dyds

is constant.

• For all r > 0,

(6.10)
1

4rn

ˆ
B

p
r (t,x)

|x − y |2

|t − s |2
dyds = 1;

hence,

u(t, x) = lim
r↓0

1
4rn

ˆ
B

p
r (t,x)

u(s, y)
|x − y |2

|t − s |2
dyds.

�

Using the mean-value property we can prove:
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Theorem 6.11 (Strong maximum principle). Suppose U is a bounded open and connected subset of
Rn, T > 0 and u ∈ C∞(ŪT ) satisfies (4.2). If there exists a (t0, x0) ∈ UT such that

u(t0, x0) = max
ŪT

u,

then u is constant on Ūt0 .

Proof. Suppose u achieves its maximum at (t0, x0) ∈ UT . If r > 0 is small enough so that
Bp
r (t0, x0) ⊂ Ut , then by (6.10)

0 =
1

4rn

ˆ
B

p
r (t0,x0)

(u(t0, x0) − u(s, y))
|x − y |2

|t − s |2
.

But for all (s, y) ∈ UT , we have u(t0, x0) − u(s, y) ≥ 0. Therefore u must be constant on Bp
r (t0, x0).

Suppose γ : [0, 1]→ UT is a piece-wise linear path with

γ(0) = (t0, x0)

and with decreasing t–component. Its not hard to see that γ can be covered finitely many heat balls
“centered” along the path. Thus u is constant along γ.

Since γ was arbitrary (and by continuity of u), u is constant on Ūt0 . �
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7 Introduction to the Wave Equation

Definition 7.1. The wave equation is the PDE

(7.2) ∂2
t u + ∆u = 0

for a function u : I ×U → R with U ⊂ Rn open and I ⊂ R an interval.

A solution u of (7.2) is a model for a dislocation of a membrane (or string) over a domain U.
When studying the wave equation one typically imposes initial data/Cauchy data on the Cauchy

hypersurface Γ = {0} ×U (cf. Definition 2.12), that is for fixed f , g : U → R we require that

u(0, x) = f (x) and ∂tu(0, x) = g(x).

If U is bounded, one typically further imposes boundary conditions as in Section 4.1.

7.1 A toy model

A toy model for the heat equation is the ODE

∂2
t x(t) + Ax(t)

for a function x : [0,T]→ Rn and symmetric non-negative definite matrix A. In a orthonormal basis
(ei) consisting of eigenvectors with eigenvalues λ2

i ≥ 0 we can write the solution of the ODE as

x(t) =
n∑
i=1

cos(λit) 〈ei, x(0)〉 · ei +
n∑
i=1

sin(λit)
λi

〈
ei, x ′(0)

〉
· ei .

This looks somewhat similar, to what we saw in (4.2). However there are key differences: We
need to specify x(0) and x ′(0) to determine x(t) uniquely. Moreover and most importantly, the
time-dependent coefficients of the ei do not decay as t → ∞ and they do not blow up as t → −∞.
This foreshadows two key properties of the wave equation: solutions do not become smoother as t
increases (or “roughness of the initial conditions propagates in time”) and the wave equation behaves
well backwards in time.

7.2 The wave equation on [0, 1]

The preceding discussion suggests that for f , g ∈ L2([0, 1]) with

f =
∞∑
n=1

an fn and g =

∞∑
n=1

bn fn

the formal expression

(7.3) u(t, x) :=
∞∑
n=1

(
an cos(nπt) +

bn
nπ

sin(nπt)
)

fn
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defines a solution of (7.2) with Cauchy data ( f , g) and Dirichlet boundary conditions.
The crucial difficulty in making sense of this is that the coefficients of fn do not decay fast

in t; hence, u(t, x) need not be in C2(I × [0, 1]) for any interval 0 ∈ I. Nevertheless, we have the
following.

Theorem 7.4. If f , g ∈ C∞([0, 1]) are compactly supported in (0, 1), then (7.3) defines a smooth
function u : R × [0, 1] → R solving (7.2) with initial condition ( f , g) and satisfying Dirichlet
boundary conditions.

Exercise 7.5. Prove that if f is C∞([0, 1]) is compactly supported in (0, 1), then for each ` > 0 there
is a constant c > 0 (depending on ` and ‖ f ‖Ck ) such that the Fourier coefficients ak of f satisfy

|ak | ≤ c/k` .

Exercise 7.6. Use the previous exercise to prove Theorem 7.4.

Remark 7.7. If you’re stuck on these exercises, please, consult [1]*Lecture 5.

7.3 d’Alembert’s formula

Let us now consider the case of an infinitely long vibrating string, i.e., U = R. There is a beautiful
solution formula for the Cauchy problem in this case, called d’Alembert’s formula. To find this first
notice that on R,

∂2
t + ∆ = ∂

2
t − ∂

2
x = (∂t + ∂x )(∂t − ∂x ).

One consequence of this is that any(!) function of the form

vR (t, x) := h(t − x) or vL (t, x) := h(t + x)

i.e., the solutions of the transport equations

(∂t + ∂x )v = 0 and (∂t − ∂x )v = 0

also solve the wave equation (provided h is smooth enough). These are called right- and left-travelling
waves respectively.

Proposition 7.8. Every solution u of the wave equation on R can be written uniquely as the sum of
a right- and a left-travelling wave

u(t, x) = uR (t − x) + uL (t + x)

with uR (0) = uL (0).

Remark 7.9 (Finite propagation speed). Let us first note that Proposition 7.8 implies that waves
propagate at finite speed (in fact, speed one): Suppose u is a solution of the wave equation, then
u(t, x) depends only on the initial data on [x − t, x + t].
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Remark 7.10. Also note that the amplitude of thewaves does not decrease in space. A one-dimensional
world would be very noisy!

Proof of Proposition 7.8. It is convenient to define new coordinates

q := t − x and s := t + x.

These are called characteristic (or null) coordinates for reasons that will soon become apparent.
The derivatives in the old and new coordinates are related by

∂q =
1
2

(∂t − ∂x ) and ∂s =
1
2

(∂t + ∂x ).

With respect to these coordinates the wave equation is equivalent to

∂q∂sv = 0.

for u(t, x) = v(t − x, t + x). Hence,

∂sv(q, s) = ∂sv(q, 0)

which integrates to

v(q, s) = v(q, 0) +
ˆ s

0
∂sv(a, 0) da.

This translates back to the asserted statement about u. �

The general solution to the wave equation on R is given by

Theorem 7.11. Suppose f ∈ C2(R) and g ∈ C1(R). Then there is a unique solution u ∈ C2(R×R)
to the wave equation with Cauchy data ( f , g). This solution can be written as

(7.12) u(t, x) :=
1
2

( f (x + t) + f (x − t)) +
1
2

ˆ x+t

x−t

g(y) dy.

Proof. First note that u defined by (7.12) does solve the Cauchy problem.
For uniqueness, suppose u is such a solution. We can write u(t, x) = uR (t − x) + uL (t + x) with

uR (0) = uL (0) = 1
2 f (0). The initial conditions amount to the equations

f (x) = uR (−x) + uL (x) and g(x) = u′R (−x) + u′L (x).

Differentiating the first equation yields

f ′(x) = −u′R (−x) + u′L (x).

This leads to

u′L (x) =
1
2

( f ′(x) + g(x)) and u′R (x) =
1
2

(− f ′(−x) + g(−x)),
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which integrates to

uL (x) =
1
2

f (x) +
1
2

ˆ y

0
g(y) dy and

uR (x) =
1
2

f (−x) +
1
2

ˆ 0

−x

g(y) dy.

This gives the asserted formula for u. �

Remark 7.13. Note that if f ∈ Ck (R) and g ∈ Ck−1(R), then u ∈ Ck (R). However, it typically
won’t be any smoother.

Exercise 7.14. There is a variant of d’Alembert’s formula for the case U = [0,∞) and with Dirichlet
boundary conditions at x = 0: In this case

u(t, x) =



1
2 ( f (x + t) + f (x − t)) + 1

2
´ x+t
x−t g(y) dy 0 ≤ t ≤ x,

1
2 ( f (x + t) − f (t − x)) + 1

2
´ x+t
−x+t g(y) dy 0 ≤ x ≤ t .

State and prove corresponding analogue of Theorem 7.11. (Hint: Use the reflection principle!)
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8 The Wave Equation in dimension three and energy methods

There are explicit solution formulae for the wave equation in each dimension n. One way to derive
them is by the method of spherical means. The general case is quite tedious, so we restrict to n = 3
which yields Kirchhoff’s formula. While the derivation is a bit hairy, the final formula is quite
beautiful, so please bear with me.

8.1 Spherical means

Recall that  
U

:=
1

vol(U)

ˆ
U

.

Proposition 8.1. Suppose u : [0,∞) × Rn → R is a C2 solution of (7.2) with initial conditions f
and g. Define Ux : [0,∞) × (0,∞) → R and Fx,Gx : (0,∞) → R by

Ux (t, r) :=
 
∂Br (x)

u(t, y) dy,

Fx (r) :=
 
∂Br (x)

f (y) dy, and

Gx (r) :=
 
∂Br (x)

g(y) dy.

Then Ux : [0,∞) × (0,∞) solves the PDE

∂2
t Ux − ∂

2
rUx −

n − 1
r

∂rUx = 0

with initial conditions
Ux (0, ·) = Fx and ∂tUx (0, ·) = Gx .

Moreover,
lim
r→0

Ux (t, r) = u(t, x) and lim
r→0

∂tUx (t, r) = ∂tu(t, x).

Proof. First, note that
∂2
t Ux (t, r) =

 
∂Br (x)

∂2
t u(t, y) dy

by differentiating under the integral.
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Denote by ωn the volume of the n–dimensional unit-sphere. We compute

∂rUx (t, r) = ∂r

(
1

ωn−1rn−1

ˆ
∂Br (x)

u(t, y) dy
)

= ∂r
1

ωn−1

ˆ
∂B1 (0)

u(t, x + r z) dz

=
1

ωn−1

ˆ
∂B1 (0)

〈∇u(t, x + r z), z〉 dz

=
1

ωn−1rn−1

ˆ
∂Br (x)

〈∇u(t, y), (y − x)/r〉 dz

=
1

ωn−1rn−1

ˆ
∂Br (x)

∇νu(t, y) dz

=
1

ωn−1rn−1

ˆ
Br (x)

−∆u(t, y) dz.

Here we use Theorem A.4 in the last step.
From this we obtain

∂2
rUx (t, r) =

1 − n
ωn−1rn

ˆ
Br (x)

−∆u(t, y) dz.

+
1

ωn−1rn−1

ˆ
∂Br (x)

−∆u(t, y) dz

= −
n − 1

r
∂rUx (t, r) +

 
∂Br (x)

−∆u(t, y) dz.

These formula show thatUx (t, r) satisfies the stated PDE. The rest of the proposition is clear. �

8.2 Kirchhoff’s formula

Now suppose n = 3. Define Ux, Fx,Gx : [0,∞) × [0,∞) → R by

Ũx = rUx, F̃x = rFx, and G̃x = rGx .

Remark 8.2. The transformation of Ux, Fx,Gx you have to do in dimension n ≥ 3 is more involved.
The transformation for n odd can be found in [Evans2010]*Section 2.4.d. From the resulting
solution formulae for n even can be obtain by dimensional reduction.

From Proposition 8.1 we derive that

(∂2
t − ∂

2
r )Ũx = 0 on [0,∞) × (0,∞)

Ũx = F̃x and ∂tŨx = G̃x on {0} × (0,∞)

Ũ = 0 on [0,∞) × {0}.
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Exercise 8.3. Check this!

This is a heat equation on [0,∞) with Dirichlet boundary conditions at x = 0 and we know that
for 0 ≤ r ≤ t

Ũx (t, r) =
1
2

(
F̃x (t + r) − F̃x (t − r)

)
+

1
2

ˆ t+r

t−r

G̃x (y) dy.

From this we can recover u(t, x) as follows:

u(t, x) = lim
r↓0

Ũx (t, r)
r

= ∂rŨx (t, 0)

= ∂r F̃x (t) + G̃x (t).

Finally, we compute

∂r F̃x (t) = ∂t

(
t
 
∂Bt (x)

f (y) dy
)

=

 
∂Bt (x)

f (y) + t∇ν f (t) dy and

G̃x (t) =
 
∂Bt (x)

tg(y) dy.

Theorem 8.4. Suppose f ∈ C3 and g ∈ C2. The Cauchy problem for the wave equation on R3 has
a unique solution given by Kirchhoff’s formula

(8.5) u(t, x) :=
 
∂Bt (x)

f (y) + t∇ν f (y) + tg(y) dy.

Proof. The previous computations show that if there is a solution it must satisfy (8.5). A computation
shows that u defined by (8.5) solves the wave equation. �

Remark 8.6 (Huygens’ principle and finite propagation speed). Note that u(t, x) depends only on the
initial data on the sphere ∂Bt (x). This is true in all odd dimensions n ≥ 3 and is called Huygens’
principle. The weaker statement that u(t, x) only depends on the initial data on ball Bt (x) holds true
in all dimensions. It corresponds to the fact that waves propagate at finite speed.
Remark 8.7. Note that we lose differentiabilty compared to the initial data! (This phenomenon gets
worse and worse as n grows.)

Exercise 8.8 (Dimensional reduction). Note that if u(t, x1, x2) solves the 2–dimensional wave
equation then the function v(t, x1, x2, x3) := u(t, x1, x2) solves the 3–dimensional wave equation.
Use this to derive Poisson’s formula for the solution to the Cauchy problem in dimension two:

(8.9) u(t, x) =
1
2

 
Bt (x)

t f (y) + t 〈∇ f (y), y − x〉 + t2g(y)√
t2 − |x − y |2

dy
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8.3 Uniqueness of solutions to the Cauchy problem

Suppose U is a bounded open subset of Rn and T > 0

Theorem 8.10. Given f , g : Ū → R, there exists at most one u ∈ C2([0,T] × Ū) such that

∂2
t u + ∆u = 0

with
u(0, ·) = f and ∂tu(0, ·) = g

and satisfying a fixed choice of boundary conditions.

Proof. If there are more than one, then the difference of two such solution gives us a w : [0,T]×U →
R satisfying

∂2
t w + ∆w = 0
w(t, x) = 0 for x ∈ ∂U

w(0, ·) = ∂tw(0, ·) = 0.

We introduce the following (somewhat ad-hoc) energy quantity

E(t) :=
1
2

ˆ
U

|∂tw |
2 + |∇w |2

Since

∂tE(t) =
ˆ
U

〈
∂2
t w, ∂tw

〉
+ 〈∇w,∇∂tw〉

=

ˆ
U

〈
∂2
t w + ∆w, ∂tw

〉
= 0,

this energy is unchanging in t. It must therefore vanish since E(0) = 0. E(t) = 0, however, implies
∂tw(t) = 0 and thus w(t) = 0 since w(0, ·) = 0. �

8.4 Finite propagation speed

The following is a demonstration of the finite propagation speed of waves and also shows uniqueness
of the Cauchy problem on Rn.

Theorem 8.11. Let u ∈ C2([0,∞) × Rn be a solution of (7.2). Fix (t0, x0) ∈ (0,∞) × Rn. Set

C := {(t, x) : t ∈ [0, t0], x ∈ Bt0−t (x0)}.

If u(0, x) = ∂tu(0, x) = 0 for all x ∈ Bt0 (x0), then u(t, x) = 0 for all (t, x) ∈ C.
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Proof. Again, we introduce an ad-hoc energy quantity

E(t) :=
1
2

ˆ
Bt0−t (x)

|∂tw |
2 + |∇w |2.

We know that E(0) = 0. Now we compute how E changes in t:

∂tE(t) = ∂t
1
2

ˆ
Bt0−t (x)

|∂tu|2 + |∇u|2

=

ˆ
Bt0−t (x)

〈
∂2
t u, ∂tu

〉
+ 〈∇u,∇∂tu〉

−
1
2

ˆ
∂Bt0−t (x)

|∂tu|2 + |∇u|2

=

ˆ
Bt0−t (x)

〈
∂2
t u + ∆u, ∂tu

〉
+

ˆ
∂Bt0−t (x)

〈∂νu, ∂tu〉 −
1
2

(
|∂tu|2 + |∇u|2

)
=

ˆ
∂Bt0−t (x)

〈∂νu, ∂tu〉 −
1
2

(
|∂tu|2 + |∇u|2

)
≤ 0.

Here, the last inequality uses ab ≤ 1
2

(
a2 + b2

)
.

Thus E is non-increasing in t. Since E(0) = 0 and E ≥ 0, we must have E = 0. Thus ∂tu = 0
(and ∇u = 0) within C; hence, u = 0 in C because u(0, x) = 0 for all x ∈ Bt0 (x0). �

Exercise 8.12 (Equipartition of energy). Suppose u ∈ C2(R × [0,∞)) solves the Cauchy problem
for the have equation with compactly supported Cauchy data ( f , g). Define the kinetic energy T and
the potential energy U by

T (t) :=
1
2

ˆ
R
|∂tu|2 and U (t) :=

1
2

ˆ
R
|∇u|2.

Prove that there is a T > 0 such that for all t ≥ T the kinetic energy equals the potential energy, i.e.,

T (t) = U (t) for t ≥ T!

How does T depend on f and g? (Hint: Use d’Alembert’s formula!
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9 The Fourier Transform

The next two lectures will give a introduction to the Fourier Transform. Throughout these lectures
all our function under consideration are a priori complex valued.

Formally, the Fourier Transform of a function f : Rn → C is the function f̂ : Rn → C defined
by the formula.

(9.1) F ( f )(y) = f̂ (y) :=
ˆ

Rn

f (x)e−2πi〈x,y〉 dx.

I write “formally”, because actually making sense of (9.1) for suitable large class of functions and
making sure that all the theorems one would like to be true really hold is a bit requires some work.

9.1 The Fourier Transform on L1

Proposition 9.2. If f ∈ L1(Rn), then f̂ ∈ C0(Rn) and

‖ f̂ ‖L∞ ≤ ‖ f ‖L1 .

In particular, the Fourier Transform defines a bounded linear map F : L1(Rn) → C0(Rn)∩L∞(Rn).

Proof. To prove the estimate, note that for every y ∈ Rn we have

| f̂ (y) | ≤
ˆ

Rn

| f (x)e−2πi〈x,y〉 | dx ≤
ˆ

Rn

| f (x) | dx = | f |L1 ;

hence, ‖ f̂ ‖L∞ ≤ ‖ f ‖L1 .
To prove that f̂ is continuous, note that for all r > 0 we have

| f̂ (y) − f̂ (z) | ≤
ˆ
Br (0)

| f (x) | |e−2πi〈x,y〉 − e−2πi〈x,z〉 |

+

ˆ
Rn\Br (0)

| f (x) | |e−2πi〈x,y〉 − e−2πi〈x,z〉 |

≤ |e−2πi〈x,y〉 − e−2πi〈x,z〉 |L∞ (Br (0)) ‖ f ‖L1 + 2
ˆ

Rn\Br (0)
| f (x) |.

