Differential Geometry IV Problem Set 2

Prof. Dr. Thomas Walpuski

2022-04-20

Due: 2022-05-04

(1) Let *I* be a finite-dimensional vector space. Set $V := I^* \oplus I$ and define the quadratic form $q: V \to k$ by

$$q(\alpha, v) \coloneqq \alpha(v).$$

Prove that

 $C\ell(q) \cong End(\Lambda I).$

(2) Let $q: V \to k$ be a quadratic form. Let $b \in \text{Hom}(V \otimes V, k)$. Set $v^{\flat}(w) \coloneqq b(v \otimes w)$. Define the algebra homomorphism $\Psi_b: TV \to \text{End}(TV)$ by

$$\Psi_b(v)x \coloneqq v \otimes x + i_{v^\flat}(x).$$

Define $\Theta_b \in \operatorname{End}(TV)$ by

 $\Theta_b(x) \coloneqq \Psi_b(x) \mathbf{1}.$

Prove the following result from the lectures.

Lemma 0.1. Let $b, b_1, b_2 \in \text{Hom}(V \otimes V, k)$.

(a) $\Theta_b : TV \to TV$ is uniquely characterised by $\Theta_b(1) = 1$ and

$$\Theta_b(v \otimes x) = v \otimes \Theta_b(x) + i_{v^{\flat}} \Theta_b(x)$$

for every $v \in V$ and $x \in TV$.

- (b) $\Theta_0 = \operatorname{id}_{TV} and \Theta_{b_1} \circ \Theta_{b_2} = \Theta_{b_1+b_2}$; in particular: Θ_b is an isomorphism.
- (c) $\Theta_b I_q \subset I_{q-Q(b)}$; in particular, Θ_b descends to a linear isomorphism

$$\theta_b \colon \mathrm{C}\ell(V,q) \to \mathrm{C}\ell(V,q-Q(b)).$$

The above is at the heart of the elegant construction of the symbol and quantisation maps due to Bourbaki.

(3) Prove Schur's Lemma.

- (4) Prove Frobenius' theorem on real division algebras.
- (5) Let A be an **R**-algebra. Let V be an A-module.
 - (a) Suppose that an isomorphism $\operatorname{End}_A(V) \cong \mathbb{C}$ exists. Does V have a "canonical" complex structure?
 - (b) Suppose that an isomorphism $\operatorname{End}_A(V) \cong \mathbf{H}$ exists. Does V have a "canonical" quaternionic structure?

Hint: Of course, you first have to make precise what you want "canonical" to mean. The answers are not the same for C and H.