Differential Geometry IV Problem Set 6

Prof. Dr. Thomas Walpuski

- (1) Prove the Riemann–Lebesque-Lemma.
- (2) Prove that $e^{-|x|^2} \sin(|x|^2)$ is not a Schwartz function.
- (3) A smooth map $f \in C^{\infty}(\mathbb{R}^n, \mathbb{C})$ has moderate growth if for every $\alpha \in \mathbb{N}_0$ there is a $k = k(\alpha) \in \mathbb{N}_0$ such that

$$\sup \frac{|\partial^{\alpha} f(x)|}{(1+|x|^2)^k} < \infty.$$

Denote the ring of smooth functions of moderate growth by O_M^n . Observe, that $\mathcal{S}(\mathbf{R}^n, V)$ is an O_M^n -module. Prove the following:

Proposition 0.1. Let $f : \mathbb{R}^n \to \mathbb{C}$ be measureable. If for every $\phi \in \mathcal{S}(\mathbb{R}^n, V)$ also $f\phi \in \mathcal{S}(\mathbb{R}^n, V)$, then $f \in O^n_M$ and the endomorphism of $f : \mathcal{S}(\mathbb{R}^n, V) \to \mathcal{S}(\mathbb{R}^n, V)$ is continuous, then $f \in O^n_M$.

(4) Prove the following:

Theorem 0.2 (Poisson summation formula). For every $f \in S(\mathbf{R})$

$$\sum_{k \in \mathbf{Z}} f(k) = \sum_{\xi \in \mathbf{Z}} \hat{f}(\xi).$$

(5) (a) The heat kernel \tilde{h}_t on **R** satisfies

$$\tilde{h}_t(x) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/4t}.$$

Derive a formula for the heat kernel h_t on $S^1 = \mathbf{R}/\mathbf{Z}$ from this.

- (b) (Formally) derive a formula for h_t using Fourier series.
- (c) Explain the relation between the two formulae for h_t .