For fixed r > 0, we have

lim
z→y
|e−2πi〈x,y〉 − e−2πi〈x,z〉 |L∞ (Br (0)) = 0.

Thus for all r > 0, we have

lim
z→x
| f̂ (y) − f̂ (z) | ≤ 2

ˆ
Rn\Br (0)

| f (x) |.
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Since
lim
r→∞

ˆ
Rn\Br (0)

| f (x) | = 0,

it follows that f̂ is continuous. �

Proposition 9.2 has a slight improvement called the Riemann-Lebesgue Lemma.

Lemma 9.3 (Riemann-Lebesgue Lemma). If f ∈ L1(Rn), then f̂ decays at infinity, that is,

lim
r→∞

‖ f̂ ‖L∞ (Rn\Br (0)) = 0.

Exercise 9.4. Prove the Riemann-Lebesgue Lemma. Hint: Use that smooth compactly supported
function are dense in L1.

Possibly the most important property of the Fourier Transform is that it “diagonalises” differenti-
ation.

Proposition 9.5. If f , ∂xk f ∈ L1(Rn), then

E∂xk f (y) = 2πiyk f̂ (y).

Conversely, if f ,−2πixk f ∈ L1(Rn), then f̂ is differentiable in the direction of yk and

∂yk f̂ (y) = F (−2πixk f )(y).

Proof. To verify the first assertion we compute

E∂xk f (y) =
ˆ
∂xk f (x)e−2πi〈x,y〉dx

= 2πiyk

ˆ
f (x)e−2πi〈x,y〉dx.

To prove the second assertion observe that, by the hypothesis,

f (x)∂yk e−2πi〈x,y〉 = −2πixk f (x)e−2πi〈x,y〉

is absolutely integrable, that is, in L1. By Proposition D.2, it follows that f̂ is differentiable in the
direction of yk and

∂yk f̂ (y) =
ˆ

f (x)∂yk e−2πi〈x,y〉

=

ˆ
−2πixk f (x)e−2πi〈x,y〉 = F (−2πixk f )(y). �
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Another important property of the Fourier Transform is the way in which it interacts with
convolutions. Recall that

( f ∗ g)(y) :=
ˆ

f (y − x)g(x) dx;

and if f , g ∈ L1(Rn), then f ∗ g ∈ L1(Rn); in fact,

‖ f ∗ g‖L1 ≤ ‖ f ‖L1 ‖g‖L1 .

Proposition 9.6. If f , g ∈ L1(Rn), then

Ef ∗ g = f̂ · ĝ.

Proof. We compute

Ef ∗ g(x) =
ˆ

Rn

(ˆ
Rn

f (y − z)g(z) dz
)

e−2πi〈x,y〉 dy

=

ˆ
Rn

ˆ
Rn

f (y − z)e−2πi〈x,y−z〉 · g(z)e−2πi〈x,z〉 dydz

= f̂ (x) · ĝ(x). �

9.2 Fourier inversion on Schwartz functions

Formally, inverse Fourier Transform of a function g : Rn → C is the function ǧ : Rn → C defined
by

(9.7) F −1(g)(y) = ǧ(y) :=
ˆ

Rn

g(x)e2πi〈x,y〉 dx.

There are various heuristic reasons why F −1 should be the inverse of F . However, F : L1 → L∞

and, a priori, (9.7) does not make any sense if we just know that g ∈ L∞(Rn). This can be addressed
by working with a suitable function space with respect to which the Fourier Transform behaves in a
“more symmetric way”.

Definition 9.8. A function f ∈ C∞(Rn) is called a Schwartz function if for all k, ` ∈ N0

sup
x∈Rn

|x |k |∇` f | < ∞.

The set of all Schwartz functions on Rn is denote by S(Rn).

Proposition 9.9. The Fourier transform defines a linear map F : S(Rn) → S(Rn).

Proof. This is a consequence of Proposition 9.5. �

Theorem 9.10 (Fourier inversion). If f ∈ S(Rn), then

F −1 ◦ F ( f ) = f and F ◦ F −1( f ) = f .
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Let me first tell you how a non-rigorous proof would go. Just by writing out the definitions we
have

F −1 ◦ F ( f )(x) =
ˆ ˆ

f (z) · e−2πi〈z−x,y〉 dz dy.

Interchanging the integral we get

=

ˆ
f (z)

(ˆ
e−2πi〈z−x,y〉 dy

)
dz.

The integral in parenthesis can be computed to be the distribution δ(y− z). Thus the entire expression
is f ∗ δ = f .

There are two (related) difficulties with this argument: first one cannot exchange the order of
integration because | f (z) · e−2πi〈z,y−x〉 | is not integrable on Rn × Rn, second saying that integral in
parenthesis is δ(y − x) does not make sense. In fact, the latter is really just a restatement of what
needs to be proved.

We will be able to salvage this argument. The key idea is to “regularise” e−2πi〈z,y−x〉. Before we
can get started with this we need to compute the Fourier Transform of a Gaussian.

Proposition 9.11 (Fourier Transform of a Gaussian). For all a > 0, we have

Ge−aπ | · |2 = a−
n
2 e−

π
a | · |

2
.

Proof. For λ > 0 and f ∈ L1(Rn), we have

Ff (λ ·) = λ−n f̂ (·/λ).

Thus it suffices verify the assertion for a = 1. Moreover, by Fubini, it suffices to consider n = 1.
We compute

Fe−π( ·)2 (y) =
ˆ

R
e−πx

2+2πixy dx

= e−πy
2
ˆ

R
e−π (x+iy)2

dx

A simple way to evaluate the last integral is to note that e−πz
2 has no pole on any strip of the form

{z ∈ C : Im(z) ∈ [a, b]} thus ˆ
R+iy

e−πz
2

dz

does not depend on y, and for y = 0 we know the integral to be one. �

Proof of Theorem 9.10. Given f ∈ S(Rn), we need to show that

F −1 ◦ F ( f )(x) =
ˆ

Rn

ˆ
Rn

f (z) · e−2πi〈z−x,y〉 dz dy = f (x).
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The function
f (z) · e−2πi〈z−x,y〉−4π2t |y |2

is absolutely integrable over Rn × Rn, thus by Fubini’s theorem
ˆ

Rn

ˆ
Rn

f (z) · e−2πi〈z−x,y〉−4π2t |y |2 dz dy

=

ˆ
Rn

f (z)
(ˆ

Rn

e−2πi〈z−x,y〉−4π2t |y |2 dy
)

dz.

By Proposition 9.11, the integral in parenthesis is Kt (z − x) with

Kt (·) :=
1

(4πt)n/2
e−| · |

2/4t .

(Recall that this is the heat kernel on Rn.) Thus the above integral is

( f ∗ Kt )(z).

In the lecture on the heat kernel we saw that

lim
t→0

( f ∗ Kt )(z) = f (z).

We also haveˆ
Rn

ˆ
Rn

f (z) · e−2πi〈z−x,y〉−4π2t |y |2 dz dy =
ˆ

Rn

f̂ (y)e2πi〈x,y〉−4π2t |y |2dy.

Since f̂ is integrable, by Theorem D.1, we have

lim
t→0

ˆ
Rn

f̂ (y)e2πi〈x,y〉−4π2t |y |2dy = F −1 ◦ F ( f )(x). �
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10 The Fourier Transform (continued)

10.1 Plancherel’s theorem

Theorem 10.1 (Plancherel’s theorem). If f , g ∈ S(Rn), then

〈 f , g〉L2 =
〈

f̂ , ĝ
〉
L2

Proof. By Theorem 9.10, we can assume that g = ȟ. The assertion is then equivalent to〈
f , ȟ

〉
L2 =

〈
f̂ , h

〉
L2 .

Using the fact that | f (x) | |h(y) | is integrable, we compute〈
f , ȟ

〉
L2 =

ˆ
f (x) ¯̌h(x) dx

=

ˆ
f (x)

(ˆ
h̄(y)e−2πi〈x,y〉 dy

)
dx

=

ˆ ˆ
f (x)e−2πi〈x,y〉 · h̄(y) dydx

=

ˆ (ˆ
f (x)e−2πi〈x,y〉 dx

)
· h̄(y) dy

=

ˆ
f̂ (y) h̄(y) dy =

〈
f̂ , h

〉
L2 . �

Proposition 10.2. There is a unique bounded linear map F : L2(Rn) → L2(Rn) which agrees with
the Fourier Transform on S(Rn). This map is an isometry.

Proof. The set S(Rn) is dense in L2(Rn). Thus for any f ∈ L2(Rn) we can pick a sequence ( f i) in
S(Rn) which converges to f in L2. By Theorem 10.1,

‖F ( f i) − F ( f j )‖L2 = ‖ f i − f j ‖L2 .

Therefore F ( f i) is a Cauchy sequence and has a limit

lim
i→∞
F ( f i) ∈ L2.

If ( f̃ i) were another sequence in S(Rn) converging to f , then

lim
i→∞
‖F ( f i) − F ( f̃ i)‖L2 ≤ lim

i→∞
‖ f i − f ‖L2 + ‖ f̃ i − f ‖L2 = 0.

Thus the limit only depends on f . We define

F ( f ) := lim
i→∞
F ( f i) ∈ L2.

The linearity of F on S(Rn) immediately implies the linearity of the extension to L2(Rn).
It follows from Theorem 10.1 that F is an isometry. �
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10.2 Tempered distributions

Any continuous function f : Rn → C is completely determined by the linear map Tf : S(Rn) → C

Tf (φ) :=
ˆ

Rn

f φ.

In the proof of Theorem 10.1 we saw that if f , g ∈ S(Rn), then
ˆ

Rn

f ĝ =
ˆ

Rn

f̂ g.

Thus if f ∈ S(Rn), then
Tf̂ (φ) = Tf (φ̂).

Note that the right-hand side of this equation makes sense, even if f is not in S(Rn). These
observations leads us to the definition of tempered distributions and vast extension of the applicability
of the Fourier Transform.

Roughly speaking a tempered distribution is an element in “the dual space” of S(Rn). However,
since S(Rn) is an infinite dimensional vector space one has to be a bit careful with what one means
by “the dual space”.

Definition 10.3. A tempered distribution T is a linear map T : S(Rn) → C with the following
continuity property: If (φi) is a sequence in S(Rn) such that for all k, ` ∈ N0

lim
i→∞

sup
x∈Rn

|x |k |∇`φi | = 0,

then
lim
i→∞

T (φi) = 0.

We write S∗(Rn) for the space of all tempered distributions on Rn.

Example 10.4. Suppose f : Rn → C is slowly growing, that is, there is some k ∈ N0 and c > 0
such that

| f (x) | ≤ c(1 + |x |)k .

Then
Tf (φ) :=

ˆ
Rn

f φ

defines a tempered distribution.
If no confusion can arise, we will often just write f for the distribution Tf defined by f .

Example 10.5. The “δ–function”
δ(φ) := φ(0)

is a tempered distribution.
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Definition 10.6. If T is a tempered distribution, we define its Fourier Transform and inverse Fourier
Transform by

F (T ) = T̂ := T ◦ F and F −1(T ) = Ť := T ◦ F −1.

Thus we extend the Fourier Transform and its inverse to linear maps

F : S∗(Rn) → S∗(Rn) and F −1 : S∗(Rn) → S∗(Rn).

By Theorem 9.10 we have

F ◦ F −1 = idS∗ (Rn ) and F −1 ◦ F = idS∗ (Rn ) .

Note that “trick” allows us to make sense of the Fourier Transform even for functions which are
slowly growing and for which (9.1) wouldn’t make any sense at all.

Two key identities for the Fourier Transform are

F (δ) = 1 and F (1) = δ.

The first is trivial. The second is not at all trivial, however; the bulk of the proof of Theorem 9.10
was proving this identity.

Most things one can do with functions one can also do with tempered distributions:

Definition 10.7 (Differentiation). Suppose T is a tempered distribution on Rn. We define its
derivative by xk as

(∂xkT )(φ) := T (−∂xk φ).

Definition 10.8 (Multiplication by a function). Suppose T is a tempered distribution on Rn. If f is
smooth and f all of its derivatives (of arbitrary order) are slowly growing, then we define

( f T )(φ) := T ( f φ).

Definition 10.9 (Convolution). Suppose T is a tempered distribution on Rn and f ∈ S(Rn). We
define T ∗ f ∈ C∞(Rn) by

(T ∗ f )(φ) = T ( f (−·) ∗ φ)

With these definitions in place one can readily see that all the identities we derived in the previous
lecture for the Fourier Transform on S(Rn) carry over to S∗(Rn).

10.3 A derivation of the Heat Kernel

Suppose u : [0,T] × Rn → R.

∂tu + ∆u = 0
u(0, ·) = f .
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Denote by û the Fourier Transform of u in the spacial directions. Then we know that

∂t û + 4π2 |x |2û = 0

û(0, ·) = f̂ .

Thus
û(t, ·) = e−4π2 |x |2t f̂ (·)

By Proposition 9.11,

F −1(e−4π2 |x |2t ) =
1

(4πt)n/2
e−|x |

2/4t =: Kt (x).

Thus by Proposition 9.6 and Theorem 9.10

u(t, ·) = F −1(K̂t · f̂ ) = Kt ∗ f .

Exercise 10.10. Find the fundamental solution of Schrödinger’s equation

(10.11) − i∂tψ + ∆ψ = 0.
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11 Introduction Curve-Shortening Flow

There are no notes for this lecture, and the content of this lectures is not examinable.
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12 Laplace’s and Poisson’s equations

Fix an open subset U ⊂ Rn.

Definition 12.1. Laplace’s equation is the PDE

(12.2) ∆u = 0

for a function u : U → R. A function u : U → R is called harmonic if it satisfies (12.2).

Definition 12.3. Given f : U → R, Poisson’s equation is the PDE

(12.4) ∆u = g

for a function u : U → R.

Remark 12.5. We can think of any solution to (12.2) and (12.4) as a steady state solution of an
(inhomogeneous) heat or wave equation.

Note that since (12.2) and (12.4) do not depend on time, do not have to/cannot specify initial
conditions. You might think that it is boring to study equations without time-dependence. However,
many situations are inherently time-independent and (versions of) (12.2) and (12.4) can be used to
great profit. Even if you really only care about time-dependent PDE, studying the Laplace operator
∆ in depth will be important: note, for example, how the solution to the heat equation is basically
equivalent to understanding all possible solutions (u, λ) of the eigenvalue problem

∆u = λ2u.

12.1 Dirichlet’s principle

Suppose U is a bounded domain in Rn with smooth boundary and f : ∂U → R smooth. Consider
the space

C∞f (Ū) := {u : u|∂U = f }.

We can think of u ∈ C∞f (U) as describing the dislocation of a membrane over U which is supported
by a boundary frame with dislocation given by f . A model for the energy of such a membrane is

E(u) :=
1
2

ˆ
U

|∇u|2.

Physics tells us that the physically realised membrane u should minimise E(u). Suppose u minimises
E(u). Then for each variation φ ∈ C∞0 (Ū) we have

0 = ∂tE(u + tφ) |t=0 =

ˆ
U

〈∇u,∇φ〉 =
ˆ
U

〈∆u, φ〉 .
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Thus we must have ∆u = 0, for otherwise we could find a φ for which the right-hand side of the
above does not vanish.

This shows that if there is a smooth minimiser u ∈ C∞f (Ū) of E, then it must be harmonic. More
generally, solutions of

∆u = g

are characterized by minimizing the functional

E(u) :=
ˆ
U

1
2
|∇u|2 − u · g.

We say that harmonic functions can be characterised by a variational principle. Finding such a
variational principle for a PDE is extremely useful because finding minima of a functional is often
easier than solving a PDE. We will pick up this thread later in this lecture.

12.2 Connection with holomorphic functions

Definition 12.6. Let U ⊂ C be a domain in the complex plane. A complex-valued function
f : U → C is called holomorphic at z0 ∈ U if the limit

lim
z→z0

f (z) − f (z0)
z − z0

exists. It is called holomorphic if it is holomorphic at points in U.

Exercise 12.7. A complex-valued function f : U → C is holomorphic if and only if it satisfies the
Cauchy–Riemann equation

(12.8)
∂ f
∂ z̄
= 0

with
∂ f
∂ z̄

:= ∂x f + i∂y f = (∂xu − ∂yv) + i(∂yu + ∂xv).

Here u := Re f and v := Im f , and x := Re z and y = Re z.

Remark 12.9. The Cauchy–Riemann equation is a system of first order PDE on the vector-valued
function (u, v).

I hope you recall from your class on complex analysis that the theory of holomorphic functions
is incredibly rich. In particular, there are a great number of holomorphic functions and they enjoy
spectacular regularity properties.

Proposition 12.10. If f : U → R is holomorphic, then both u := Re f and v := Im f are harmonic.
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Proof. Holomorphic functions are C2—in fact, analytic. By (12.8),

∂xu = ∂yv and ∂yu = −∂xv.

Thus
∆u = −∂2

xu − ∂2
yu = −∂x∂yv + ∂y∂xv = 0.

(In the last step we used Schwarz’s theorem that for a C2 function partial derivatives commute.) �

Remark 12.11. The converse of this is also true: every harmonic function u : U → R on a domain
U ⊂ C is the real part of a holomorphic function providedU is simply-connected. A nice explanation
of this fact that uses only complex analysis can be found in this answer of Christian Blatter’s to a
question on MSE.

12.3 Uniqueness via the energy method

Theorem 12.12. SupposeU is bounded withC1 boundary. There is at most one function u : C2(U)∩
C1(Ū) → R satisfying Poisson’s equation (12.4) satisfying Dirichlet, Robin or mixed boundary
conditions (cf. Section 4.1). For Neumann boundary conditions any two solutions differ by a locally
constant function.

Proof. The difference w satisfies Laplace’s equation with homogeneous boundary conditions and
integration by parts shows that

0 =
ˆ
U

〈∆w,w〉 ≥

ˆ
U

|∇w |2.

It follows that ∇w = 0. �

12.4 The weak maximum principle

Theorem 12.13. Suppose U is bounded and f ∈ C2(Ū) satisfies

∆u ≤ 0,

then
max
Ū

u = max
∂U

u.

Exercise 12.14. Prove Theorem 12.13.

Exercise 12.15. Suppose f ∈ C2(Rn) is harmonic and “decays at infinity” in the sense that

lim
r→∞

sup
Rn\Br (0)

| f | = 0.

Show that f = 0.

56

http://math.stackexchange.com/questions/108116/every-harmonic-function-is-the-real-part-of-a-holomorphic-function
http://math.stackexchange.com/questions/108116/every-harmonic-function-is-the-real-part-of-a-holomorphic-function


12.5 W 2,2–estimates

Theorem 12.16. For f ∈ C∞c (Rn), we have

‖∇2 f ‖L2 = ‖∆ f ‖L2 .

