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These notes are not set in stone. Please, help improve them. If you nd any typos or mistakes, let
me know. If there are any examples or results you are particularly fond of and you think they should
be in the notes, let me know and I will add them. If you have any other suggestions for improvement,
please, also let me know.

Exercises. There are exercises in these notes. Some of them are formally stated as such, but many

are parts of proofs left for you to ll in. Please, do these exercises (or at the very least attempt to

do them). They are an important part of you learning this material.

Conventions.

• N = {1, 2, . . .}, N0 = {0} ∪ N.

• We write 𝑋 �𝑛
for 𝑋 � · · · �𝑋︸       ︷︷       ︸

𝑛

for � = ×, ⊕, ⊗,∧, . . .. If � is absolutely clear from the context,

we might omit it; but usually only write 𝑋𝑛 if 𝑋 is a number, e.g., 2
3
.

• If 𝑅 is ring, then𝑀𝑛 (𝑅) denotes the set of 𝑛 × 𝑛–matrices with entries in 𝑅. 𝑀𝑛 (𝑅) acts on
𝑅⊕𝑛

on the left (right) by matrix-multiplication.

• 𝑘 is eld of characteristic not equal to two. Usually 𝑘 = R or 𝑘 = C.
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Why Cliord algebras?

The starting point of Spin Geometry is the following question.

Question 0.1. On R𝑛+1 can we write the wave operator

� = 𝜕2𝑡 −
𝑛∑︁
𝑖=1

𝜕2𝑥𝑖

as a square

� = /𝐷2

?

Remark 0.2. Dirac [Dir28] came across this question when trying to nd a relativistic theory of

the electron.

The premise of this course is that this question and its analogue for the Laplace operator
Δ = −∑𝑛

𝑖=1 𝜕
2

𝑥𝑖
, anything that helps answer this question, and anything that arises from studying this

question is inherently interesting.
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If 𝑛 = 0, the answer is obviously yes. If 𝑛 = 1, we make the ansatz

/𝐷 = 𝛾0𝜕𝑡 + 𝛾1𝜕𝑥
with 𝛾0 and 𝛾1 constant. The equation

� = /𝐷2

amounts to

(0.3) 𝛾2
0
= 1, 𝛾0𝛾1 + 𝛾1𝛾0 = 0, and 𝛾2

1
= −1.

Exercise 0.4. (0.3) has no solution with 𝛾0, 𝛾1 ∈ R (or even C).

However, (0.3) does have a solution inM2(R):

𝛾0 =

(
0 1

1 0

)
and 𝛾1 =

(
0 −1
1 0

)
.

In fact, it is not terribly dicult to nd matrices 𝛾𝑖 by hand such that(
𝛾0𝜕𝑡 −

𝑛∑︁
𝑖=1

𝛾𝑖𝜕𝑥𝑖

)
2

= �.

The theory of Cliord algebras answers the question: given a symmetric matrix (𝑞𝑖 𝑗 ) ∈ R, how
does one nd universal matrices 𝛾𝑖 such that

𝛾𝑖𝛾 𝑗 + 𝛾 𝑗𝛾𝑖 = 𝑞𝑖 𝑗?

1 Multilinear algebra

The rst part of the class will be concerned with Cliord algebras and their representation theory.

This part is rather algebraic in nature. Maybe, more algebraic than one would expect for a

geometry class. In order to warm up, we will review some constructions from multi-linear algebra,

in particular, the tensor algebra, the alternating algebra and the symmetric algebra of a vector

space 𝑉 over a eld 𝑘 .

Let 𝑘 be a eld. Throughout this section, all vector spaces are taken to be vector spaces over

this eld. All of the following can be vastly generalized.

1.1 The tensor product

Denition 1.1. Let 𝑉1, . . . ,𝑉𝑟 and𝑊 be vector spaces. A map 𝑀 : 𝑉1 × · · · × 𝑉𝑟 → 𝑊 is called

multi-linear if for each 𝑖 = 1, . . . , 𝑟 and each (𝑣1, . . . , . . . , 𝑣𝑟 ) ∈ 𝑉1 × · · · × 𝑉𝑟 the map 𝑉𝑖 → 𝑊

dened by

𝑣 ↦→ 𝑀 (𝑣1, . . . , 𝑣𝑖−1, 𝑣, 𝑣𝑖+1, . . . , 𝑣𝑟 )

is linear.

Denote byMult(𝑉1, . . . ,𝑉𝑟 ;𝑊 ) the vector space of multi-linear maps from 𝑉1 × · · · ×𝑉𝑟 to𝑊
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Proposition 1.2 (Construction and universal property of the tensor product). Let 𝑉1, . . . ,𝑉𝑟 be
vector spaces.

