Differential Geometry IV Problem Set 1

Prof. Dr. Thomas Walpuski

2022-04-07

Due: 2022-04-27

(1) Let $n \in \mathbb{N}$. The ansatz $\not{D} = \sum_{i=1}^{n} \gamma_i \partial_{x_i}$ for the Dirac operator leads to system of algebraic equations

$$\gamma_i^2 = -1$$
 and $\gamma_i \gamma_j + \gamma_j \gamma_i = 0$.

This admits no solutions in R but it can be solved in complex matrices.

Find a solution for n = 1 and n = 2.

(2) Let *V* be a vector space with dim $V < \infty$. Let $b \in \text{Hom}(S^2V, \mathbb{R})$ by a symmetric bilinear form. Suppose that *b* is non-degenerate (that is: the induced map $V \to V^*, v \mapsto b(v, \cdot)$ is an isomorphism). Suppose that $W \subset V$ is isotropic (that is: the restriction of $b|_W \in \text{Hom}(S^2W, \mathbb{R})$ vanishes) and dim $W = \frac{1}{2} \dim V$.

Prove that the signature $\sigma(b)$ of *b* vanishes. (*Hint:* Use a basis of *W* and *b* to construct a basis of *V* in which *b* becomes particularly simple but not diagonal, then diagonalise.)

(3) Let *X* be a closed oriented manifold of dimension 4*k*. Prove that there is an intersection form $b_X \in \text{Hom}(S^2 H^{2k}_{dR}(X), \mathbb{R})$ satisfying $b_X([\alpha], [\beta]) = \int_X \alpha \wedge \beta$.

In particular, it makes sense to define $\sigma(X) \coloneqq \sigma(b_X)$.

- (4) Prove that $\sigma(X \times Y) = \sigma(X)\sigma(Y)$.
- (5) Let *Y* be a compact oriented manifold with boundary $\partial Y = X$. Suppose that dim X = 4k. Set $W := im(H_{dR}^{2k}(Y) \rightarrow H_{dR}^{2k}(X))$.

Prove that *W* is isotropic.

Prove that dim $W = \frac{1}{2}b^{2k}(X)$. (*Hint:* Try to assemble the long exact sequence of relative homology, Poincaré duality, and Poincaré–Lefschetz duality into a commutative diagram.) Prove that $\sigma(X) = 0$.

(6) Let *X* be a smooth manifold with dim X = 2n. Define $\varepsilon \in \text{End}(\Lambda T^*X \otimes \mathbb{C})$ by

 $\varepsilon \alpha \coloneqq i^{k(k-1)+n} * \alpha \quad \text{with} \quad k \coloneqq \deg \alpha.$

Prove that:

- (a) $\varepsilon^2 = 1$
- (b) $d + d^*$ and ε anti-commute.
- (7) Recall the Chern–Weil homomorphism (for example, from Differential Geometry III). Prove that the first L polynomial is $L_1 = \frac{1}{3}p_1$.