Proof. This is a simple computation

‖∇2 f ‖2
L2 =

n∑
i, j=1

ˆ
Rn

(∂i∂j f )(∂i∂j f )

=

n∑
i, j=1

ˆ
Rn

(∂i∂j f )(∂j∂i f )

=

n∑
i, j=1

ˆ
Rn

(−∂j∂i∂j f )(∂i f )

=

n∑
i, j=1

ˆ
Rn

(−∂i∂j∂j f )(∂i f )

=

n∑
i, j=1

ˆ
Rn

(−∂j∂j f )(−∂i∂i f )

= ‖∆ f ‖L2 . �

Remark 12.17. Although this result has a very simple proof, it is surprising that the size of the
Hessian of f can be controlled just in terms of the Laplacian (at least when the size is measured in
L2).

12.6 Dirichlet’s principle (cont.)

Can we construct such a minima for E? Let us try the direct method E is bounded below. Thus
E0 := inf{E(u) : u ∈ C∞f (U)} ≥ 0 (in particular, it is finite) and we can find a sequence (ui) such
that

E(ui) → E0.

If there where a u∞ such that (some subsequence) of (ui) converges to u∞ in C∞, then E(u∞) = E0.
The problem is that a priori such a u∞ does not need to exist, and even if it existed the minimising
sequence will typically not converge in C∞.

Nevertheless, one can make this idea rigorous. First of all note that it suffices to consider the
case of homogeneous boundary conditions, that is, f = 0. We introduce the following space of
functions with zero boundary values.

Definition 12.18. If u ∈ C∞(U), set

‖u‖2
W 1,2 :=

ˆ
U

|∇u|2 + |u|.
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Denote by W 1,2(U) and W 1,2
0 (U) the completion of C∞(U) and C∞0 (U) with respect to ‖·‖W 1,2

respectively.

Remark 12.19. In the next lecture we will proof the Dirichlet–Poincaré inequality, which says that if
U is bounded and u ∈ C∞0 (U), then ˆ

U

|u|2 ≤ c
ˆ
U

|∇u|2

with a constant c > 0 depending only on U . As a consequence of this we might equally well use the
norm

‖u‖ :=
ˆ
U

|∇u|2

on W 1,2
0 (U).

Now, consider the functional

E(u) :=
ˆ
U

1
2
|∇u|2 − ug.

Proposition 12.20. A function u ∈ W 1,2
0 (U) satisfies

E(u) = inf{E(v) : v ∈ W 1,2
0 (U)}

if and only if
∆u = g

in the weak sense, that is, for all φ ∈ W 1,2
0 (U)ˆ
U

(∆u)φ =
ˆ
U

gφ.

Proof. E : W 1,2
0 (U) → R is a smooth map and its derivative at u is

dEu[û] =
ˆ
U

(∆u − g)û.

If u minimizes Eρ, this vanishes for all f̂ u ∈ W 1,2
0 (U); hence u satisfies ∆u = g in the weak sense.

Conversely, if u satisfies ∆u = g in the weak sense and v ∈ W 1,2
0 (U), thenˆ

U

|∇u|2 − ug =
ˆ
U

(∆u)u − ug

=

ˆ
U

(∆u)v − vg

=

ˆ
U

〈∇u,∇v〉 − vg

≤

ˆ
U

1
2
|∇u|2 +

1
2
|∇v |2 − vg.

Thus E(u) ≤ E(v). �
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Let ui be a minimising sequence, i.e.,

inf{E(v) : v ∈ W 1,2
0 (U)} = lim

i→∞
E(ui).

By the Dirichlet–Poincaré inequality, for some c > 0 and all ε > 0, we have

‖ui ‖2W 1,2 ≤ cE(ui) + c
ˆ
U

|u| |g | ≤ cE(ui) + cε‖u‖2
L2 + cε−1‖g‖.

Taking ε = 1/2c, we get
‖ui ‖2W 1,2 ≤ 2cE(ui) + 4c2‖g‖.

In particular, ‖ui ‖W 1,2 is bounded independent of i.
Then f i converges weakly in H1

0 to a limit f . That is for all g ∈ H1
0 .

〈 f i, g〉 → 〈 f , g〉.

Proposition 12.21 (sequential weak-* compactness). Let H be a separable Hilbert space. Let
(xi) ∈ HN be a sequence with lim inf |xi |H < ∞. Then after passing to a subsequence, (xi) has a
weak–limit, i.e., there exists a x ∈ H such that for all y ∈ H

〈x, y〉 = lim
i
〈xi, y〉 .

Proof. This is (a consequence of) the sequential Banach–Alaoglu Theorem which states that the
closed unit ball of the dual space of a separable normed vector space is sequentially compact in the
weak-* topology and the fact that Hilbert spaces are isomorphic to their dual spaces. (See Theorem
3.2.1 in Bühler–Salamon’s Lecture Notes on Functional Analysis for a proof.) �

Remark 12.22. There is also a non-sequential Banach–Alaoglu Theorem which states that the unit
ball of a dual space of a separable normed vector space is compact in the weak-* topology. This
follows easily from Tychonoff’s theorem stating that arbitrary(!) products of compact spaces are
compact. However, the proof of Tychonoff’s theorem uses the Axiom of Choice whose use one
might want to avoid to construct something as concrete as a solution to a PDE.

This allows us to take some limit u ∈ W 1,2
0 (U) of the minimizing sequence ui. The following

guarantees that u actually minimizes E.

Proposition 12.23 (weak-* lower semi-continuity of E). Suppose ui ∈ (W 1,2
0 (U))N weakly converges

to u ∈ W 1,2
0 (U). Then

E(u) ≤ lim inf
i→∞

E(ui).

Proof. By weak convergenceˆ
U

|∇u|2 − gu = lim
i

ˆ
〈∇ui,∇u〉 − gui

≤ lim inf
i

ˆ
1
2
|∇u|2 +

1
2
|∇ui |2 − gui .

This implies the assertion. �
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It follows that u really does minimize E and thus satisfies

∆u = g

in the weak sense. In one of the following lectures we when u satisfies the Poisson equation in the
strong sense.

Remark 12.24. Note that the above argument works with very little regularity on g. In fact, it suffices
that g define an element of the dual space of W 1,2

0 (U).

60



13 The Poincaré inequalities

Let U be a bounded open subset of Rn.

13.1 Dirichlet–Poincaré inequality

Theorem 13.1 (Dirichlet–Poincaré inequality). There is a constant c > 0 such that for all u ∈
W 1,2

0 (U) we have

(13.2)
ˆ
U

|u|2 ≤ c
ˆ
U

|∇u|2.

Proof. By density it suffices to prove this for u ∈ C∞0 (U). Moreover, it suffices to prove this for
U = Q := (0, 1)n, since after rescaling we can assume that U ⊂ Q and C∞0 (U) ⊂ C∞0 (Q).

Since
u(x1, x2, . . . xn) =

ˆ x1

0
∂1u(s, x2, . . . , xn) ds,

we have

|u(x1, x2, . . . xn) | ≤
ˆ 1

0
|∂1u(s, x2, . . . , xn) | ds.

By Cauchy–Schwarz,
ˆ 1

0
|∂1u(s, x2, . . . , xn) | ds ≤

(ˆ 1

0
|∂1u(s, x2, . . . , xn) |2 ds

)1/2

.

Thus

|u(x1, . . . , xn) |2 ≤
ˆ 1

0
|∂1u(s, x2, . . . , xn) |2 ds

Integrating over x1 yields
ˆ 1

0
|u(x1, . . . , xn) |2 dx1 ≤

ˆ 1

0
|∂1u(x1, x2, . . . , xn) |2 dx1,

and a further integration over x2, . . . , xn yields the Dirichlet–Poincaré inequality. �

Exercise 13.3. Show that there is a constant c > 0 (depending only on n) such that for all r > 0 and
all u ∈ W 1,2

0 (Br (0)) we have ˆ
Br (0)

|u|2 ≤ cr2
ˆ
Br (0)

|∇u|2.

Exercise 13.4. Prove the Lp Dirichlet–Poincaré inequality: For each p ∈ [1,∞) there exists a
constant c > 0 such that for all u ∈ C∞0 (U) we have

ˆ
U

|u|p ≤ c
ˆ
U

|∇u|p .
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Hint: Adapt the proof of Theorem 13.1 by using Hölder’s inequality
ˆ
U

f g ≤
(ˆ

U

| f |p
)1/p (ˆ

U

|g |q
)1/q

for satisfying 1 = 1
p +

1
q .

Remark 13.5. The best constant for the Dirichlet–Poincaré inequality on U is the number

cD (U) := sup
u∈C∞0 (U )

´
U |u|

2

´
U |∇u|2

.

Since for u ∈ C∞0 (U) we have ˆ
U

|∇u|2 =
ˆ
U

〈∆u, u〉,

1
cD (U)

= λD1 (U) := inf
u∈C∞0 (U )

´
U〈∆u, u〉´
U |u|

2 .

It turns out that λD1 is the smallest eigenvalue of ∆ with Dirichlet boundary condition. This is why
Theorem 13.1 is called the Dirichlet–Poincaré inequality.

Exercise 13.6. Find an upper bound for c(U) in terms of the geometry of U.

If one does not impose that u vanishes on the boundary of U , then (13.2) cannot hold. Because
locally constant functions violate this bound. However this is the only problem.

13.2 Neumann–Poincaré inequality

Theorem 13.7 (Neumann–Poincaré inequality). Suppose U is connected. There is a constant c > 0
such that for all u ∈ W 1,2(U) we haveˆ

U

|u − ū|2 ≤ c
ˆ
U

|∇u|2.

Here
ū :=

 
U

u.

Proof for U = Br (0). It suffices to consider B1 := B1(0). We compute
ˆ
B1

|u − ū|2 =
ˆ
B1

�����

 
B1

u(x) − u(y) dy
�����

2
dx

= vol(B1)−2
ˆ
B1

�����

ˆ
B1

u(x) − u(y) dy
�����

2
dx

≤ vol(B1)−1
ˆ
B1

ˆ
B1

|u(x) − u(y) |2 dy dx.
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Since the straight-line connection x, y ∈ B1 is contained in B1, we have

|u(x) − u(y) | ≤
ˆ 1

0
|∂tu(x + t(y − x)) | dt

≤ |x − y |

ˆ 1

0
|(∇u)(x + t(y − x)) | dt

≤ 2
(ˆ 1

0
|(∇u)(x + t(y − x)) |2 dt

)1/2

.

Combining both observations using the symmetry between x and y, and substituting z :=
ty + (1 − t)x we have

ˆ
B1

|u − ū|2 ≤
4

vol(B1)

ˆ
B1

ˆ
B1

ˆ 1

0
|(∇u)(x + t(y − x)) |2 dt dy dx

=
8

vol(B1)

ˆ
B1

ˆ
B1

ˆ 1/2

0
|(∇u)(x + t(y − x)) |2 dt dy dx

=
8

vol(B1)

ˆ 1/2

0

ˆ
B1

1
1 − t

ˆ
B1−t (ty)

|(∇u)(z) |2 dz dy dt

≤ 8
ˆ
B1

|(∇u)(z) |2. �

Proof sketch for general U . The typical proof of this result for general U is more involved and
proceeds by a contradiction argument. I don’t expect you to know this proof, but for completeness
let me give a outline of the argument.

Suppose there is no such constant. Then there exists a sequence uk ∈ W 1,2(U) such that

(13.8)
ˆ
U

|uk − ūk |2 ≥ k
ˆ
U

|∇uk |2.

There is no loss in assuming that ūk = 0 and
´
u |uk |

2 = 1. Then |∇uk |L2 → 0. Thus one the one
hand |uk |W 1,2 is uniformly bounded and thus a subsequence has a weak-* W 1,2 limit u, which one
can show satisfies ∇u = 0 and thus is constant. On the other hand Rellich’s Theorem asserts that a
further subsequence has a L2 limit, which must also be u, and thus

ū = 0 and ‖u‖L2 = 1.

But this contradicts u being constant. �

Remark 13.9. The best constant for the Neumann–Poincaré inequality on U is the number

cN (U) := sup
u∈C∞ (U )

´
U |u − ū|2´
U |∇u|2

.
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By Theorem A.4, for u ∈ C∞(U) we have
ˆ
U

|∇u|2 =
ˆ
U

〈∆u, u〉 +
ˆ
∂U

(∂νu)u

Thus if ∂νu = 0 and ∆u = λu, then
ˆ
U

|∇u|2 = λ
ˆ
U

|u|2.

Constants satisfy this identity with λ = 0. That is the smallest eigenvalue of the Laplacian
with Neumann boundary conditions is zero. To find the next smallest eigenvalue λN

1 (U) we work
L2–orthogonal to the constants, i.e., we make the assumption that ū = 0:

λN
1 (U) := inf




´
U |∇u|2´
U |u|

2 : u ∈ C∞(U), ∂νu = 0, ū = 0


.

Then we have
1

cN (U)
≤ λN

1 (U).

13.3 The Li–Schoen proof of the Dirichlet–Poincaré inequality

The above proof of Theorem 13.1 is the “standard proof”. Another proof of the L1 Dirichlet–Poincaré
inequality was discovered by Peter Li and Richard Schoen [4].5

It suffices to consider the case U = B1.

Proposition 13.10. Fix y ∈ ∂B2, and consider the function ρ : B1 → (0,∞) defined by

ρ(x) := |x − y |.

Then
ne−3n ≤ −∆e−nρ and |∇e−nρ | ≤ ne−nρ.

Proof. By a direct computation we have

∆ρ = −(n − 1)ρ−1

and for c > 0

∆e−cρ = ce−cρ(−∆ρ − c|∇ρ|2)

= ce−cρ(−∆ρ − c)

= ce−cρ((n − 1)ρ−1 − c)

≤ ce−cρ((n − 1) − c).

5I do not expect you to be able to reconstruct this proof.
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Thus
∆e−nρ ≤ −ne−nρ ≤ −ne−3n.

It is clear that |∇e−nρ | ≤ ne−nρ. �

Using Theorem A.4 it follows that

ne−3n
ˆ
B1

|u| ≤
ˆ
B1

−∆e−nρ |u| ≤
ˆ
B1

|∇e−nρ | |∇u| ≤ n
ˆ
B1

|∇u|.

This proves the L1 Dirichlet–Poincaré inequality.

Remark 13.11. Note that the L1 Dirichlet–Poincaré inequality implies all Lp Dirichlet–Poincaré
inequalities:

ˆ
U

|u|p ≤ c
ˆ
U

|∇|u|p | ≤ cp
ˆ
U

|u|p−1 |∇u| ≤ cp
(ˆ

U

|u|p
) p−1

p
(ˆ

U

|∇u|p
)1/p

.

(Note that 1
p +

p−1
p = 1.)
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14 Mean-value properties of harmonic functions

Let U be a bounded open subset of Rn.

Theorem 14.1 (Mean-value property). Let u : U → R be a harmonic function. If Br (x) ⊂ U , then

u(x) =
 
∂Br (x)

u and u(x) =
 
Br (x)

u.

Proof. Note that the second identity follows from the first by integration.
To prove the first identity, we define f : (0, r]→ R by

f (s) :=
 
∂Bs (x)

u.

By continuity of u, we have
lim
s↓0

f (s) = u(x).

The following computation shows that f (s) is independent of s, thus proving the identity:

f ′(s) =
 
∂Bs (x)

∂νu = −
n
r

 
Bs (x)

∆u = 0.

Here we use Theorem A.4 and that vol(∂Br ) = nvol(Br ). �

Remark 14.2. Compare this with Theorem 6.9.

Remark 14.3. In the next lecture we will see that the converse is also true, see Theorem 15.12.

As we will see in the rest of this lecture, this simple observation has remarkable consequences.

14.1 Strong maximum principle

Theorem 14.4 (Strong maximum principle). Suppose U is connected. Suppose u ∈ C2(Ū) is
harmonic. If there is a x ∈ U such that

u(x) = max
Ū

u,

then u is constant.

Proof. Suppose
u(x) = M := max

Ū
u.

Then for each y ∈ Br (x) ⊂ U, we must have u(y) = M because otherwise u(y) < M and thusffl
Br (x) u < M . It follows that u is locally constant and thus constant, since U is connected. �
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Exercise 14.5. Suppose u, v : U → R are both harmonic and set

f := u|∂U and g := v |∂U .

Prove that
f ≥ g, but f , g =⇒ u > v in U .

Also, show that
‖u − v‖L∞ (U ) ≤ ‖ f − g‖L∞ (∂U ) .

14.2 Ck–estimates

Theorem 14.6. For each k ∈ N0, there is a constant ck such that for all Br (x) ⊂ U we have

|∇ku(x) | ≤
ck

rn+k
‖u‖L1 (Br (x))

Proof. The proof is by induction. For k = 0, the assertion is clear from Theorem 14.1.
To show that the assertion holds for k + 1. Note that ∂ik+1∂ik · · · ∂i1u is harmonic. Thus by

Theorem 14.1, using Theorem A.4, and the induction hypothesis:

|∂ik+1∂ik · · · ∂i1u|(x) =
������

 
Br/2 (x)

∂ik+1∂ik · · · ∂i1u
������

≤
2n
r

������

 
∂Br/2 (x)

(∂ik · · · ∂i1u)νik+1

������
≤

2n
r
‖∂ik · · · ∂i1u‖L∞ (Br/2 (x))

≤
2n+k+1nck

rn+k+1 ‖u‖L1 (Br (x))

=
ck+1

rn+k+1 ‖u‖L1 (Br (x)) .

Here we used that vol(∂Br ) = nvol(Br ). �

14.3 Liouville’s Theorem

Theorem 14.7 (Liouville). Let u : Rn → R be a harmonic function. If there exists a constant
M > 0 such that |u| ≤ M on all of Rn, then u is constant.

Proof. By Theorem 14.6

|∇u|(x) ≤
c
r

 
Br (x)

|u| ≤
cM
r
.

Since r > 0 is arbitrary, it follows that ∇u = 0. �
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Exercise 14.8. Let u : Rn → R be a harmonic function. Suppose there are constants A, B > 0 and
α ∈ (0, 1) such that

|u|(x) ≤ A + B |x |α.

Prove that u is constant.

Remark 14.9. Note that there are plenty of harmonic functions with that satisfy the above hypothesis
with α = 1!

14.4 Harnack’s Inequality

Theorem 14.10 (Harnack’s inequality). Suppose V ⊂ Rn is an open subset such that V̄ ⊂ U . Then
there exists a constant c > 0 (depending on V ) such that all whenever u : U → R is harmonic and
u ≥ 0 then

sup
V

u ≤ c inf
V

u.

Proof. Set r := d(V, ∂U). If y ∈ V ∩ Br/2(x), then Br/2(x) ⊂ Br (y) and thus

u(x) =
 
Br/2 (x)

u ≤ 2n
 
Br (y)

u = 2nu(y).

(Note that the inequality uses that u ≥ 0.)
V can be covered by a finite number of balls of radius r with center in V . If there N balls, then

the above argument gives
u(x) ≤ 2nNu(y)

for every pair x, y ∈ V . �
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15 Weyl’s Lemma

Definition 15.1. A function u : U → R is called weakly harmonic if u ∈ L1
loc, i.e., it is locally

integrable6 and for each φ ∈ C∞0 (U) we have
ˆ
U

u∆φ = 0.

