Differential Geometry IV Problem Set 8

Prof. Dr. Thomas Walpuski

2022-06-15

- (1) This exercise is concerned with (a version of the) trace theorem.
	- (a) Define $\iota: \mathbb{R}^{n-1} \to \mathbb{R}^n$ by $\iota(x) := (0, x)$. Define the restriction map res: $\mathcal{S}(\mathbb{R}^n) \to$ $\mathcal{S}(\mathbf{R}^{n-1})$ by

$$
res(f) \coloneqq f \circ \iota.
$$

Define the integration map $I: S(\mathbf{R}^n) \to S(\mathbf{R}^{n-1})$ by

$$
(If)(x) \coloneqq \int_{\mathbf{R}} f(w, x) \, dx.
$$

Prove that for every $f \in \mathcal{S}(\mathbf{R}^n)$

$$
\widehat{\operatorname{res}(f)} = I\widehat{f}
$$

(b) Let $s > \frac{1}{2}$ $\frac{1}{2}$. Prove that there is a constant $c = c(s) > 0$ such that for every $R \ge 0$

$$
\int_{\mathbf{R}} \frac{\left(1+R^2\right)^{s-\frac{1}{2}}}{\left(1+\eta^2+R^2\right)^s} \, \mathrm{d}\eta \leq c.
$$

(c) Prove the following.

Theorem 0.1 (Trace Theorem). Let $s > \frac{1}{2}$ $\frac{1}{2}$. The restriction map res: $\mathcal{S}(\mathbf{R}^n) \rightarrow$ $\mathcal{S}(\mathbf{R}^{n-1})$ extends to bounded operator res: $W^{s,2}(\mathbf{R}^n) \to W^{s-\frac{1}{2},2}(\mathbf{R}^{n-1})$.

- (d) Assume $s > \frac{1}{2}$ $\frac{1}{2}$. Is res: $W^{s,2}(\mathbf{R}^n) \to W^{s-\frac{1}{2},2}(\mathbf{R}^{n-1})$ surjective?
- (e) Does the trace theorem hold for $s = \frac{1}{2}$ $rac{1}{2}$?
- (2) Let $p \in \text{Hom}(S^k(\mathbb{R}^n)^*, \text{Hom}(V, W))$. Consider the formal differential operator $D :=$ $p(\partial)$: $R[x_1, \ldots, x_n] \otimes V \to R[x_1, \ldots, x_n] \otimes W$. Suppose that p is elliptic. Prove that D is is surjective.
- (3) Compute the symbols of $d + d^* \colon \Omega(X) \to \Omega(X)$, $\Delta \colon \Omega(X) \to \Omega(X)$, and of a Dirac operator.
- (4) This exercise is concerned with Ehrling's Lemma and a simple applications to Sobolev interpolation.
	- (a) Prove the following.

Lemma 0.2 (Ehrling's Lemma). Let X, Y, Z be Banach spaces. Let $K: X \rightarrow Y$ be a compact operator. Let $I: Y \rightarrow Z$ be an injective operator. For every $\varepsilon > 0$ there is a constant $c(\varepsilon) > 0$ such that for every $x \in X$

$$
||Kx||_Y \le \varepsilon ||x||_X + c(\varepsilon) ||IKx||_Z.
$$

(b) The Rellich theorem asserts that for every bounded open subset $\Omega \subset \mathbb{R}^n$ the inclusion $W^{k,2}(\Omega) \subset W^{\ell,2}(\Omega)$ is compact if $k > \ell$. We only need this for the cube $Q \coloneqq (0,1)^n$. Prove that for every $\varepsilon > 0$ there is a constant $c_0(\varepsilon) > 0$ such that for every $f \in$ $W^{2,2}(Q)$

$$
||f||_{W^{1,2}} \leq \varepsilon ||f||_{W^{2,2}} + c_0(\varepsilon) ||f||_{L^2}.
$$

(c) Prove that for every $\varepsilon > 0$ there is a constant $c_1(\varepsilon) > 0$ such that for every $f \in$ $W^{2,2}({\bf R}^n)$

$$
\|\nabla f\|_{L^2} \le \|\nabla^2 f\|_{L^2} + c_1(\varepsilon)\|f\|_{L^2}.
$$

(d) By considering $f_r(x) := f(x)$ prove that for every $f \in W^{2,2}(\mathbb{R}^n)$ and $r > 0$

$$
\|\nabla f\|_{L^2} \leq r \|\nabla^2 f\|_{L^2} + c_2 r^{-1} \|f\|_{L^2}.
$$

(This holds although Rellich's theorem does not apply with $\Omega = \mathbb{R}^n$.

(e) Prove that for every $f \in W^{2,2}(\mathbf{R}^n)$ and $r > 0$

$$
\|\nabla f\|_{L^2} \leq c_3 \|\nabla^2 f\|_{L^2}^{1/2} \|f\|_{L^2}^{1/2}.
$$

(These multiplicative forms of the the interpolation inequality are usually the most powerful versions.)

(f) Prove that $c_0(\varepsilon)$ can be taken to be $c_4\varepsilon^{-1}$.