Differential Geometry IV Problem Set 3

Prof. Dr. Thomas Walpuski

2022-04-27

Due: 2022-05-11

The purpose of this exercise is to go through the computation of Cℓ_r in [Roe98, p. 59]. Denote by e₁,..., e_r the standard orthonormal basis of ⟨1⟩^{⊥r}. Consider the subgroup G_r < Cℓ[×]_r consisting of elements of the form

$$\pm e_1^{i_1}\cdots e_r^{i_r}$$

with $i_j \in \{0, 1\}$. Denote the element $-1 \in G_r$ by ν . Denote by $\omega = e_1 \cdots e_r \in \mathbb{C}\ell_r$ the volume element.

- (a) Prove the restriction bijection between $\mathbb{C}\ell_r$ -modules and representations of G_r in which ν acts as -1.
- (b) Prove that there are precisely 2^r irreducible representations of G_r in which v acts as +1.

Hint: Since $v \in Z(G_r)$ and $v^2 = 1$, it acts as ± 1 for any irreducible representation of G_r . The representations on which it acts as +1 are actually representations of $G_r/\langle v \rangle$. What can you say about the latter group?

(c) Prove that the center $Z(G_r)$ of G_r is

$$Z(G_r) = \begin{cases} \{1, \nu\} & \text{if } r \text{ is even} \\ \{1, \nu, \omega, \nu\omega\} & \text{if } r \text{ is odd.} \end{cases}$$

- (d) Let $g \in G_r$. Prove that the conjugacy class of (g) is $\{g\}$ if $g \in Z(G_r)$ and $\{g, vg\}$ otherwise.
- (e) Prove that the number of conjugacy classes of elements of G_r is

$$\begin{cases} 2^r + 1 & \text{if } r \text{ is even} \\ 2^r + 2 & \text{if } r \text{ is odd.} \end{cases}$$

(f) Prove that G_r has one (two) irreducible representation in which v acts as -1 if r is even (odd).

Denote these by Δ and Δ^{\pm} respectively.

- (g) Suppose that *r* is even. Prove that dim $\Delta = 2^{r/2}$ and derive that $C\ell_r \cong M_{r/2}(C)$.
- (h) Suppose that *r* is odd. Prove that dim $\Delta^{\pm} = 2^{\lfloor r/2 \rfloor}$ and derive that $C\ell_r \cong M_{\lfloor r/2 \rfloor}(C) \oplus M_{\lfloor r/2 \rfloor}(C)$.
- (2) Let *q* be a non-degenerate quadratic form. Prove that $C\ell(q)$ is supercentral.
- (3) Let q be a non-degenerate quadratic form. Prove that $C\ell(q)$ is supersimple.

References

[Roe98] J. Roe. Elliptic operators, topology and asymptotic methods. Second. Pitman Research Notes in Mathematics Series 395. Longman, Harlow, 1998, pp. ii+209. MR: 1670907 (cit. on p. 1)