Exercise 15.2. Prove that if u is slowly growing (see Section 10.2) and weakly harmonic on Rn, and
if

Kt (x) :=
1

(4πt)n/2
e−|x |

2/4t

denotes the heat kernel, then
ˆ

Rn

(∆xKt (x − y))u(y) dy = 0.

(∆x means that we take the Laplacian of Kt (x − y) as a function of x.)

Theorem 15.3 (Weyl’s Lemma). Every weakly harmonic function is smooth and harmonic.

This is a truly remarkable statement. We start with a function u that could a priori be extremely
rough, not even smooth enough to write down ∆u = 0; and then the fact that it is weakly harmonic is
enough to deduce its smoothness. Although the proof we will give relies very heavily on properties
of the Laplace’s equation, this type of statement hold for the vast class of so-called elliptic equations.
This is often referred to as elliptic regularity.
Remark 15.4. Theorem 15.3 extends to the space of Schwartz distributions D (U), the dual space of
C∞0 (U).

Remark 15.5. Note that Re( 1
z ) : C∗ → R is not in L1

loc(R2).

15.1 Proof using Heat Kernel

Proof of Theorem 15.3 using the heat kernel. We begin with the caseU = Rn and u slowly growing;
not because the general case reduces to it, but because it makes the proof idea crystal clear.

Let Kt (x) := 1
(4πt)n/2 e−|x |

2/4t denote the heat kernel on Rn. Define

ut (x) := (Kt ∗ u)(x) =
ˆ

Rn

Kt (x − y)u(y) dy.

From Section 6 we know that for each t > 0, ut is smooth, and for each x ∈ Rn,

u(x) = lim
t↓0

ut (x).

6In case you don’t know what this means assume u to be continuous.
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Using the fact that Kt solves the heat equation, i.e.,

∂tKt = −∆Kt

and Exercise 15.2, we compute that for each t > 0

∂tut (x) =
ˆ

Rn

∂tKt (x − y)u(y) dy

= −

ˆ
Rn

(∆Kt (x − y))u(y) dy

= 0.

But this implies that ut (x) does not depend on t at all! Hence, u = ut and therefore smooth.
Remark 15.6. Before pressing on, let me briefly point out what the idea is here: Suppose we are
given a weakly harmonic function u, then we consider the heat flow ut starting at u. The function
(t, x) 7→ u(x) already does solve the heat equation in the weak sense; hence, by uniqueness (in a
stronger form than we proved in this class) it agrees with the smooth solution that is known to exist.

Let us now prove the general case. We will show that u is smooth in a neighbourhood of
each point x0 ∈ U. The problem with carrying over the above proof is that we cannot smooth u
by convolution with the heat kernel, since u is not defined on all of Rn. This, however, is easily
remedied. Fix r > 0 such that B4r (x0) ⊂ U and fix a smooth function χ : Rn → [0, 1] supported in
B4r (x0) and equal to one on B2r (x0). Define v ∈ L1

loc(Rn) by

v := χ · u.

Set
vt (x) := (Kt ∗ v)(x).

These functions are still smooth for each t > 0 and also for each x ∈ B1(x0)

u(x) = lim
t↓0

vt (x).

The functions vt now really do depend on t; however, in a controlled way:

Proposition 15.7. For each k ≥ 0, there is a constant ck > 0 (independent of t) such that

‖∂tvt ‖Ck (B̄1 (x0)) ≤ ck .

As a consequence of this, the sequence (v1/i) is Cauchy in eachCk (B̄1(x0)); hence, they converge
to a smooth limit function which must agree with u|B̄1 (x0) because this is the point-wise limit.

The proof of Proposition 15.7 is very simple in principle, but writing out all the details will be a
bit hairy.
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Let’s compute

∂tvt (x) =
ˆ

Rn

∂tKt (x − y) χ(y)u(y) dy

= −

ˆ
Rn

(∆xKt (x − y)) χ(y)u(y) dy

= −

ˆ
Rn

(∆yKt (x − y)) χ(y)u(y) dy

= −

ˆ
Rn

[∆y (Kt (x − y) χ(y))]u(y) dy

−

ˆ
Rn

Lt (x, y)u(y) dy

= −

ˆ
Rn

Lt (x, y)u(y) dy.

with
Lt (x, y) := −2

〈
∇yKt (x − y),∇χ(y)

〉
+ Kt (x − t)∆χ(y).

The last step uses that u is weakly harmonic. Now the ∇χ and ∆χ are supported in the annulus
A := B4r (x0) \ B̄2r (x0) and we only care about x ∈ B̄1(x0). Since the function Kt (x − ·) is smooth
on A and has uniformly bounded Ck–norms, the same holds for Lt and this proves the proposition
and thus the theorem. �

Theorem 15.8 (Elliptic regularity for ∆). Suppose f ∈ C∞(U) and u ∈ L1
loc(U) is such that for

each φ ∈ C∞0 (U) we have ˆ
U

u∆φ =
ˆ
U

f · φ,

then u is smooth and ∆u = f .

Exercise 15.9. Prove Theorem 15.8!

Remark 15.10. The above proof can be generalised in various ways, see Daniel Stroock’s “Weyl’s
Lemma, one of many”.

15.2 Proof via Mean-value property

Most PDE books give the following proof using the mean-value property of harmonic functions.
(You may like usual proof better because it avoids the apparently technical Proposition 15.7, but this
sort of argument really should not scare you.)

Alternative proof of Theorem 15.3. We present the argument in three steps. The first two steps
together proof that that weakly harmonic functions satisfy the mean-value property; the last step
proves that functions satisfying the mean-value property are smooth and thus harmonic.
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Given B4r (x0) ⊂ U, we need to show that u is smooth on Br (x0). We introduce a family of
mollifiers ηε: fix η ∈ C∞0 ([0, 1); [0,∞)) with

´
[0,1) sn−1η(s) ds = 1 and set

ηε (x) :=
1

εnωn−1
η

(
|x |
ε

)
Step 1. For each 0 < ε ≤ r , the function uε : B2r (x0) → R defined by

uε (x) =
ˆ
Bε (x)

ηε (x − y)u(y) dy

is smooth. For each x ∈ B2r (x0)
lim
ε↓0

uε (x) = u(x).

Moreover,
lim
ε↓0

ˆ
B2r (x0)

|uε − u| = 0.

Exercise 15.11. Prove this!

Step 2. For each x ∈ Br (x0) and 0 < s < r ,

u(x) =
 
∂Bs (x)

u(y) dy.

(A simplified version of) the argument from Exercise 15.2 shows that

∆uε (x) = 0.

Hence, uε satisfies
uε (x) =

 
Bs (x)

uε (y) dy

for each x ∈ Br (x0) and 0 < s < r . The previous step implies that the same holds for u, i.e.,

u(x) =
 
Br (x)

u(y) dy.

This is not quite what we are looking for; however, we can differentiate this expression by s to get
 
∂Bs (x)

u(y) dy =
 
Bs (x)

u(y) dy.

This yields the desired assertion.

Step 3. Finally, we come full circle and prove that

u = uε

in Br (x0); in particular, u is smooth in Br (x0).
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We compute

uε (x) =
ˆ
Bε (x)

ηε (x − y)u(y) dy

=

ˆ ε

0

sn−1

εn
η(s/ε)

 
∂Bs (x)

u(y) dyds

= u(x) ·
ˆ ε

0
(s/ε)n−1η(s/ε) d(s/ε)

= u(x). �

Theorem 15.12. If u satisfies the mean-value property, then it is smooth and harmonic.

Theorem 15.13. If u : U → R is harmonic, then it is analytic.

Proof. See [Evans2010]*Section 2.2 Theorem 10. The idea is to show that the Taylor series
converges by estimating the remained using Theorem 14.6. (The derivation I presented does not
yield estimates on ck which are good enough, but they can be improved by adjusting the radius r/2
of the smaller ball to a more clever choice depending on k.) �

Corollary 15.14 (Unique continuation). Suppose u : U → R is a harmonic function. If u vanishes
on a non-empty open subset of U , then u vanishes identically.

Exercise 15.15. Consider the annulus

A := {(x, y) ∈ R2 � C :
√
|x |2 + |y |2 ∈ [1, 2]} = B̄2(0) \ B1(0).

The function f : A→ R defined by

f (x, y) =
x

x2 + y2 = Re(1/z).

is harmonic.
Is there a harmonic function f̄ : B̄2(0) → R such that

f̄ |A = f ?

15.3 Unique continuation and the frequency function

There is another proof of unique continuation using the frequency function, which is also an important
concept.

Definition 15.16. Let x ∈ U and R := d(x, ∂U). The frequency function nx : I → [0,∞) is defined
as

nx (r) :=
r
´
Br (x) |∇u|2´
∂Br (x) |u|

2 =
rHx (r)
hx (r)
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with
Hx (r) :=

ˆ
Br (x)

|∇u|2 and hx (r) :=
ˆ
∂Br (x)

|u|2.

Here I := {r ∈ (0, R) : h(r) , 0}.

We now drop x from the notation.

Proposition 15.17. If u is harmonic, then n′ ≥ 0 on I.
Proposition 15.18. If u is harmonic, then we have

H (r) =
ˆ
∂Br (x)

(∂νu)u.

Proof. This follows from Theorem A.4. �

Proposition 15.19. If u is harmonic, then

H ′(r) =
n − 2

r
H (r) + 2

ˆ
∂Br (x)

|∂ru|2 and

h′(r) =
n − 1

r
h(r) + 2

ˆ
∂Br (x)

(∂νu)u.

Proof. We compute

h′(r) =
n − 1

r

ˆ
∂Br (x)

|u|2 +
ˆ
∂Br (x)

∂r |u|2

=
n − 1

r
h(r) + 2

ˆ
∂Br (x)

(∂νu)u.

The computation for H ′ is a bit more involved. First note that

H ′(r) =
ˆ
∂Br (x)

|∇u|2 =
n∑
i=1

ˆ
∂Br (x)

〈xi |∇u|2, xi/r〉.

Then compute, using Theorem A.3,ˆ
∂Br (x)

〈xi |∇u|2, xi/r〉

=

ˆ
Br (x)

∂i (xi |∇u|2)

=

ˆ
Br (x)

|∇u|2 + 2
n∑
j=1

xi (∂ju)(∂i ju)

=

ˆ
Br (x)

|∇u|2 − 2
n∑
j=1

∂j (xi∂ju)(∂iu) + 2
ˆ
∂Br (x)

n∑
j=1

xi (∂ju)(∂iu)νj

=

ˆ
Br (x)

|∇u|2 − 2|∂iu|2 + 2r
ˆ
∂Br (x)

( xi
r
∂iu

)
(∂ru).
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Summing this up yields

H (r) = (n − 2)
ˆ
Br (x)

|∇u|2 + 2r
ˆ
∂Br (x)

|∂ru|2. �

Proof of Proposition 15.17. Using Proposition 15.19, we compute

n′(r) =
H (r)
h(r)

+
rH ′(r)

h(r)
−

rH (r)h′(r)
h(r)2

=
H (r)
h(r)

+
(n − 2)H (r)

h(r)
+

2r
´
∂Br (x) |∂ru|2

h(r)

−
rH (r)
h(r)2

(
n − 1

r
h(r) + 2

ˆ
∂Br (x)

(∂νu)u
)

=
2r

h(r)2
*
,

ˆ
∂Br (x)

|u|2 ·
ˆ
∂Br (x)

|∂ru|2 −
�����

ˆ
∂Br (x)

(∂νu)u
�����

2
+
-

≥ 0

by Cauchy–Schwarz. �

Proposition 15.20. If u is harmonic and non-vanishing on BR (x), then I = (0, R) and for
0 < s < r < R

h(r) =
(r

s

)n−1
exp

(
2
ˆ r

s

n(t)/t dt
)

h(s);

in particular, (r
s

)n−1+2n(s)
h(s) ≤ h(r) ≤

(r
s

)n−1+2n(r )
h(s).

Proof. On I, the formula for h′ from Proposition 15.19 can be written in the form.

h′(r) = (n − 1 + 2n(r))h(r)/r;

hence, (
log h(r)

) ′
= (n − 1 + 2n(r)) /r .

This integrates to the stated identity if [s, r] ∈ I. The second assertion follows from Proposition 15.17.
To see that I = (0, R), first note that since u does not vanish on BR (x) we have I , ∅. We

also know trivially that I is open. Suppose (r1, r2) ⊂ I is a maximal interval contained in I. If
s ∈ (r1, r2), it follows that

h(r1) ≥ (r1/s)n−1+2n(s) h(s) and h(r2) ≥ (r2/s)n−1+2n(s) h(s).

Thus r1 = 0, because if r1 > 1 it follows that h(r1) > 0 contradicting the maximality; similarly
r2 = R. �

Alternative proof of Corollary 15.14. If u does not vanish identically on U, then there exists a
Br (x) ⊂ U such that u vanishes on Br/2(x) but hx (r) > 0. This contradicts the previous
proposition. �
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16 Green’s functions

Combining the Dirichlet principle and Weyl’s Lemma in the form of Theorem 15.8 allows us to find
a smooth solution u ∈ C∞(U) of the Poisson equation

∆u = g

for g ∈ C∞(U) ∩ C0(Ū) satisfying the homogeneous Dirichlet boundary conditions in the sense
that u ∈ W 1,2

0 (U). The construction of this solution however is somewhat abstract. This is “good
enough” for most applications, but it is nice to have a more concrete ways to represent/find solutions.
This is where Green’s functions, the fundamental solutions of the Laplace equation, come into play.

Let us begin with the Green’s function G on Rn. We want G to be such that for suitable
g : Rn → R the function defined by

u = G ∗ g,

i.e.,
u(x) =

ˆ
Rn

G(x − y)g(y) dy

satisfies
∆u = g.

In the language of distributions this means that

∆G = δ.

Definition 16.1. The Green’s function on Rn is the function G : Rn \ {0} → R defined by

G(x) :=



− 1
2π log |x | n = 2,

1
n(n−2)vol(Bn

1 ) |x |
2−n n > 2.

16.1 Derivations of the Green’s function

Let me briefly present two ways to arrive at the above formula (for n ≥ 3).

16.1.1 Derivation from the heat kernel

We know that the heat kernel Kt satisfies

(∂t + ∆)Kt = 0

for t > 0, limt→∞ Kt = 0 and limt→0 Kt = δ (as a distribution). Thus (somewhat formally)

∆

ˆ ∞
0

Kt = −

ˆ ∞
0

∂tKt = δ.
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For n > 2 and x , 0 we have ˆ ∞
0

1
(4πt)n/2

e−
|x |2
4t dt = G(x).

To see this, change variables s := 4t
|x |2

to get

ˆ ∞
0

1
(4πt)n/2

e−
|x |2
4t dt =

1
4πn/2

ˆ ∞
0

e−
1
s

sn/2
ds · |x |2−n

=
Γ

(
n
2 − 1

)
4πn/2

· |x |2−n.

But

vol(Bn
1 ) =

πn/2

Γ
(
n
2 + 1

) = 4πn/2

n(n − 2)Γ
(
n
2 − 1

) .
Arguing with just a bit more care (that is writing everything integrated against test functions

φ ∈ C∞0 (Rn)), the above can be made into a rigorous proof of the following theorem.

Theorem 16.2. If g ∈ C∞0 (Rn), then u := G ∗ g ∈ C∞(Rn) and

∆u = g.

16.1.2 Derivation using the Fourier transform

Using Proposition 9.5, taking the Fourier transform of ∆G = δ, gives

4π2 |y |2Ĝ(y) = 1.

Thus
G = F−1

(
1

4π2 | · |2

)
= F

(
1

4π2 | · |2

)
Actually computing the right-hand side is not that trivial, because | · |−2 < L1(Rn) and we need to view
it as a tempered distribution: For n ≥ 3, the integrability fails at infinity, i.e., | · |−2 < L1(Rn \B1); but
we still have | · |−2 ∈ S∗(Rn). For n = 2, however, the problem is more severe since | · |−2 < L1(B2

1 )
and thus it does not even define a tempered distribution.

We can learn a lot about G without actually doing any computation at all. First, if A ∈ SO(n),
then

F ( f ◦ A) = F ( f ) ◦ A.

Therefore, because | · |−2 is SO(n)–invariant, so is G; i.e., G(x) = g(|x |) for some g. On the other
hand if f is homogeneous of degree k, then f̂ is homogeneous of degree (−k − n). It follows that

G(x) = c|x |2−n

for some constant c.
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16.2 Solving the Poisson equation with C1 inhomogeneity

Theorem 16.3. If g ∈ C1
0 (Rn), then u := G ∗ g ∈ C2(Rn) and

∆u = g.

Remark 16.4. Note that this is actually a bit stronger than saying ∆G = δ (because g need not be
smooth). Also note that our proof does not work with g ∈ C0

0 (Rn) only; however, one can get away
with g ∈ C0,α

0 (Rn) for some α > 0, that is, g ∈ C0
0 (Rn) and

sup
x,y

|g(x) − g(y) |
|x − y |α

< ∞.

This observation lead to an important subject called “Schauder theory”.

Proof of Theorem 16.3.

Exercise 16.5. Prove that ∆G = 0 on Rn \ {0}. (Hint: It helps to know the formula for ∆ in polar
coordinates.)

Note that ∂i∂jG ∼ |x |−n near zero, thus it is not integrable and we cannot use just use the exercise
and Proposition D.2. However, we can write

∆u(x) = −
n∑
i=1

(∂iG ∗ ∂ig)(x) = −
n∑
i=1

ˆ
Rn

∂iG(x − y)∂ig(y) dy.

To see that this vanishes, we proceed as follows. For any ε > 0, note that
������

n∑
i=1

ˆ
Bε (x)

∂iG(x − y)∂ig(y) dy
������
≤ ‖∇g‖L∞

ˆ
Bε (0)

|∇G |

= ε‖∇g‖L∞

ˆ
B1 (0)

|∇G |,

by the homogeneity of degree (1− n) of |∇G |. This goes to zero as ε ↓ 0. Moreover, by Theorem A.4ˆ
Rn\Bε (x)

〈∇yG(x − y),∇yg(y)〉 dy =
ˆ

Rn\Bε (x)
(∆yG(x − y))g(y) dy

+

ˆ
Bε (x)

∂νG(x − y)g(y) dy.

Here the first term on the right-hand side vanishes and ν = − x−y
|x−y | . We compute further

ˆ
∂Bε (x)

∂νG(x − y)g(y) dy =
ˆ
∂Bε (0)

−∂rG(y)g(x − y) dy

=

ˆ
∂Bε (0)

1
nvol(Bn

1 )
|y |1−ng(x − y) dy

=

 
∂Bε (0)

g(x − y) dy → g(x)
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as ε → 0. Here we used that nvol(Bn
1 ) = vol(∂Bn

1 ). This completes the proof. �

16.3 Representation formula for solutions of the Dirichlet problem

Suppose now that U ⊂ Rn is a bounded open subset with smooth boundary. Suppose for each x ∈ U ,
φx solves the Dirichlet problem

∆φx = 0 in U and
φx (y) = G(x − y) for all y ∈ ∂U .

