Differential Geometry IV Problem Set 7

Prof. Dr. Thomas Walpuski

2022-06-10

(1) Let $A \in M_n(\mathbb{R})$ be symmetric and positiv definite. Define $f \in \mathcal{S}(\mathbb{R}^n, \mathbb{C})$ by

 $f(x) \coloneqq e^{-\pi \langle Ax, x \rangle}$

Prove that its Fourier transform \hat{f} satisfies

$$\hat{f}(\xi) = \det A^{-1/2} e^{-\pi \langle A^{-1}\xi,\xi\rangle}!$$

(2) Set $\mathfrak{H} := \{ \tau \in \mathbb{C} : \operatorname{Im} \tau > 0 \}$. Let $\Lambda \subset \mathbb{R}^n$ be a lattice. Define $\theta_{\Lambda} : \mathfrak{H} \to \mathbb{C}$ by

$$\theta_{\Lambda}(\tau) \coloneqq \sum_{\lambda \in \Lambda} e^{\pi i \tau |\lambda|^2}.$$

Define r_{Λ} : $[0, \infty) \rightarrow \mathbf{N}_0$ by

$$r_{\Lambda}(m) \coloneqq \#\{\lambda \in \Lambda : |\lambda|^2 = m\}.$$

The theta function has the Fourier expansion

$$\theta_{\Lambda}(\tau) = \sum_{m \in [0,\infty)} r_{\lambda}(m) q^m \quad \text{with} \quad q \coloneqq e^{\pi i \tau}.$$

The numbers $m_0 := \{m \in (0, \infty) : r_\lambda(m) \neq 0\}$ and $r_0 := r_\Lambda(m_0)$ are particular interest. They are the square of the length of the shortest non-zero $\lambda \in \Lambda$ and the number of shortest elements respectively. For $\Lambda = \mathbb{Z}^n$, $r_\Lambda(k)$ is the number of ways in which k can be written as a sum of n squares.

The **dual lattice** $\Lambda^* \subset \mathbf{R}^n$ is defined by

$$\Lambda^* \coloneqq \{\mu \in \mathbf{R}^n : \langle \mu, \lambda \rangle \in \mathbf{Z} \text{ for every } \lambda \in \Lambda \}.$$

Prove that

$$\theta_{\Lambda^*}(-1/\tau) = \left(\frac{\tau}{i}\right)^{n/2} \operatorname{vol}(\mathbf{R}^n/\Lambda)\theta_{\Lambda}(\tau)!$$

Here the square root $\sqrt{\cdot}: -i\mathfrak{H} \to \mathbb{C}$ is such that $\sqrt{(0,\infty)} \subset (0,\infty)$. Moreover, $\operatorname{vol}(\mathbb{R}^n/\Lambda)$ is computed with respect to the Riemannian metric induced by the Euclidean metric.

[Hint: Choose a basis (e_1, \ldots, e_n) of Λ . Define the positive definite matrix $A = (a_{ij}) \in M_n(\mathbb{R})$ by $a_{ij} \coloneqq \langle e_i, e_j \rangle$. Define $f \in \mathcal{S}(\mathbb{R}^n)$ by

$$f(x) \coloneqq e^{-\pi t \left|\sum_{a=1}^{n} x_a e_a\right|^2} = e^{-\pi \langle tAx, x \rangle}$$

Compute \hat{f} and apply. Apply the Poisson summation formula (and rearrange what needs to be rearranged.) This should prove the formula for $\tau = it$ with t > 0. Apply unique continuation.]

(3) Let Λ be such that $\Lambda^* = \Lambda$ (selfdual) and $|\Lambda|^2 \subset 2\mathbb{Z}$ for every $\lambda \in \Lambda$ (even). Prove that *n* must be a multiple of 8.

[Hint: The modular group $SL_2(Z)$ acts on \mathfrak{H} by Möbius transformations

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \tau \coloneqq \frac{a\tau + b}{c\tau + d}$$

Moreover, it is generated by

$$S := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Since Λ is even, θ_{Λ} is invariant under *T*. Since selfdual and even,

$$\theta_{\Lambda}(S\tau) = \left(\frac{\tau}{i}\right)^{n/2} \theta_{\Lambda}(\tau)$$

If $8 \nmid n$, then (possibly after passing to $\Lambda^{\oplus 2}$ or $\Lambda^{\oplus 4}$) $n = 4 \mod 8$. Consider $\omega_{\Lambda} \coloneqq \theta_{\Lambda} (dz)^{n/4}$. Compute the action of *ST* on ω_{Λ} . Prove that $(ST)^3 = \mathbf{1} \in \mathrm{SL}_2(\mathbb{Z})$.]

Remark. The above (almost) shows that θ_{Λ} is a modular form of weight n/2. The space of modular forms of weight 4 and 8 is 1–dimensional (and spanned by the Eisenstein series, whose Fourier expansion is known). This allows one to determine r_{Λ} in these cases.

(4) Fourier transform of $\Delta f = g$ is

$$4\pi^2 |\xi|^2 \hat{f} = \hat{g}.$$

Therefore,

$$\hat{f} = (4\pi^2 |\xi|^2)^{-1} \hat{g}.$$

(The fact that $(4\pi^2|\xi|^2)^{-1}$ is singular at the origin causes a headache, but let's not be deterred.) If

$$G(x) \coloneqq \mathscr{F}^{-1}(\left(4\pi^2|\xi|^2\right)^{-1}),$$

then (formally) f = G * g. The function *G* is the **Green kernel (of** Δ **)**. Compute a formula for *G*!

(Hint: $1/a = \int_0^\infty e^{-ta} dt$.)

(5) An analogous discussion for $(1 + \Delta)f = g$ leads to the **Bessel kernel**

$$G_2 \coloneqq \mathscr{F}^{-1}(1 + \left(4\pi^2 |\xi|^2\right)^{-1}).$$

Compute a formula for G_2 !