Differential Geometry IV Problem Set 9

Prof. Dr. Thomas Walpuski

2022-06-27

(1) Consider a smooth quartic Q in $\mathbb{C}P^3$; that is: Q is the zero locus of a transverse $s \in \mathrm{H}^0(\mathcal{O}_{\mathbb{C}P^3}(4))$. Q is a K3 surface (or "the" K3 surface if you consider them as smooth 4-manifolds only.)

Determine the canonical bundle \mathcal{K}_Q and prove that Q admits a spin structure.

Prove that index $D^+ = 2$ (and, therefore, $\sigma(Q) = -16$.

- (2) Let *X* be a closed spin 4-manifold. Let *E* be a Hermitian vector bundle with a unitary connection. Compute index $(D^+: \Gamma(S^+ \otimes E) \to \Gamma(S^- \otimes E))$ in terms of $\sigma(X)$, $c_1(E)$ and $c_2(E)$.
- (3) Let X be a closed 2n-manifold with a spin^{U(1)} structure. Determine index D^+ : $\Gamma(S^+) \rightarrow \Gamma(S^-)$ in terms of $\hat{A}(TX)$ and the characteristic classes of the characteristic line bundle L (the complex line bundle determined by $\operatorname{Spin}_{2n}^{U(1)} \rightarrow U(1)$).
- (4) Let X be a closed oriented 4–manifold. Let V be a oriented rank r Euclidean vector bundle equipped with a connection A. Consider $\delta_A \colon \Omega^1(X, V) \to \Omega^0(X, V) \to \Omega^+(X, V)$ defined by

$$\delta_A \alpha \coloneqq (\mathrm{d}_A^* \alpha, \mathrm{d}_A^+ \alpha).$$

Figure out how to regard δ_A as a Dirac operator.

Determine index δ_A [in terms of $p_1(V)$ and the (refined) Betti numbers of X].