Finding such correction term φx is difficult in general; however, for simple regions U formulas for
φx are known. Set

GU (x, y) := G(x − y) − φ(x, y).

Proposition 16.6 (Representation formula). Given any u ∈ C2(Ū), for any x ∈ U we have

u(x) = −
ˆ
∂U

u(y)∂νGU (x, y) dy +
ˆ
U

∆u(y)GU (y, x).

Proof. Apply Theorem A.4 to Uε := U \ Bε (x) to derive
ˆ
∂Uε

u(y)∂νGU (x, y) − GU (x, y)∂νu(y) =
ˆ
Uε

∆u(y)GU (x, y).

Now GU = 0 on ∂U (this is why the correction term φx is needed!), and
ˆ
∂Bε (x)

GU (x, y)∂νu(y) dy → 0

as ε → 0. The argument from Theorem 16.3 shows that

u(x) = lim
ε→0

ˆ
∂Bε

∂νGU (x, y)u(y).

Here ν is the unit normal pointing out of Uε . �

Remark 16.7. Since φx is often hard to find, it is useful to remark that we also have

u(x) =
ˆ
∂U

G(x − y)∂νu(y) − u(y)∂νG(x − y) dy +
ˆ
U

∆u(y)G(y, x).

There is a subtlety here: If we know that there is a solution u ∈ C2(Ū) of a certain Dirichlet
problem on U , then Proposition 16.6 allows us to recover u from g := ∆u and f := u|∂U . However,
we do not make the assertion that Proposition 16.6 for prescribed values of g and f does the define a
solution.
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16.4 The Dirichlet problem on a ball

Exercise 16.8. The formula
φx (y) := G( |x |y − x/|x |)

defines a correction term for B := B1(0) ⊂ Rn.

Set
GB (x, y) := G(x − y) − φx (y).

Remark 16.9. Since
| |x |y − x/|x | | = |x |2 |y |2 − 2〈x, y〉 + 1,

GB (x, y) = GB (y, x). (This is true for all GU , in fact.)

Definition 16.10. We define the Poisson kernel (for r > 0) to be

Pr (x, y) :=
r2 − |x |2

rvol(∂B1) | |x − y |n
.

Exercise 16.11. For x ∈ B1(x) and y ∈ ∂B1(x), we have

P1(x, y) = −∂νGB (x, y).

Exercise 16.12. Prove that there is a constant c > 0 such that for all u ∈ C∞(B̄1(0)) we have

‖u‖L∞ (B1/2 (0)) ≤ c
(
‖∆u‖L∞ (B1 (0)) + ‖u‖L1 (∂B1 (0))

)
(Hint: Use Proposition 16.6.)

Theorem 16.13. Given f ∈ C0(∂Br ), set

u(x) :=



´
∂Br

g(y)Pr (x, y) dy x ∈ B
g(x) x ∈ ∂B.

Then u ∈ C∞(Br ) ∩C0(B̄r ) and ∆u = 0 in B. That is, u solves the Dirichlet problem for the Laplace
equation on Br with boundary value g.

Proof. It suffices to prove this for r = 1 (because everything can be pulled back to B1).
Note that ∆xGB (x, y) = 0 for all fixed y ∈ ∂B, and similarly

∆x∂yj GB (x, y) = ∆x∂x j GB (x, y) = ∂x j∆xGB (x, y) = 0.

Thus ∆xP1(x, y) = 0. From this it follows that ∆u = 0 using Proposition D.2.
Thus we have to show that

g(x) = lim
z→x

ˆ
∂B

g(y)P1(z, y) dy.
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It is a fact that for all z ∈ B1 ˆ
∂B

P1(z, y) dy = 1.

Thus we have to show that

lim
z→x

ˆ
∂B

(g(y) − g(x))P1(z, y) dy = 0.

This can be done in the “usual way”: First, we have

�����

ˆ
∂B∩Bε (x)

(g(y) − g(x))P1(z, y) dy
�����
≤ sup

Bε (x)
|g(y) − g(x) |,

which goes to zero as ε → 0 by continuity of g. Second, for fixed ε > 0

�����

ˆ
∂B\Bε (x)

(g(y) − g(x))P1(z, y) dy
�����
≤ 2‖g‖L∞

ˆ
∂B\Bε (x)

1 − |z |2

vol(∂B1) | |z − y |n
dy

goes to zero as z → x ∈ ∂B1. �
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17 Perron’s Method

Perron’s method is a further technique to solve the Dirichlet problem for the Laplace equation:

∆u = 0 in U

u|∂U = f .

It is based on the observation that be the maximum principle if ∆v ≤ 0 and v |∂U = f , then v ≤ u;
hence:

• u(x) is the maximum value of a subharmonic function with this boundary value; and

• we can make any subharmonic function v larger by replacing v |Br (x) with a harmonic function
with the same boundary values.

One difficulty is that harmonic replacement does not necessarily produce C2 functions, and thus
the result might not satisfy ∆v ≤ 0 in the strong sense. To deal with this we make the following
definition.

Definition 17.1. A upper semi-continuous function v : U → R is called subharmonic if one of the
following equivalent conditions are satisfied:

• If V ⊂ U is open and u : V → R is harmonic and v ≤ u on ∂V , then v ≤ u on V .

• For all B̄r (x) ⊂ U , we have
v(x) ≤

 
∂Bx

v.

• For all B̄r (x) ⊂ U , we have
v(x) ≤

 
Bx

v.

Exercise 17.2. Show that these conditions are equivalent. Also, show that if v ∈ C2(U) and ∆v ≤ 0,
then v is subharmonic.

Exercise 17.3. Show that if {v1, . . . vk } are subharmonic, then so is max{v1, . . . vk }.

17.1 Harmonic replacement

Definition 17.4. Suppose v ∈ C0(Ū) is subharmonic and B̄r (x) ⊂ U. Then the harmonic
replacement ṽ : Ū → R is defined by

ṽ(x) :=



v(x) x < Br (x)´
∂Br (x) Pr (x, y)v(y) dy x ∈ Br (x).

Here Pr is the Poisson kernel.
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Proposition 17.5. If v ∈ C0(Ū) is subharmonic and ṽ is a harmonic replacement, then ṽ is
subharmonic and ṽ ≥ v.

Proof. By definition of subharmonic, ṽ ≥ v. To see that ṽ is also subharmonic, suppose u : V → R
is a harmonic function with v |∂V ≤ ṽ |∂V ≤ u|∂V . Since v is subharmonic, v |V ≤ u. Thus
ṽ |∂(V∩Br (x) ≤ u|∂(V∩Br (x). Therefore by the maximum principle ṽ |V∩Br (x) ≤ u|V∩Br (x). This
completes the proof. �

17.2 The maximal subharmonic function

Fix f ∈ C0(∂U). Define

Sf := {v ∈ C0(Ū) : v subharmonic and v |∂U ≤ f }.

Proposition 17.6. The function u : U → R defined by

u(x) := sup
S f

v(x)

is harmonic.

Remark 17.7. Note that for any v ∈ Sf , supU v ≤ sup∂U f . Thus u is well-defined.

Proof. Consider B̄2r (x) ⊂ U. We will show that u is harmonic in Br (x). Since B̄r (x) is arbitrary
this will prove the assertion.

Step 1. Construction of a good approximating sequence (ṽi).

Let (vi) ∈ SN
f
such that u(x) = limi→∞ vi (x). By Exercise 17.3 we can assume that vi is

monotone increasing. Denote by ṽi the harmonic replacement of vi with respect to B2r (x). By the
maximum principle, ṽi is still monotone increasing. Thus

lim
i→∞

ṽi (x) = u(x).

Step 2. The limit ṽ := limi→∞ ṽi defines a harmonic function on Br (x).

By the Harnack inequality Theorem 14.10, applied to ±(ṽi − ṽj ), for all Br (x)

|ṽi − ṽj |C0 (Br (x)) ≤ c|ṽi − ṽi |(x).

Thus (ṽi) is a Cauchy sequence in C0(Br (x)). Hence, ṽ is continuous. Since the ṽi satisfy the
mean-value property, so does ṽ. Therefore ṽ is harmonic.

Step 3. u = ṽ on Br (x)
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We certainly have u ≥ ṽ. Suppose u(y) > ṽ(y) for some in Br (y). Let (wi) ∈ SN
f
be such that

u(y) = limi→∞ wi (y). Replacing wi with max{wi, ṽ} we can assume that wi ≥ ṽ. We can use the
argument from the previous step to find a harmonic function w̃ ∈ C0(Br (x)) with

ṽ(y) < w̃(y) = u(y) and ṽ ≤ w̃ ≤ u.

Since ṽ(x) = u(x), we have
ṽ(x) = w̃(x) = u(x).

This however contradicts the mean-value property: ṽ(y) < w̃(y) implies that

ṽ(x) =
 
Br (x)

ṽ <

 
Br (x)

w̃ = w̃(x).

�

17.3 The boundary condition

Now one question remains: Does u satisfy the boundary condition? That is, do we have

lim
U3z→x

u(z) = f (x)?

Unfortunately, this is not always true. This is related to the boundary ∂U potentially being very
badly behaved.

Definition 17.8. Let x ∈ ∂U . A function β ∈ C0(Ū) is called a barrier at x if −β |U is subharmonic
and

β(x) = 0 and β(y) > 0 for y , x.

A point x ∈ ∂U is called regular if there exists a barrier at x.
U is called regular each point x ∈ ∂U is regular.

Remark 17.9. If β is a local barrier at x in the sense that it defines a barrier for U ∩ B2r (x) for some
r > 0, then

β̃(x)



β0 x ∈ U \ Br (x)
min β, β0) x ∈ U ∩ Br (x)

Here β0 := infU∩(B2r (x)\Br (x)) β.

Example 17.10. B := B1(0) ⊂ Rn is regular. To see this we construct a barrier at x0 := (1, 0, . . . , 0).
Let G denote the Green’s function on Rn and denote z0 := (2, 0, . . . , 0). We will assume that n ≥ 2,
so that the Green’s function is decreasing in the distance from 0. Set

β(x) := G(x0 − z0) − G(x − z0).
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Then ∆β = 0 on B and thus −β is subharmonic. Also β(x0) = 0. Moreover, since x0 is the point in
B̄ closest to z0 (that is: for all x ∈ B̄ we have |x − z0 | ≥ |x0 − z0 | with equality if and only if x = x0),
β(y) > 0 for all y ∈ B̄ \ {0}.

In a similar way we can construct a barrier at any other boundary point. Note that the crucial
point is that each boundary point x0 ∈ ∂U is the unique minimizer of | · −z0 | for some z0 < Ū .

Exercise 17.11. Show that 0 ∈ ∂{x ∈ Rn : 0 < |x | < 1} (n ≥ 2) is not regular.

Exercise 17.12. Show that Q = (0, 1)n is regular.

Proposition 17.13. If x ∈ ∂U is regular, then

lim
U3z→x

u(z) = f (x).

Proof. Denote by u∗ ∈ C∞(U) the harmonic function defined by

u∗(x) = inf v∗ ∈ S∗f v
∗(x).

Here S∗f = −S− f . We have u ≤ u∗.
Denote by β a barrier at x. For every ε > 0, and c > 0 sufficiently large

vε (y) = f (x) − ε − cβ(x)

defines a function v ∈ Sf and similarly

v∗ε (y) = f (x) + ε + cβ(x)

defines a function in S∗f .
Thus

vε ≤ u ≤ u∗ ≤ v∗ε .

Since limU3z→x vε (z) = f (x) − ε and limU3z→x v
∗
ε (z) = f (x) + ε and ε is arbitrary, the assertion

follows. �

Theorem 17.14. There following are equivalent:

1. ∂U is regular.

2. For every f ∈ C0(∂U), there exists a u ∈ C∞(U) ∩ C0(Ū) such that ∆u = 0 on U and
u|∂U = f .

Proof. We just proved (1) implies (2). For the converse: given x ∈ ∂U , take β to be the solution of
the Dirichlet problem with boundary value f (y) := −|x − y |. �
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18 Minimal hypersurfaces and the Bernstein problem

Let U be open subset of Rn, which we assume to be bounded for now. Fix a smooth function
f : ∂U → R. Set

C∞f (Ū) := {u ∈ C∞(Ū) : u|∂U = f }.

The graph of u is the set
Γ(u) := {(x, f (x)) : x ∈ U } ⊂ Rn+1.

Define A : C∞f (Ū) → [0,∞) by

A (u) := vol(Γ(u)) =
ˆ
U

√
1 + |∇u|2.

This is often called the area functional (even though this terms is really only appropriate if n = 2).
The question of whether or not a solution minimiser of the functional A exists for prescribed f

is known as Plateau’s problem. This problem has inspired an enormous amount of work and has
been the origin of entire subfields of mathematics, like geometric measure theory.

The first variation of A is given by

δA (u)φ =
ˆ
U

〈
∇u√

1 + |∇u|2
,∇φ

〉
.

This vanishes for all φ ∈ C∞0 (U) if and only if

(18.1) H := − div *
,

∇u√
1 + |∇u|2

+
-
= 0.

Definition 18.2. An graphical minimal hypersurface in Rn+1 is a graph

Γ(u) := {(x, f (x)) : x ∈ U }

of a C2 map u : U → R defined on a domain U ⊂ Rn which satisfies (18.1).
We call Γ(u) entire if U = Rn.

Remark 18.3. H is called the mean curvature of Γ(u).
Remark 18.4. Note that a minimal hypersurface need not minimise A ; in fact, if U = Rn, then A is
usually not defined.
Remark 18.5. More generally, a minimal hypersurface in Rn+1 is subset M that locally in suitable
coordinates can be written as the graph of a function satisfying (18.1). (This allows, in particular,
for the hyperplane over which M is a graph to rotate.)

Example 18.6. If u : U → R is affine, i.e, it is of the form

u(x) = u0 + 〈x, v〉

for some u0 ∈ R and v ∈ Rn, then ∇u = 0 and (18.1) holds trivially.
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We compute

− div *
,

∇u√
1 + |∇u|2

+
-
= −

n∑
i=1

∂i
*..
,

∂iu√
1 + |∇u|2

+//
-

=
∆u√

1 + |∇u|2
+

n∑
i, j=1

(∂iu)(∂ju)∂i∂ju

(1 + |∇u|2)3/2

= −

n∑
i, j=1

*..
,

δi j√
1 + |∇u|2

−
(∂iu)(∂ju)

(1 + |∇u|2)3/2

+//
-
· ∂i∂ju.

If n = 1, then this expression simplifies to

−
u′′√

1 + (u′)2
+

u′′(u′)2

(1 + (u′)2)3/2 = −
u′′

(1 + (u′)2)3/2 .

Example 18.7. The graph of u : (−r, r) → R defined by

u(x) =
√

r2 − x2

is the upper half circle R2 of radius r .
Let us compute H . Since

u′ = −
x

√
r2 − x2

,

we have (
1 + (u′)2

)3/2
=

(
1 +

x2

r2 − x2

)3/2

=

(
r2

r2 − x2

)3/2

and

u′′ = −
1

(r2 − x2)1/2 −
x2

(r2 − x2)3/2 = −
r2

(r2 − x2)3/2 .

Thus
H = 1/r .

Example 18.8. The catenoids are a family of a minimal hypersurfaces in R3, which are not graphical.
Topologically each catenoid is a cylinder and it can be parametrised for some r > 0 by the map
R × S1 → R3

(z, α) 7→
*..
,

cosh(z/r) · r cos(α)
cosh(z/r) · r sin(α)

z

+//
-
.

We can write (almost all) of the catenoid as the graphs over R2 \ B̄r (0) of the maps

ur,±(x, y) := ±r · arcosh *
,

√
x2 + y2

r
+
-
.
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Exercise 18.9. Prove that Γ(u±) are minimal graphs.

Remark 18.10. Although, the study of hypersurfaces in R3 is an almost ancient subject it is still very
active and new results are still being obtained.

In this lecture I want to talk about the following quite surprising result.

Theorem 18.11 (Bernstein’s Theorem). A entire graphical minimal hypersurface in R3 must be
affine; hence, a hyperplane.

One can think of this as a non-linear Liouville type theorem without any growth assumptions at
infinity.

Remark 18.12. The Bernstein problem is the question whether this is true in dimension n > 3 as well.
Simons [6] proved that this holds for n ≤ 7. The problem was settled by Bombieri–De Giorgi–Gusti
[2] who proved that for n ≥ 8 it does not hold.

Proposition 18.13 (Baby Bernstein). A entire graphical minimal hypersurface in R2 must be affine;
hence, a straight line.

Proof. Equation (18.1) for a function u : R→ R can be written as

0 =
u′′

(1 + (u′)2)3/2 .

Thus, u′′ = 0, so u(x) = u0 + cx. �

Proof of Theorem 18.11. What we need to show is that any function u : R2 → R satisfying

∂2
xu + ∂2

yu − 2(∂xu)(∂yu)∂x∂yu = 0.

is affine, i.e., ∇u = 0. We transform the problem by introducing

ψi := arctan(∂iu).

After a somewhat tedious computation one arrives at

a∂2
xψi + 2b∂x∂yψi + c∂2

yψi = 0.

where (
a b
b c

)
=

(
1 + (∂yu)2 −(∂xu)(∂yu)
−(∂xu)(∂yu) 1 + (∂xu)2

)
=: A.

Note that A is positive definite and also that ψi are obviously bounded.
This trick reduces Bernstein’s theorem to proving the following Liouville type theorem.
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Theorem 18.14. Let A =
(
a b
b c

)
: R2 → R2×2 be such that A(x, y) is positive definite for each

(x, y) ∈ R2. If u ∈ C2(R) is a solution of

a∂2
xu + 2b∂x∂yu + c∂2

yu = 0,

and
u(x, y) = O(1)

then u is constant.

Bernstein’s original proof relies on the following theorem, which he stated but gave an incorrect
proof of.

Theorem 18.15 (E. Hopf [3], Mickle [5]). If

− det Hess(u) = (∂x∂yu)2 − (∂2
xu)(∂2

yu) ≥ 0 but det Hess(u) , 0,

then u cannot be bounded (in fact, it cannot be o(r)).

The proof of this theorem is too involved to present here, but you should feel encouraged to
consult the E. Hopf’s and Mickle’s article which give correct proofs of this result. This theorem can
be used to prove Theorem 18.14 as follows.

Under the hypothesis of Theorem 18.14 we will prove that

(∂x∂yu)2 − (∂2
xu)(∂2

yu) ≥ 0.

and equality holds if and only if
∂2
xu = ∂2

yu = ∂x∂yu = 0.

Using the equation we can write

a
(
(∂x∂yu)2 − (∂2

xu)(∂2
yu)

)
= a(∂x∂yu)2 + 2b(∂x∂yu)(∂2

yu) + c(∂2
yu)2 ≥ 0,

since A is positive definite. This implies the first assertion, since a > 0 because A is positive definite.
If the left-hand side vanishes, then again since A is positive-definite

∂x∂yu = ∂2
yu = 0.

