Differential Geometry IV Problem Set 7

Prof. Dr. Thomas Walpuski

2022-06-10

(1) Let $A \in M_n(\mathbf{R})$ be symmetric and positiv definite. Define $f \in \mathcal{S}(\mathbf{R}^n, \mathbf{C})$ by

$$
f(x) \coloneqq e^{-\pi \langle Ax, x \rangle}
$$

Prove that its Fourier transform \hat{f} satisfies

$$
\hat{f}(\xi) = \det A^{-1/2} e^{-\pi \langle A^{-1}\xi, \xi \rangle}!
$$

(2) Set $\mathfrak{H} := \{ \tau \in \mathbf{C} : \text{Im } \tau > 0 \}$. Let $\Lambda \subset \mathbf{R}^n$ be a lattice. Define $\theta_\Lambda : \mathfrak{H} \to \mathbf{C}$ by

$$
\theta_\Lambda(\tau) \coloneqq \sum_{\lambda \in \Lambda} e^{\pi i \tau |\lambda|^2}
$$

.

Define r_{Λ} : $[0, \infty) \rightarrow N_0$ by

$$
r_{\Lambda}(m) := \#\{\lambda \in \Lambda : |\lambda|^2 = m\}.
$$

The theta function has the Fourier expansion

$$
\theta_\Lambda(\tau)=\sum_{m\in[0,\infty)}r_\lambda(m)q^m\quad\text{with}\quad q:=e^{\pi i\tau}.
$$

The numbers $m_0 := \{ m \in (0, \infty) : r_\lambda(m) \neq 0 \}$ and $r_0 := r_\Lambda(m_0)$ are particular interest. They are the square of the length of the shortest non-zero $\lambda \in \Lambda$ and the number of shortest elements respectively. For $\Lambda = \mathbb{Z}^n$, $r_{\Lambda}(k)$ is the number of ways in which k can be written as a sum of n squares.

The dual lattice $\Lambda^* \subset \mathbb{R}^n$ is defined by

$$
\Lambda^* := \{ \mu \in \mathbb{R}^n : \langle \mu, \lambda \rangle \in \mathbb{Z} \text{ for every } \lambda \in \Lambda \}.
$$

Prove that

$$
\theta_{\Lambda^*}(-1/\tau) = \left(\frac{\tau}{i}\right)^{n/2} \text{vol}(\mathbf{R}^n/\Lambda) \theta_\Lambda(\tau)!
$$

Here the square root $\sqrt{\cdot}:\ -i\mathfrak{H}\to \mathsf{C}$ is such that $\sqrt{(0,\infty)}\subset (0,\infty).$ Moreover, $\mathrm{vol}(\mathbf{R}^n/\Lambda)$ is computed with respect to the Riemannian metric induced by the Euclidean metric.

[Hint: Choose a basis (e_1, \ldots, e_n) of Λ . Define the positive definite matrix $A = (a_{ij}) \in$ $M_n(\mathbf{R})$ by $a_{ij} \coloneqq \langle e_i, e_j \rangle$. Define $f \in \mathcal{S}(\mathbf{R}^n)$ by

$$
f(x) \coloneqq e^{-\pi t \left| \sum_{a=1}^{n} x_a e_a \right|^2} = e^{-\pi \langle t A x, x \rangle}
$$

Compute \hat{f} and apply. Apply the Poisson summation formula (and rearrange what needs to be rearranged.) This should prove the formula for $\tau = it$ with $t > 0$. Apply unique continuation.]

(3) Let Λ be such that $\Lambda^* = \Lambda$ (selfdual) and $|\Lambda|^2 \subset 2\mathbb{Z}$ for every $\lambda \in \Lambda$ (even). Prove that *n* must be a multiple of 8.

[Hint: The modular group $SL_2(\mathbb{Z})$ acts on $\mathfrak H$ by Möbius transformations

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \tau := \frac{a\tau + b}{c\tau + d}.
$$

Moreover, it is generated by

$$
S := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.
$$

Since Λ is even, θ_{Λ} is invariant under *T*. Since selfdual and even,

$$
\theta_{\Lambda}(S\tau) = \left(\frac{\tau}{i}\right)^{n/2} \theta_{\Lambda}(\tau).
$$

If 8 $\nmid n$, then (possibly after passing to $\Lambda^{\oplus 2}$ or $\Lambda^{\oplus 4}$) $n=4$ mod 8. Consider $\omega_{\Lambda}\coloneqq \theta_\Lambda(\mathrm{d}z)^{n/4}$. Compute the action of *ST* on ω_{Λ} . Prove that $(ST)^3 = 1 \in SL_2(\mathbb{Z})$.]

Remark. The above (almost) shows that θ_{Λ} is a modular form of weight $n/2$. The space of modular forms of weight 4 and 8 is 1–dimensional (and spanned by the Eisenstein series, whose Fourier expansion is known). This allows one to determine r_{Λ} in these cases. \bullet

(4) Fourier transform of $\Delta f = q$ is

$$
4\pi^2|\xi|^2\hat{f}=\hat{g}.
$$

Therefore,

$$
\hat{f} = (4\pi^2 |\xi|^2)^{-1} \hat{g}.
$$

(The fact that $(4\pi^2|\xi|^2)^{-1}$ is singular at the origin causes a headache, but let's not be deterred.) If

$$
G(x) := \mathcal{F}^{-1}((4\pi^2|\xi|^2)^{-1}),
$$

then (formally) $f = G * g$. The function G is the Green kernel (of Δ). Compute a formula for G!

(Hint: $1/a = \int_0^\infty e^{-ta} dt$.)

(5) An analogous discussion for $(1 + \Delta) f = g$ leads to the Bessel kernel

$$
G_2 \coloneqq \mathcal{F}^{-1} (1 + \left(4\pi^2 |\xi|^2 \right)^{-1}).
$$

Compute a formula for $G_2!$