To show that ∂2
x = 0 as well note that we also have

c
(
(∂x∂yu)2 − (∂2

xu)(∂2
yu)

)
= a(∂2

xu)2 + 2b(∂2
xu)(∂x∂yu) + c(∂x∂yu)2 ≥ 0.

This completes the proof. �
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19 L2 regularity theory for second order elliptic operators in diver-
gence form

In the next couple of lectures I will teach you about one way to deal with linear second order
uniformly elliptic operators in divergence form.

Definition 19.1. A second order differential operator L is said to be in divergence form if it can be
written as

(19.2) Lu = −
n∑

i, j=1
∂i (ai j∂ju) +

n∑
k=1

bk∂ku + cu

where A = (ai j ) : U → Rn×n, b = (bk ) : U → Rn and c : U → R, and U is an open subset of Rn.
We say that L is uniformly elliptic if there are constant Λ ≥ λ > 0 such that for all x ∈ U, A is

symmetric and spec(A) ∈ [λ,Λ].

Hypothesis 19.3. For the rest of these lecture notes we suppose L is uniformly elliptic.

Of course, if ai j is differentiable, then

Lu = −
n∑

i, j=1
ai j∂i∂ju +

n∑
k=1

*
,
bk −

n∑
`=1

∂`a`k+
-
∂ku + cu.

So one might wonder why bother writing L in this form. The reason is that this is well adopted to
the notion of weak solutions.

Definition 19.4. Assume that A ∈ L∞(U,Rn×n), b ∈ L∞(U,Rn) and c ∈ L∞(U). Let f ∈ L2(U)
and g = (gi) ∈ L2(U,Rn). We say that u ∈ W 1,2(U) is a weak solution of

(19.5) Lu = f −
n∑
i=1

∂igi

if for each φ ∈ W 1,2
0 (U)

ˆ
U

n∑
i, j=1

ai j (∂iu)(∂jφ) +
n∑

k=1
(bk∂ku) · φ + cu · φ =

ˆ
U

f φ +
n∑
i=1

gi∂iφ.

Observe how the above makes sense even if ai j is not differentiable.
You might ask: why do we introduce those strange gi terms? A good answer is that in the

context of Definition 19.4 L is a linear operator W 1,2 → W−1,2 := (W 1,2
0 )∗ and the general element

of (W 1,2
0 )∗ is of the same form as the right-hand side of (19.5).
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19.1 Existence of weak solutions

Proposition 19.6. Suppose L is a second order elliptic operator in divergence form with A ∈
L∞(U,Rn×n), b = 0, and c ∈ L∞(U, [0,∞)). For every f ∈ L2(U) and g = (gi) ∈ L2(U,Rn), there
exists a unique weak solution u ∈ W 1,2

0 (U) of

Lu = f −
n∑
i=1

∂igi .

Remark 19.7. It is crucial that u ∈ W 1,2
0 (U) (and not just W 1,2(U), for otherwise uniqueness fails).

The observant reader will also note that, in fact, one does not need c ≥ 0. It suffices to have c ≥ −ε
for some small ε > 0 depending on U and λ.

Proof. This can be proved along the lines of Section 12.6, but it is useful to recast this argument in
this slightly more abstract setting.

We define an inner product on W 1,2
0 (U) by

〈u, v〉L :=
ˆ
U

n∑
i=1

ai j (∂iu)(∂jv) + cuv.

By the Dirichlet–Poincaré inequality for some δ > 0

δ‖u‖2
W 1,2 ≤ λ‖∇u‖2

L2

≤ ‖u‖2L
≤ Λ‖∇u‖2

L2 + sup
U

c · ‖u‖2
L2 ≤ δ

−1‖∇u‖2
W 1,2 .

This means that the normed vector space (W 1,2
0 (U), ‖·‖L) is equivalent to (W 1,2

0 (U), ‖·‖W 1,2 ).
Therefore (W 1,2

0 (U), 〈·, ·〉L) is a Hilbert space.
Now observe that α : W 1,2

0 (U) → R defined by

α(v) =
ˆ
U

f v +
n∑
i=1

gi∂iv

is a bounded linear functional with respect to ‖·‖W 1,2 and, hence, with respect to ‖·‖L . Now by
Riesz’ representation theorem, there exists a unique u ∈ W 1,2

0 (U) such that

〈u, ·〉L = α(·).

This is exactly the assertion that there is a unique weak solution u ∈ W 1,2
0 (U). �

If b , 0 or c can become negative, then one cannot hope for a result as strong as Proposition 19.6.
Neither existence nor uniqueness might hold. There is however, the following
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Exercise 19.8 (Lax–Milgram theorem). Suppose H is a Hilbert space and B : H × H → R is a
bounded bilinear form (but possibly non-symmetric) satisfying

λ‖x‖‖y‖ ≤ |B(x, y) | ≤ Λ‖x‖‖y‖.

Show that for any x ∈ H , there exists a unique x̃ ∈ H such that

B( x̃, ·) = 〈x, ·〉.

Now suppose u is a weak solution of (19.5). Here are some natural question to ask: How regular
is u? Is it a strong solution, i.e., does it literally satisfy (19.5)? Does it attain its boundary values?

The answer to this is roughly: if A, b and c are sufficiently smooth, then u has two more
derivatives than f and one more than g; and if ∂U is sufficiently regular then u attains it boundary
values.

All of these above questions are qualitative. Closely related is the quantitative question: How
large is u in terms if f and g (and u|∂U )? I turns out that one mostly answers these sorts of questions
at the same time.

For answering this sort of question one has to make precise what exactly one means be regularity.
I turns out that the notions of just Ck are not suitable. The problem with that is that continuity
is purely qualitative property. However, in these questions one typically needs something more
quantitative. A common choice is to work with in non-linear problems are Hölder spaces. We will
come to those soon. For now we will stick with W k,2 spaces. Recall that

‖u‖W k,2 := ‖u‖L2 + ‖∇u‖L2 + · · · + ‖∇ku‖L2 .

19.2 L2 regularity for ∆

From Theorem 12.16, we know that if u ∈ C∞0 (Rn), then

‖u‖W k+2,2 ≤ c‖∆u‖W k,2 + ‖u‖W 1,2 .

In fact this continues to hold true for all u ∈ W k+2,2. This sort of statement is called an a priori
estimate: provided u is in W k+2,2, we can predict an upper bound for ‖u‖W k+2,2 .

For general PDE one has to strictly make a distinction between a priori estimates and questions
of regularity. But for constant coefficient operators a priori estimates typically imply regularity.
Here is what this means. Suppose u ∈ W 1,2 and we know that ∆u = f ∈ L2, in the weak sense. Can
we conclude that u ∈ W 2,2?

Note that constant coefficient operators commute with convolution: That is if ρ ∈ C∞0 (Rn), then
∆u = f (in the weak sense) implies

∆(u ∗ ρ) = ρ ∗ (∆u) = ρ ∗ f .

Here ∆(u ∗ ρ) = ρ ∗ f even holds in the strong sense as an identity in C∞0 (Rn) If ηε is a suitable
family of mollifiers and uε := ηε ∗ u and fε := ηε ∗ f , then

uε → u ∈ W 1,2 and fε → f ∈ L2.
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But by the above estimate we also know that

‖uε − uδ ‖W 2,2 ≤ ‖ fε − fδ ‖L2 + ‖uε − uδ ‖W 1,2 .

Thus uε is Cauchy in W 2,2 has a limit in W 2,2 must agree with u. It follows that u ∈ W 2,2.
A similar argument can be used to show the following

Proposition 19.9. If u ∈ W k+1,2 and ∆u ∈ W k,2, then

u ∈ W k+2,2

and
‖u‖W k+2,2 ≤ ‖∆u‖W k,2 + ‖u‖W 1,2 .
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20 L2 regularity theory for second order elliptic operators in diver-
gence form (continued)

20.1 L2 interior regularity for variable coefficients operators

Theorem 20.1. Let k ∈ N0. Suppose ai j ∈ W k+1,∞(U) and bk, c ∈ W k,∞(U), and f ∈ W k,2(U). If
u ∈ W 1,2(U) is a weak solution of

Lu = f ,

then
u ∈ W k+2,2

loc (U)

and for each V ⊂⊂ U there is a constant c > 0 (independent of u) such that

‖u‖W k+2,2 (V ) ≤ c
(
‖ f ‖W k,2 (U ) + ‖u‖L2 (U )

)
.

This cannot be proved in quite the same way as the analogous result for ∆. The standard method
to prove it, using difference quotients, goes back to Nirenberg.

For h ∈ R \ {0} and k ∈ {1, . . . , n} define the difference quotient

∂hk u :=
u(· + hek ) − u(·)

h
.

These different quotients have an important integration by parts property
ˆ

(∂hk u)v = −
ˆ

u(∂−hk v).

There also is a chain rule
∂hk (uv) = (∂hk u)v + uh,k∂hk v

with uh,k := u(· + hek ).
For us the significance of the difference quotients comes from the following.

Proposition 20.2. Suppose U is a subset of Rn and V is an open subset of Rn such that for all
sufficiently small h ∈ R we have V + hek ∈ U. If u ∈ L2(U) and ∂ku ∈ L2(U), then there is a
constant c > 0 such that for all h , 0 sufficiently small

‖∂hk u‖L2 (V ) ≤ c‖∂ku‖L2 (U ) .

Conversely, if u ∈ L2(U) and
c := lim sup

0,h→0
‖∂hk u‖L2 (V ) < ∞,

then ∂ku ∈ L2(V ) and
‖∂ku‖L2 (V ) ≤ c
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Proof. Let me only say something about the second half. We need to explain why the distribution
∂ku is represented by an L2 function. Given any φ ∈ C∞0 and h sufficiently small

(∂ku)[φ] = −
ˆ

u∂kφ = − lim
h→0

ˆ
u∂−hk φ = lim

h→0

ˆ
(∂hk u)φ.

Thus ∂ku is the weak limit of (∂h
k

u) (in the space of distributions). But (∂h
k

u) is uniformly bounded
in L2. Thus its weak limit is also in L2. �

To not further clutter the exposition we prove the above theorem only in a special case.

Proof of Theorem 20.1 for k = 0 and assuming b = c = 0. Suppose u ∈ W 1,2(U) is a weak solution
of

−

n∑
i, j=1

∂i (ai j∂ju) = f

with ai j ∈ C1 and f ∈ L2. We need to prove that if V ⊂ U , then u|V ∈ W 2,2 and satisfies the asserted
estimate.

Choose a cut off function χ compactly supported in U and equal to one on V . For i ∈ {1, . . . , n}
and h ∈ R \ {0}, define a test function by

v := −∂−hk ( χ2∂hk u) ∈ W 1,2
0 (U).

(This is supposed to be an approximation of ∂2
k
u, but we have to use difference quotients and the cut

off to ensure that v ∈ W 1,2
0 (U). Why we write χ2 instead of just χ will be come apparent soon.)

Now using this test function in the definition of weak solution we get

(20.3)
ˆ
U

n∑
i, j=1
−ai j (∂iu) · ∂j∂−hk ( χ2∂hk u) =

ˆ
U

− f ∂−hk ( χ2∂hk u).
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By discrete integration by parts the left-hand side can be rewritten as follows:
ˆ
U

n∑
i, j=1
−ai j (∂iu) · ∂j∂−hk ( χ2∂hk u)

=

ˆ
U

n∑
i, j=1

(∂hk [ai j (∂iu)]) · ∂j ( χ2∂hk u)

=

ˆ
U

n∑
i, j=1

ah,k
i j (∂hk ∂iu) · ∂j ( χ2∂hk u) + (∂hk ai j )(∂iu) · ∂j ( χ2∂hk u)

=

ˆ
U

n∑
i, j=1

χ2ah,k
i j (∂hk ∂iu) · (∂j∂hk u)

+

ˆ
U

n∑
i, j=1

2χ∂j χ · ah,k
i j (∂hk ∂iu) · (∂hk u)

+ χ2(∂hk ai j )(∂iu) · ∂j (∂hk u) + 2χ∂j χ · (∂hk ai j )(∂iu) · ∂hk u

=: I + II.

We think of I as the good term and of II as the bad term or error term: By uniform ellipticity we
have ˆ

U

χ2 |∂hk ∇u|2 ≤ λ−1I.

The left-hand side is exactly the term we want to control.
To bound the error term, observe that using ai j ∈ W 1,∞ for some constant c > 0

|II| ≤ c
ˆ
U

χ |∂hk ∇u|(|∂hk u| + |∇u|) + χ |∇u| |∂hk u|

≤

ˆ
U

ε χ2 |∂hk ∇u|2 + cε−1(|∂hk u|2 + |∇u|2),

for all ε > 0. (In the above it is important to still have a χ term. This is why we worked with χ2).
Now it remains to bound the right hand side of (20.3):

F :=
ˆ
U

− f ∂−hk ( χ2∂hk u) ≤
ˆ
U

ε−1 | f |2 + ε |∂−hk ( χ2∂hk u) |2

≤

ˆ
U

ε−1 | f |2 + ε |∂k ( χ2∂hk u) |2

≤

ˆ
U

ε−1 | f |2 + 2ε |2χ(∂k χ)∂hk u) |2 + 2ε χ2 |∂hk ∇u|2

≤

ˆ
U

ε−1 | f |2 + 2cε |∇u|2 + 2ε χ2 |∂hk ∇u|2
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Putting all of this together we get

λ

ˆ
U

χ2 |∂hk ∇u|2 ≤ I

≤ F + |II|

≤

ˆ
U

3ε χ2 |∂hk ∇u|2 + cε−1) |∇u|2ε−1 | f |2.

If ε is chosen sufficiently small, we get
ˆ
v

|∂hk ∇u|2 ≤
ˆ
U

χ2 |∂hk ∇u|2

≤ c
ˆ
U

| f |2 + |∇u|2.

Since the right hand side does not depend on h, it follows that ∇u ∈ W 1,2(V ) and

‖u‖W 2,2 (V ) ≤ c
(
‖ f ‖L2 (U ) + ‖u‖W 1,2 (supp(χ))

)
.

This estimate is not quite what we claimed. What is missing is to replace ‖u‖W 1,2 (U ) by ‖u‖L2 (U ) .
This can be achieved by using the test function χ̃2u where χ̃ is compactly supported in U and equal
to one on supp( χ). �

If one is willing to put in a bit more work one can easily deal with the cases where b, c ∈ L∞.
The idea behind proof of Theorem 20.1 for k > 0 is called bootstrapping. Suppose u ∈ W 1,2

is a weak solution of Lu = f ∈ W 1,2. Then by the k = 0 case we know that u ∈ W 2,2(V ) for any
V ⊂⊂ U and a computation shows that ũ := ∂`u is a weak solution of

Lũ = f̃

with

f̃ := ∂` f +
n∑

i, j=1
∂i (∂`ai j · ∂ju) −

n∑
k=1

∂`bk · ∂ku − ∂`c · u.

Thus one derive the k = 1 from the k = 1 case, and so on.

20.2 L2 boundary regularity

If u ∈ W 1,2
0 (U) is a weak solution of

Lu = f ,

and ∂U is sufficiently smooth, one can expect regularity of u up to the boundary. More precisely, we
have
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Theorem 20.4. Let k ∈ N0. Suppose that ∂U is Ck+2, ai j ∈ W k+1,∞(Ū), bk, c ∈ W k,∞(Ū). If
u ∈ W 1,2

0 (U) is a weak solution of Lu = f with f ∈ W k,2(U), then

u ∈ W k+2,2(U)

and for a constant c > 0 independent of u

‖u‖W k+2,2 (U ) ≤ c
(
‖ f ‖W k,2 (U ) + ‖u‖L2 (U )

)
.

Remark 20.5. It is crucial that u ∈ W 1,2
0 (U).

Proof sketch. The proof of this theorem is a bit involved. We will only consider the case k = 0 and
b = c = 0. We can cover Ū by finitely many balls Br (x) and we can assume that these balls are
either completely contained in U or x ∈ ∂U . For balls contained in U Theorem 20.1 applies. So we
can focus on balls centered at the boundary. By applying a Ck+2 diffeomorphism we reduce to the
case U = [0, 2) × Bn−1

2 (0) and Br (x) = B1(0). Formally L transforms to a new differential operator
and one can (and in fact has to) check that the transformed u still is a weak solution of a Lu = f with
the transformed f . You can check this as an exercise.

So now let us assume that U = [0, 2) × Bn−1
2 (0) and Br (x) = B1(0) (and we still have b = c = 0).

Let χ be a cut off function compactly supported in U and equal to one on B1(0). (Note in particular
that χ need not vanish for x1 = 0.) For k ∈ {2, . . . , n} the argument from Theorem 20.1 goes through
with

v := −∂−hk ( χ2∂hk u) ∈ W 1,2
0 (U)

and thus we can show that ∂k∇u ∈ L2(B1(0)) with the desired estimates.
The crucial question is: how do we show that ∂1∂1u ∈ L2 (and derive estimates)? Note that we

can write Lu = f as

−

ˆ
U

a11(∂1u)(∂1φ) =
ˆ
U

−
∑

i, j=1,...n
(i, j),(1,1)

ai j (∂iu)(∂nφ) + f φ.

This means that (as a distribution)

∂1(a11(∂1u)) =
∑

i, j=1,...n
(i, j),(1,1)

∂n(ai j (∂iu)) − f =: ρ

By the above the ρ ∈ L2. By uniform ellipticity a11 ≥ λ > 0. It follows that

∂1∂1u = a−1
11 (∂1(a11(∂1u)) − (∂1a11)∂1u ∈ L2.

This completes our sketch proof. �
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21 Hölder spaces

21.1 Definition and basic properties of Hölder spaces

Definition 21.1. For α > 0, k ∈ N0 and u : U → R define

[u]C0,α (Ū ) := sup
x,y∈Ū

|u(x) − u(y) |
|x − y |α

and

‖u‖Ck,α (Ū ) :=
k∑
`=1
‖∇`u‖L∞ (Ū ) + [∇`u]C0,α (Ū ) .

Set
Ck,α(Ū) := {u ∈ Ck (Ū) : ‖u‖Ck,α (Ū ) < ∞}.

Exercise 21.2. (Ck,α(Ū), ‖·‖Ck,α (Ū )) is a Banach space.

The spaces Ck,α(Ū) are called Hölder spaces.

Exercise 21.3. If u ∈ C0,α with α > 1, then u is locally constant. (This is why one usually requires
α ∈ (0, 1].)

Exercise 21.4. If u ∈ C0,α(Ū) and v ∈ C0(Ū), then

‖u · v‖C0,α (Ū ) ≤ ‖u‖C0,α (Ū ) · ‖v‖L∞ (Ū ) .

Exercise 21.5. If f ∈ C∞(R) and u ∈ C0,α(Ū), then f ◦ u ∈ C0,α(Ū).

The above observations show that Hölder spaces work well with non-linearities.

Remark 21.6. C∞(Ū) is not dense in C0,α(Ū).

21.2 Integral characterisation of Hölder spaces

The main point for the approach to Schauder theory we are going to take is the fact that Hölder
continuity can be characterized in terms of integral estimates.

Hypothesis 21.7. Throughout we make the assumption that U is bounded and there is a constant
c > 0 such that for all 0 < r < min{1, diam(U)} and all x ∈ U we have

vol(U ∩ Br (x)) ≥ crn.

This is sometimes summarized by saying “U is of type A”. This is quite a mild condition. It holds
for example if ∂U is C1.

We make the following definition.
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Definition 21.8. For 1 ≤ p < ∞ and λ > 0, the Campanato space (Lp,λ(U), ‖·‖Lp,λ (U )) is the
normed vector space defined by

Lp,λ(U) :=
{
u ∈ Lp (U) : [u]Lp,λ (U ) < ∞

}

and
‖u‖Lp,λ (U ) := ‖u‖Lp (U ) + [u]Lp,n (U ) .

Here the Campanato semi-norm is defined by

[u]Lp,λ (U ) := sup
x∈U,r>0

(
r−λ

ˆ
Br (x)∩U

|u − ūx,r |
p

)1/p

with
ūx,r :=

 
Br (x)∩U

u.

One can show that these spaces are all Banach spaces and it is very interesting and important to
study them in their own right. It is a simple but important observation that if λ > n, then

 
Br (x)∩U

|u − ux,r | ≤

( 
Br (x)∩U

|u − ux,r |
p

)1/p

≤ crα
(
rλ
ˆ
Br (x)∩U

|u − ux,r |
p

)1/p

≤ crα[u]Lp,λ (U )

for α := λ−n
p . This lies at the heart the following theorem.

Theorem 21.9. If α := λ−n
p > 0, then Lp,λ(U) � C0,α(Ū).

We prove this in two separate propositions.

Proposition 21.10. If α := λ−n
p > 0, then Lp,λ(U) ⊂ C0,α(Ū) and there is a constant c > 0 such

that for all u ∈ Lp,λ(U)
‖u‖C0,α (Ū ) ≤ c‖u‖Lp ,λ (U ) .

Proof. Suppose u ∈ Lp,λ(U). Note that a priori u is only in Lp and thus defined only almost
everywhere (or by a Cauchy sequence up to equivalence).

Step 1. There is a continuous function ū ∈ C0(Ū) such that

ū(x) := lim
i→∞

ux,ri

for ri := 2−i min{1, diam(U)}, and ū is a representative of u (i.e., it agrees with u almost everywhere).
Moreover, for some constant c > 0 not depending on u, we have

(21.11) |ū(x) − ux,r | ≤ crα[u]Lp,λ (U )
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Set ūi (x) := ux,ri . By basic properties of the integral, ūi ∈ C0(Ū). Now, we compute

|ux,ri+1 − ux,ri | ≤

 
Bri+1 (x)∩U

|u − ux,ri |

≤ c−1r−ni+1

ˆ
Bri

(x)∩U
|u − ux,ri |

≤ 2vol(B1)c−1
 
Bri

(x)∩U
|u − ux,ri |

≤ 2vol(B1)c−1 *
,

 
Bri

(x)∩U
|u − ux,ri |

p+
-

1/p

≤ 2vol(B1)c−(1+1/p) · r
λ−n
p

i
*
,
r−λi

ˆ
Bri

(x)∩U
|u − ux,ri |

p+
-

1/p

≤ 2vol(B1)c−(1+1/p) · rαi [u]Lp,λ (U ) .

The sequence rλi is Cauchy; hence, so is ux,ri . This means that ū is well-defined. It also follows that
(21.11) holds. Furthermore the right-hand side above does not depend on x, so this in fact shows
that ūi is a Cauchy sequence in C0(Ū). Thus ū ∈ C0(Ū).

The fact that ū represents u follows from the Lebesgue differentiation theorem.
In what follows we simply write u instead of ū.

Step 2. We have
‖u‖L∞ (Ū ) ≤ c‖u‖Lp ,λ (U )

for a constant c > 0 independent of u.

We compute, using (21.11),

‖u‖L∞ (Ū ) ≤ sup
x∈U
|ux,r0 | + sup

x∈U
|u(x) − ux,r0 |

≤ c
(
‖u‖Lp (U ) + [u]Lp,λ (U )

)
≤ c‖u‖Lp,λ (U ) .

Step 3. We have
[u]C0,α (Ū ) ≤ c[u]Lp ,λ (U )

for a constant c > 0 independent of u.

Suppose x, y ∈ Ū. Set r := |x − y |. Then, using (21.11)

|u(x) − u(y) | ≤ |u(x) − ux,2r | + |ux,2r − uy,r | + |uy,r − u(y) |

≤ crα[u]Lp,λ (U ) + |ux,2r − uy,r |.
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Finally,

|ux,2r − uy,r | ≤
 
Br (y)∩U

|ux,2r − u|

≤ c
 
B2r (x)∩U

|ux,2r − u|

≤ crα[u]Lp,λ (U ) .

�

Proposition 21.12. If α := λ−n
p > 0, there is a constant c > 0 such that

[u]Lp,λ (U ) ≤ c[u]C0,α (Ū ) .

In particular, C0,α(Ū) ⊂ Lp,λ(U).

Proof. We compute
ˆ
Br (x)∩U

|u − ux,r |
p ≤

ˆ
Br (x)∩U

 
Br (x)∩U

|u(z) − u(y) |p rdy dz

≤ crn+αp[u]p
C0,α (Ū )

.

�

In the next lecture, we will also need the following.

Proposition 21.13. Suppose u ∈ Lp (U) and v ∈ C0,α(U), then uv ∈ Lp,pα and

[uv]Lp,pα ≤ c‖u‖Lp · [v]C0,α .

Proof. This follows from
ˆ
Br (x)∩U

|u(v − v(x)) |p ≤ (rα[v]C0,α )p
ˆ
Br (x)∩U

|u|p .

and ˆ
Br (x)∩U

|(uv)x,r − u · v(x) |p

=

ˆ
Br (x)∩U

�����

 
Br (x)∩U

[(uv)(z) − u(y) · v(x)] dz
�����

p

dy

≤ (rα[v]C0,α )p
ˆ
Br (x)∩U

�����

 
Br (x)∩U

|u(z) − u(y) | dz
�����

p

dy.

�
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21.3 Morrey’s theorem

The above combines well, with the Neumann–Poincaré inequality which we restate here for general
p and in its scale invariant form.

Theorem 21.14 (Neumann–Poincaré inequality). There is a constant such that for all u ∈ C∞(Rn)
and all x ∈ Rn ˆ

Br (x)
|u − ux,r |

p ≤ crp
ˆ
Br (x)

|∇u|p .

Theorem 21.15 (Morrey’s inequality). If α = 1 − n
p > 0, then is a constant c > 0 such that

[u]C0,α (Ū ) ≤ c‖∇u‖Lp (U )

In particular, W 1,p (U) ↪→ C0,α(Ū).

Proof. Combine Theorem 21.9 and Theorem 21.14. �

We also need the following closely related result (whose proof is similar to our proof of the
Dirichlet–Poincaré inequality).

Theorem 21.16 (L2 Sobolev inequality). There is a constant c > 0 such that for all u ∈ W 1,2
0 (Br )

we have
‖u‖

L
2n
n−2
≤ c‖∇u‖L2 .
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22 Campanato estimates

22.1 Estimates for weak solutions

Proposition 22.1. Suppose A = (ai j ) is a (constant) symmetric positive definite matrix with
spec A ⊂ [λ,Λ] for 0 < λ ≤ Λ. Then there is a constant c = c(Λ/λ, n) > 0 such that the following
holds: For all u ∈ W 1,2(Br ) satisfyingˆ

Br

ai j (∂iu)(∂jφ) = 0

for all φ ∈ W 1,2
0 (Br ), and for all s < r we have

ˆ
Bs

|u|2 ≤ c
( s
r

)n ˆ
Br

|u|2

and ˆ
Bs

|u − us |2 ≤ c
( s
r

)n+2 ˆ
Br

|u − ur |2.

Moreover, u ∈ C∞(Br ).

Note that A is diagonalised by a matrix in SO(n) and by a further coordinate stretch we can
transform A into the identity matrix, that is, there is a T ∈ GL+(Rn) such that T ◦ A ◦ T∗ = 1.
Consequently u ◦ T is weakly harmonic on T (Br ); hence, it is smooth and thus so is u. This
observation allows us to reduce to the case A = 1.

Proof in the case A = 1. It suffices to consider r = 1 (by rescaling) and we can also restrict to
s ∈ (0, 1

4 ] (since for s > 1
4 the estimate is trivial).

We know that u is given by the representation formula (see Remark 16.7) for x ∈ B1/4 and
t ∈ (0, 3/4) we have

u(x) =
ˆ
∂Bt (x)

G(x − y)∂νu(y) − u(y)∂νG(x, y) dy

and thus by integrating t over [1/8, 1/4] and taking the supremum over x we get

‖u‖L∞ (B1/4) ≤ c‖u‖W 1,2 (B1/2) .

Now we want to estimate ‖u‖W 1,2 (B1/2). To do this pick a φ ∈ C∞0 (B1) which is equal to one on
B1/2. Then by u being harmonic we have

ˆ
B1

|φ∇u|2 ≤ −2
ˆ
B1

〈φ∇u, u∇φ〉

≤

ˆ
B1

1
2
|φ∇u|2 + 2|u∇φ|2.
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Cancelling the 1
2 |φ∇u|2 we get

(22.2)
ˆ
B1/2

|∇u|2 ≤ c
ˆ
B1

|u|2.

Thus
‖u‖W 1,2 (B1/2) ≤ c‖u‖L2 (B1) .

It follows that for s ≤ 1/4
ˆ
Bs

|u|2 ≤ csn‖u‖2L∞ (B1/4) ≤ csn
ˆ
B1

|u|2.

This proves the first estimate.
To prove the second estimate note that since u is harmonic, so are the components of ∇u.

Moreover, by the Neumann–Poincaré inequality and Equation 22.2
ˆ
Bs

|u − us |2 ≤ cs2
ˆ
Bs

|∇u|2

≤ csn+2
ˆ
B1/2

|∇u|2

≤ csn+2
ˆ
B1

|u − u1 |
2.

This completes the proof. �

22.2 Comparison estimates

Next we show that if u is close to a weak solution v then ∇u almost satisfies the estimate of
Proposition 22.1.

Proposition 22.3. Let u ∈ W 1,2(Br ) and let v ∈ W 1,2(Br ) be as in Proposition 22.1. Then for any
0 < s ≤ r we have

ˆ
Bs

|∇u|2 ≤ c
(( s

r

)n ˆ
Br

|∇u|2 +
ˆ
Br

|∇u − ∇v |2
)

and
ˆ
Bs

|∇u − (∇u)s |2 ≤ c
(( s

r

)n+2 ˆ
Br

|∇u − (∇u)r |2 +
ˆ
Br

|∇u − ∇v |2
)

where c = c(Λ/λ, n) > 0.
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Proof. Set w := u − v. Then by Proposition 22.1 for ∇v, we haveˆ
Bs

|∇u|2 ≤ 2
ˆ
Bs

|∇v |2 + |∇w |2

≤ c
( s
r

)n ˆ
Br

|∇v |2 + 2
ˆ
Br

|∇w |2

≤ c
( s
r

)n ˆ
Br

|∇u|2 + c
(
1 +

( s
r

)n) ˆ
Br

|∇w |2.

This gives the first estimate.
For the second we start with the following exercise.

Exercise 22.4. If U is an bounded open subset of Rn and f ∈ L2(U), thenˆ
U

| f − c|2

is minimal for c =
ffl
U f .

Now we computeˆ
Bs

|∇u − (∇u)s |2 ≤
ˆ
Bs

|∇u − (∇v)s |2

≤ 2
ˆ
Bs

|∇v − (∇v)s |2 + |∇w |2

≤ c
( s
r

)n+2 ˆ
Br

|∇v − (∇v)s |2 +
ˆ
Br

|∇w |2

≤ c
( s
r

)n+2 ˆ
Br

|∇u − (∇u)s |2 + c
(
1 +

( s
r

)n+2) ˆ
Br

|∇w |2.

�

22.3 Operators with variable coefficients

We now lift the restriction that ai j be constant and instead require that ai j ∈ L∞(U) and that there
are constant Λ, λ > 0 such that for all x ∈ U

spec A(x) ∈ [λ,Λ],

that is the operator
L = −

∑
i j

∂i (ai j∂j )

is uniformly elliptic. Again we say that u is a weak solution of

Lu = f −
∑
i

∂ihi
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for some f , hi ∈ L2(U) and for all φ ∈ W 1,2
0 (U) we have

(22.5)
∑
i j

ˆ
U

ai j (∂iu)(∂iφ) =
ˆ
U

f φ +
∑
i

ˆ
U

h∂iφ.

Proposition 22.6. Assume that ai j ∈ C0(Ū). Suppose u ∈ W 1,2(U) is a weak solution of Lu = f
and f ∈ Lp (U), h ∈ L2,n−2+2α with p ∈ (n/2, n) (that is α := 2 − n/p ∈ (0, 1)). Then u ∈ C0,α

loc (U).
Moreover, if V ⊂⊂ U there exists a constant c = (ai j,V, n) > 0 such that

‖u‖C0,α (V ) ≤ c
(
‖ f ‖Lp (U ) + ‖u‖W 1,2 (U ) + [h]L2,n−2+2α

)
.

Proof. If f = 0 and ai j were constant, then the assertion would follow (with arbitrary α ∈ (0, 1))
from Proposition 22.1 and Theorem 21.9. To be able to talk about the variations in ai j we introduce

ω(r) := sup{|ai j (x) − ai j (y) | : x, y ∈ U and |x − y | ≤ r }.

Now suppose B̄s (x) ⊂ B̄r (x) ⊂ U. (We can assume that r > 0 is very small.) Our goal is to
show that ˆ

Bs (x)
|∇u|2 ≤ csn−2+2α

(ˆ
U

|∇u|2 + ‖ f ‖2Lp

)
.

If we can achieve this, then the assertion follows from the Neumann–Poincaré inequality and
Theorem 21.9.

The idea for achieving this is to compare u to a solution of a constant coefficient equation with
the same boundary values.

Proposition 22.7. Denote by v ∈ W 1,2(Br (x)) the unique weak solution to

−
∑
i j

∂i (ai j (x)∂jv) = 0

satisfying u − v ∈ W 1,2
0 (Br (x)). Then

ˆ
Br (x)

|∇(u − v) |2 ≤ c
(
ω(r)2

ˆ
Br (x)

|∇u|2 + rλ[h]L2,λ + rn+2−2n/p ‖ f ‖2Lp

)
.

Proof. First we write (22.5) as∑
i j

ˆ
U

ai j (x)(∂iu)(∂jφ) = −
∑
i j

ˆ
U

(ai j (x) − ai j )(∂iu)(∂jφ)

−
∑
i

ˆ
U

hi∂iφ +
ˆ
B1

f φ.
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Denote by v ∈ W 1,2(Br (x)) the unique weak solution to

−
∑
i j

∂i (ai j (x)∂jv) = 0

satisfying w := u − v ∈ W 1,2
0 (Br (x)).

Now w satisfies∑
i j

ˆ
Br (x)

ai j (x)(∂iw)(∂iφ) = −
∑
i j

ˆ
Br (x)

(ai j (x) − ai j )(∂iu)(∂iφ)

−
∑
i

ˆ
Br (x)

hi∂iφ +
ˆ
B1

f φ.

for all φ ∈ W 1,2
0 (Br (x)). In particular for φ = w and using uniform ellipticity.

λ

ˆ
Br (x)

|∇w |2 ≤
∑
i j

ˆ
Br (x)

(|ai j (x) − ai j | |∂iu| + |h|) |∂iw | +
ˆ
Br (x)

| f | |v |

Note that∑
i j

ˆ
Br (x)

(|ai j (x) − ai j | |∂iu| + |h|) |∂iw | ≤
ˆ
Br (x)

λ

2
|∇w |2 + λ−1ω(r)2 |∇u|2 + rλ[h]2

L2,λ,

and by the Hölder inequality and the L2 Sobolev inequality (Theorem 21.16)

ˆ
Br (x)

| f | |w | ≤
(ˆ

Br (x)
| f |

2n
n+2

) n+2
2n

(ˆ
Br (x)

|w |
2n
n−2

) n−2
2n

≤

(ˆ
Br (x)

| f |
2n
n+2

) n+2
2n

(ˆ
Br (x)

|∇w |2
)1/2

≤ ε−1
(ˆ

Br (x)
| f |

2n
n+2

) n+2
n

+ ε

ˆ
Br (x)

|∇w |2.

Moreover, by the Hölder inequality(ˆ
Br (x)

| f |
2n
n+2

) n+2
n

≤ rn+2−2n/p
(ˆ

Br (x)
| f |p

)2/p

Putting all of this together we get for some constant c > 0,
ˆ
Br (x)

|∇w |2 ≤ c
(
ω(r)2

ˆ
Br (x)

|∇u|2 + rλ[h]L2,λ + rn+2−2n/p ‖ f ‖2Lp

)
.

�
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In our situation the above gives
ˆ
Br (x)

|∇w |2 ≤ c
(
ω(r)2

ˆ
Br (x)

|∇u|2 + rn−2+2α[h]L2,n−2+2α + rn−2+2α‖ f ‖2Lp

)
.

Thus by Proposition 22.3 we have for Bs (x) ⊂ Br (x)ˆ
Bs (x)

|∇u|2 ≤ c
(( s

r

)n
+ ω(r)2

) ˆ
Br (s)

|∇u|2 + crn−2+2α([h]L2,n−2+2α + ‖ f ‖2Lp )

This seems to be not good enough because the first term on the right-hand side still has the error
term ω(r)2 (although we can assume this to be very small) and in the second term we want to have
sn−2+2α instead of rn−2−2α. However, Lemma 22.8 shows that the above estimates does in fact imply
the desired estimate. �

Lemma 22.8. Let φ : [0, R] → [0,∞) be a non-decreasing function. Suppose there are constant
A, B, α, β > 0 and α > β such that for all 0 ≤ s ≤ r ≤ R we have

φ(s) ≤ A((s/r)α + ε) + Brβ .

Then there is a ε0 > 0 and c > 0 such that if ε ≤ ε0 then

φ(s) ≤ c(s/r)β (φ(r) + B).

Proof. Pick τ � 1 and ε0 � 1 such that

Aτα =
1
4
τβ and ετ−α ≤ 1.

Then for s = τr , we get

φ(τr) ≤
(

1
2
φ(r) +

B
τβ

r
)
τβ .

Thus

φ(τk+1r) ≤
(

1
2
φ(τkr) +

B
τβ
τkr

)
τβ

≤ *
,
φ(r) +

B
τβ

r
k∑
i=0

2−i+
-
τ(k+1)β

≤

(
φ(r) +

2Br
τβ

)
τ(k+1)β .

Now given s pick k such that τk+2r ≤ s ≤ τk+1r to get

φ(s) ≤
(
φ(r)/τβ +

2BR
τβ

)
(s/r)β .

�
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23 Higher Regularity

We continue with the setting of the last two lectures.

23.1 C1,α estimate

Proposition 23.1. Suppose u ∈ W 1,2(U) is a weak solution of Lu = f − ∂ihi , p > n and α := 1− n
p ,

ai j ∈ C0,α(Ū), f ∈ Lp (U), h ∈ L2,n+2α. Then ∇u ∈ C0,α
loc (U) and for each V ⊂⊂ U, there is a

constant c = c(ai j,V, n) > 0 such that

‖∇u‖C0,α (V̄ ) ≤ c
(
‖ f ‖Lp (U ) + [h]L2,n+2α (U ) + ‖u‖W 1,2 (U ) .

)
Proof. We can assume that V = B1/2 and U = B1. We will show that for x ∈ B1/2 and r > 0
sufficiently small we haveˆ

Br (x)
|∇u − (∇u)x,r |2 ≤ crn+2α

(
‖ f ‖2Lp (U ) + [h]L2,n+2α (U ) + ‖u‖

2
W 1,2 (U )

)
.

The assertion then follows from Theorem 21.9.
Suppose x ∈ B3/4 and r > 0 is small. (Note that B3/4 is larger than V . This is on purpose.) We

can write the equation in the form∑
i j

ˆ
U

ai j (x)(∂iu)(∂iφ) = −
∑
i j

ˆ
U

(ai j (x) − ai j )(∂iu)(∂iφ) +
ˆ
B1

f φ.

Denote by v ∈ W 1,2(Br (x)) the unique weak solution to

−
∑
i j

∂i (ai j (x)∂jv) = 0

satisfying w := u − v ∈ W 1,2
0 (Br (x)), as in Proposition 22.7. Then we know that

ˆ
Br (x)

|∇(u − v) |2 ≤ c
(
r2α[ai j]C0,α (B̄r (x))

ˆ
Br (x)

|u|2 + rn+2α(‖ f ‖2Lp + [h]2
L2,n+2α (U ))

)
.

Thus by Proposition 22.3 we have for Bs (x) ⊂ Br (x)

(23.2)
ˆ
Bs (x)

|∇u|2 ≤ c
(( s

r

)n
+ r2α[ai j]C0,α

) ˆ
Br (s)

|∇u|2 + crn+2α(‖ f ‖2Lp + [h]2
L2,n+2α (U ))

and ˆ
Bs (x)

|∇u − (∇u)x,s |2 ≤ c
( s
r

)n+2 ˆ
Br (s)

|∇u − (∇u)x,r |2

+ cr2α[ai j]C0,α

ˆ
Br (s)

|∇u|2

+ crn+2α(‖ f ‖2Lp + +[h]2
L2,n+2α (U ))

(23.3)
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If ai j is constant, then [ai j]C0,α = 0 and the above and Lemma 22.8 imply the assertion. If ai j is
not constant, we have to work a bit harder. What we need to do is to control

ˆ
Br (s)

|∇u|2.

We need to show that this terms is bounded by a constant times rn.
Using Lemma 22.8 and (23.2) we can show that for all δ > 0

ˆ
Bs (x)

|∇u|2 ≤ csn−2δ
(
‖∇u‖2

L2 + ‖ f ‖2Lp + +[h]2
L2,n+2α (U )

)
.

This means that if x ∈ V = B1/2 ⊂ B3/4, then
ˆ
Br (x)

|∇u|2 ≤ crn−2δ
(
‖∇u‖2

L2 + ‖ f ‖2Lp + [h]2
L2,n+2α (U )

)
.

Plugging this into (23.3) we get
ˆ
Bs (x)

|∇u − (∇u)x,s |2 ≤ c
( s
r

)n+2 ˆ
Br (s)

|∇u − (∇u)x,r |2

+ crn+2α−2δ
ˆ
B1

|∇u|2

+ crn+2α(‖ f ‖2Lp + [h]2
L2,n+2α (U ))

and using Lemma 22.8, we arrive at
ˆ
Bs (x)

|∇u − (∇u)x,s |2 ≤ csn+2α−2δ
(
‖∇u‖2

L2 + ‖ f ‖2Lp

)
.

This is not quite good enough. However, using Theorem 21.9 we derive that

‖∇u‖2L∞ (B3/4) ≤ c
(
‖∇u‖2

L2 + ‖ f ‖2Lp + [h]2
L2,n+2α (U )

)
;

hence, ˆ
Br (s)

|∇u|2 ≤ crn.

This completes the proof. �

23.2 Bootstrapping Ck,α estimates

Now differentiating Lu = f in the direction of xk we see that v := ∂ku is a weak solution of

Lv = ∂k f +
∑
i

∂ihi
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with h = (∂kai j∂ju) ∈ C0,α � L2,n+2α. (This particular point is we why introduced the seemingly
odd hi terms to begin with.) Applying Proposition 22.6 and Proposition 23.1 again, we learn that
∂ku ∈ C1,α (with concrete estimates) and by the regularity theory of ∆, in fact, ∂ku ∈ C2.

One can keep running this argument to show that in fact u ∈ C∞ and get concrete Ck,α estimates.

Proposition 23.4. Suppose u ∈ W 1,2(U) is a weak solution of Lu = f and ai j, f ∈ Ck,α(U). Then
u ∈ Ck+2,α

loc (U) and for each V ⊂⊂ U , there is a constant c = c(ai j,V, n) > 0 such that

‖u‖Ck+2,α (V̄ ) ≤ c
(
‖ f ‖Ck,α (U ) + ‖u‖W 1,2 (U ) .

)
23.3 Boundary estimates

One drawback of Proposition 23.5 is that we only have interior estimates. With some more work one
can show the following.

Proposition 23.5. Suppose u, ū ∈ Ck+2,α(Ū) with u|∂U = ū|∂U , ai j ∈ Ck,α(Ū) and ∂U is smooth.
Then

‖u‖Ck+2,α (Ū ) ≤ c
(
‖Lu‖Ck,α (Ū ) + ‖ū‖Ck+2,α + ‖u‖L2 (U )

)
.

Exercise 23.6. If ai j, bi, c ∈ C∞(Ū), and ai j is uniformly elliptic, then the estimate in Proposition 23.5
also holds for the differential operator

Lu := −
∑
i j

∂i (ai j∂ju) +
∑
k

bk∂ku + cu,

of course with a different constant.
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A Divergence Theorem

The Divergence Theorem is a higher dimensional analogue of the Fundamental Theorem of Calculus.
It and its various ramifications will be used repeatedly in this class.

Definition A.1. Let U be a open subset. The divergence of a differentiable vector-field v : U → Rn

is the function div v : U → R defined by

div v :=
n∑
i=1

∂ivi .

Here vi are the components of v.

TheoremA.2 (Divergence Theorem). LetU be a open subset withC1 boundary and let ν : ∂U → Rn

be the outward-pointing normal vector-field to ∂U. If v : Ū → Rn is a continuously differentiable
vector field, then ˆ

U

div v =
ˆ
∂U
〈v, ν〉 .

The expression 〈v, ν〉 denotes the inner product of the vector-fields v and ν.

Applying Theorem A.2 to the vector-field v := f g · ei, tells us how to integrate by parts in Rn.

Theorem A.3 (Integration by parts). Let U be a open subset with C1 boundary. If f , g : Ū → R
are C1 functions, then ˆ

U

(∂i f )g +
ˆ
U

f (∂ig) =
ˆ
∂U

f gνi

for each i = 1, . . . , n. Here νi denotes the i–th component of the outward-pointing normal vector
field ν.

We will frequently use the following identities, which follow directly from the preceeding
theorem.

Theorem A.4 (Green’s identities). Let U be a open subset with C1 boundary. If f , g : Ū → R are
C2 functions, then ˆ

U

(∆ f )g =
ˆ
U

〈∇ f ,∇g〉 −
ˆ
∂U

(∂ν f )g

and ˆ
U

(∆ f )g − f (∆g) =
ˆ
∂U

f (∂νg) − (∂ν f )g.

Here ∂ν f = 〈∇ f , ν〉 is the derivative of f in the direction of ν; similarly for ∂νg.
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B Metric spaces

Metric spaces are an abstraction of the notion of a space for which you can say how far any two
points are apart from each other. Some very basic results in the theory of metric spaces can already
be exploited to enormous profit for PDE, and this is why we introduce this seemingly unrelated
abstract concept here. (It is also very interesting to study metric spaces just by themselves, and there
is a surprising amount of theory. In this appendix, however, we are not even scraping the surface.)

DefinitionB.1. Ametric space is a pair (X, d) consisting of a set X and a function d : X×X → [0,∞),
often called the distance, such that for any x, y, z ∈ X we have

• d(x, y) = 0 if and only if x = y,

• d(x, y) = d(y, x), and

• d(x, z) ≤ d(x, y) + d(y, z).

Remark B.2. All of these axioms except the second one are very natural when talking about distances.
The second one, sometimes called symmetry, asserts that it takes as long to get from x to y as it takes
the other way around from y to x, and we all know cases where this is not a reasonable assumption
in real life. Nevertheless, symmetry is one of the axioms for a metric space.
Remark B.3. One often commits abuse of notation and talks about the metric space X , sweeping d
under the rug. This is usually acceptable, when d is clear from the context, but if you stumble across
a “metric space X” and have no idea what on earth d is supposed to be, then you have every right to
and should complain!

Let me give a list of important examples of metric spaces appearing throughout this class.

Example B.4. The space of real numbers R together with the function d : R × R→ [0,∞) defined
by

d(x, y) = |x − y |

constitute a metric space.

Exercise B.5. If (X1, d1) and (X2, d2) are metric spaces, then so is X := X1 × X2 together with

d ((x1, x2), (y1, y2)) := d(x1, y1) + d(x2, y2).

In particular, Rn is a metric space.

Example B.6. Given U ⊂ Rn, we set

Ck (U,Rm) := { f : U → Rm k times continuous differentiable}

and define d : Ck (U,Rm) × Ck (U,Rm) → [0,∞) by

d( f , g) :=
k∑
i=0

sup
x∈U
|∇i f (x) − ∇ig(x) |.

The pair (Ck (U,Rm), d) is a metric space. If m = 1, then we usually just write Ck (U).
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An important notion that metric spaces inherit from R is that of a limit.

Definition B.7. Let (X, d) be a metric space. We call x ∈ X the limit of the sequence (xn) ∈ XN if

lim
n→∞

d(x, xn) = 0.

In this case we write
x = lim

n→∞
xn.

Remark B.8. Note that the limit is unique, by the first axiom for metric spaces.

Definition B.9. Let (X, d) be a metric space. A sequence (xn) ∈ XN is called a Cauchy sequence if
for each ε > 0 there exist a m > 0 such that for all k, ` ≥ m we have

d(xk, x` ) < ε.

This means that the elements of (xn) get increasingly closer to each other as n goes to infinity.
Intuitively, one might think that every Cauchy sequence (xn) needs to have a limit because the points
get so close together that they really want to converge. Certainly, this is true in R, but general metric
spaces can be horrible, so we make a definition.

Definition B.10. A metric space (X, d) is called complete if every Cauchy sequence has a limit.

Example B.11. Q with the distance inherited from R is incomplete.

Exercise B.12. Prove that if Ū ⊂ Rn is compact, then C0(Ū,Rm) is complete. You can proceed
along the following lines: Suppose ( fn) is a Cauchy sequence.

1. Use the limits limn→∞ fn(x) to construct a map f : Ū → Rm.

2. Use the Cauchy property of ( fn) to show that limn→∞ d( f , fn) = 0.

3. Prove that f is continuous.

Exercise B.13. Let (X, d) be a metric space. Set

X̄ := {(xn) ⊂ XN Cauchy sequence }/ ∼

with (xn) ∼ (yn) if and only if
lim
n→∞

d(xn, yn) = 0,

and define d̄ : X̄ × X̄ → [0,∞) by

d̄ ((xn), (yn)) := inf
n∈N

d(xn, yn).

Show that (X̄, d̄) is a complete metric space.
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Definition B.14. Given a metric space (X, d), the metric space (X̄, d̄) is called the completion of
(X, d).

Example B.15. The completion of Q is R.

Example B.16. Suppose U is bounded. Consider the L2–distance on C0(Ū) defined by

dL2 ( f , g) :=
(ˆ

U

| f − g |2
)1/2

(C0(Ū), dL2 ) is not complete. It is easy to find a discontinuous, but integrable function f∞ and a
sequence of continuous functions converging to f∞ with respect to dL2 . (You may think this is really
bad, but in someway this is what makes Fourier series so powerful.)

The space L2(Ū) is the completion of (C0(Ū), dL2 ). If you take a class on measure theory (and
if you care about PDE, this is something you should do), then you will learn how to think about the
elements of L2(Ū). Roughly speaking they are functions on U , but you can only define their values
at “almost all” points of U.

Theorem B.17 (Banach’s Fixed Point Theorem). Let (X, d) be a complete metric space and
T : X → X a contraction, i.e., for some γ < 1 and each x, y ∈ X ,

d(T x,T y) < γd(x, y).

Then T has a unique fixed point x0 ∈ X .

This theorem underlies many PDE applications. It might seem very abstract at first, but (unlike
topological fixed point theorems) it is in fact constructive.

Exercise B.18. Prove Theorem B.17 along the following lines:

1. Use the contraction property of T to show that there is at most one fixed point.

2. Pick any x ∈ X . Consider the sequence (xn) := (Tnx). Prove that (xn) is Cauchy and use
completeness of X to extract the fixed point x0.

(What can you say about the rate of convergence in terms of γ?)

116



C Fourier Series on [0, 1]

DefinitionC.1. AHilbert space is a vector space H together with an inner product 〈·, ·〉 : H×H → R
such that the metric defined by

d(x, y) := ‖x − y‖ :=
√
〈x − y, x − y〉

makes (H, d) into a complete metric space.

Example C.2. The archetypal example of a Hilbert space is

`2 := {(ai) ∈ RN :
∞∑
i=1
|ai |2 < ∞}

with inner product

〈ai, bi〉`2 :=
∞∑
i=1

aibi .

Example C.3. The inner product

〈 f , g〉L2 :=
ˆ 1

0
f (x)g(x) dx

defined on C0([0, 1]) does not make C0([0, 1]) into a Hilbert space. The completion of C0([0, 1])
with respect to the metric induced by 〈·, ·〉L2 , which we denote by L2([0, 1]), however, is a Hilbert
space.

Remark C.4. One has to be a bit careful working with L2–spaces, since elements are not functions
but only equivalence classes of functions. Functions in the same equivalence class only differ on a
set of measure zero, so this problem is “mostly harmless”, but not entirely harmless. Note, however,
that the canonical maps C0([0, 1]) → L2([0, 1]) is injective and thus we can make statements like “a
certain f ∈ L2([0, 1]) is continuous”. What this means of course is that f can be represented by a
continuous function.

Definition C.5. An (countable) orthonormal basis of a Hilbert space (H, 〈·, ·〉) is a sequence
(ei)i∈N ∈ HN such that 〈

ei, e j
〉
= δi j :=




1 i = j
0 i , j

and, for every x ∈ H , 〈x, ei〉 = 0 for all i ∈ N if and only if x = 0.

Remark C.6. If H is not finite dimensional, then an orthonormal basis of the Hilbert space H is not
a basis of the vector space H , since not every element can be written as a finite linear combination.
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Proposition C.7. If (ei) is a orthonormal basis of a Hilbert space (H, 〈·, ·〉), then, for every x, y ∈ H ,
setting

ai := 〈x, f i〉 and bi := 〈y, f i〉

we have

x =
∞∑
i=1

aiei

and

〈x, y〉 =
∞∑
i=1

aibi .

The basic result of Fourier analysis on [0, 1] can be summarised as follows.

Theorem C.8. The sequence ( fn(x) :=
√

2 sin(nπx)) is an orthonormal basis of the Hilbert space
L2([0, 1]).

Definition C.9. If f ∈ L2([0, 1]), then the Fourier coefficients of f are the sequence (an) ∈ RN

defined by
an := 〈 f , fn〉

and the Fourier series is the expression
∞∑
n=1

an fn.

What makes this particular orthonormal basis so useful for us is the simple fact that

∆ fn = −∂2
x fn = (nπ)2 fn.

This means that the Laplace operator ∆ becomes diagonal in the orthonormal basis ( fn). Note,
however, that the eigenvalues do go to infinity; hence, ∆ is an unbounded linear operator.

There is a tight connection between the regularity of f and the rate of decay of the Fourier
coefficients.

Proposition C.10. Fix k ∈ N0 = {0, 1, 2, . . .}. If the Fourier coefficients of f ∈ L2([0, 1]) satisfy

(an) ∈ `1
k := {(bn) ∈ RN :

∞∑
n=1

nk |bn | < ∞},

then f ∈ Ck ([0, 1]) and

lim
N→∞


f −

N∑
n=1

an fn
Ck

= 0.

Here

‖ f ‖Ck :=
k∑
i=0

sup
x∈[0,1]

|∇i f (x) |.
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Exercise C.11. Prove this proposition. Here are some hints if you get stuck:

• What is ‖ fn‖Ck ?

• Show that
∑N

n=1 an fn is a Cauchy sequence in Ck ([0, 1]).

• Use that if g = limN→∞ gN in Ck ([0, 1]), then the same holds true in L2([0, 1]).

Exercise C.12. Define f ∈ L2([0, 1]) by

f (x) =



1 x ≤ 1/2
−1 x ≥ 1/2.

Show that the Fourier coefficients of f are

a4k+2 =
4
√

2
(4k + 2)π

and an = 0 if n , 2 mod 4. Show that

lim
N→∞

4N+2∑
n=1

an fn

(
1
2
−

1
4N + 2

)
= 2

ˆ 1

0

sin(πx)
πx

.

Remark. The right-hand side is approximately 1.18. Thus the partial sums of the Fourier expansion
overshoot by about 9% times the height of the discontinuity at 1/2. This is called the Gibbs
phenomenon.
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D Dominated Convergence Theorem

Let U be an open subset of Rn.

Theorem D.1 (Dominated Convergence Theorem). Let fn : U → R be a sequence of integrable
functions and f : U → R such that for all x ∈ U we have

f (x) = lim
n→∞

fn(x)

If there exists an integrable function g : U → R such that for all x ∈ U

| fn |(x) ≤ g(x),

then
lim
n→∞

ˆ
U

fn(x) dx =
ˆ
U

f (x) dx.

Proposition D.2. Let I be an interval in R. Let f : I ×U → R be such that f (t, ·) is integrable for
each t ∈ R and differentiable in the direction of t. If there exists an integrable function g : U → R
such that for all t ∈ I and x ∈ U

|∂t f |(t, x) ≤ g(x),

then the function F (t) : I → R defined by

F (t) :=
ˆ
U

f (t, x) dx

is differentiable and
∂tF (t) =

ˆ
U

∂t f (t, x) dx.

Exercise D.3. Prove Proposition D.2 using Theorem D.1. (Hint: Use the Intermediate Value
Theorem: For each x ∈ U, and t1, t2 ∈ I with t1 ≤ t2, there exist a t ∈ [t1, t2] such that
f (t1, x) − f (t2, x) = ∂t f (t, x).)
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