1. Denote by 𝑘 〈𝑉1 × · · · ×𝑉𝑟 〉 the free vector space generated by the set𝑉1 × · · · ×𝑉𝑟 . Let 𝑅 be the
linear subspace spanned by elements of the form

(𝑣1, . . . , 𝑣𝑖−1, 𝑣𝑖 + 𝜆𝑣 ′𝑖 , 𝑣𝑖−1, . . . , 𝑣𝑟 )
− (𝑣1, . . . , 𝑣𝑖−1, 𝑣𝑖 , 𝑣𝑖−1, . . . , 𝑣𝑟 ) − 𝜆(𝑣1, . . . , 𝑣𝑖−1, 𝑣 ′𝑖 , 𝑣𝑖−1, . . . , 𝑣𝑟 ) .

Set

(1.3) 𝑉1 ⊗ · · · ⊗ 𝑉𝑟 ≔ 𝑘 〈𝑉1 × · · · ×𝑉𝑟 〉/𝑅.

The map 𝜇 : 𝑉1 × · · · ×𝑉𝑟 → 𝑉1 ⊗ · · · ⊗ 𝑉𝑟 dened by

(1.4) 𝜇 (𝑣1, . . . , 𝑣𝑟 ) ≔ [(𝑣1, . . . , 𝑣𝑟 )] .

is multi-linear.

2. The pair (𝑉1 ⊗ · · · ⊗ 𝑉𝑟 , 𝜇) satises the following universal property. For any vector space𝑊 ,
the map

(1.5) Hom(𝑉1 ⊗ · · · ⊗ 𝑉𝑟 ,𝑊 ) → Mult(𝑉1, . . . ,𝑉𝑟 ;𝑊 ), ˜𝑀 ↦→ ˜𝑀 ◦ 𝜇

is bijective. In other words, if𝑀 : 𝑉1 × · · · ×𝑉𝑟 →𝑊 is a multi-linear map, then there exists a
unique linear map �̃� : 𝑉1 ⊗ · · · ⊗ 𝑉𝑟 →𝑊 such that

𝑀 = �̃� ◦ 𝜇.

Proof. Exercise. Hint: Use the universal property of the quotient vector space and the free vector

space. �

Remark 1.6. Proposition 1.2 is often expressed by the following diagram:

𝑉1 × · · · ×𝑉𝑟 𝑊

𝑉1 ⊗ · · · ⊗ 𝑉𝑟

𝑀

𝜇
∃!�̃�

.

Denition 1.7. The pair (𝑉1 ⊗ · · · ⊗ 𝑉𝑟 , 𝜇) is called the tensor product of 𝑉1, . . . ,𝑉𝑟 . We write

𝑣1 ⊗ · · · ⊗ 𝑣𝑟 ≔ 𝜇 (𝑣1, . . . , 𝑣𝑟 ).

Remark 1.8. Almost everything about the tensor product can be proved using Proposition 1.2.
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Proposition 1.9. Let 𝑉1, . . . ,𝑉𝑟 ,𝑊1, . . . ,𝑊𝑟 be vector spaces and 𝐴𝑖 : 𝑉𝑖 →𝑊𝑖 be linear maps. There
exists a unique linear map 𝐴1 ⊗ · · · ⊗ 𝐴𝑟 : 𝑉1 ⊗ · · · ⊗ 𝑉𝑟 →𝑊1 ⊗ · · · ⊗𝑊𝑟 such that

(𝐴1 ⊗ · · · ⊗ 𝐴𝑟 ) (𝑣1 ⊗ . . . ⊗ 𝑣𝑟 ) = 𝐴1𝑣1 ⊗ . . . ⊗ 𝐴𝑟𝑣𝑟

Proof. Denote by 𝜇𝑉 : 𝑉1 × · · · ×𝑉𝑟 → 𝑉1 ⊗ · · · ⊗𝑉𝑟 and 𝜇𝑊 : 𝑊1 × · · · ×𝑊𝑟 →𝑊1 ⊗ · · · ⊗𝑊𝑟 the

multilinear maps (1.4). The desired property of 𝐴1 ⊗ · · · ⊗ 𝐴𝑟 is that

𝜇𝑊 ◦ (𝐴1 × · · · ×𝐴𝑟 ) = (𝐴1 ⊗ · · · ⊗ 𝐴𝑟 ) ◦ 𝜇𝑉 .

It is trivial to verify that the left-hand side of this equation is multi-linear. The existence of a

unique 𝐴1 ⊗ . . . ⊗ 𝐴𝑟 is thus guaranteed by (1.5) being a bijection. �

Proposition 1.10. If 𝑉1, . . . ,𝑉𝑟 are nite-dimensional, then

dim𝑉1 ⊗ · · · ⊗ 𝑉𝑟 =
𝑚∏
𝑖=1

dim𝑉𝑖 .

More precisely if (𝑒𝑖
1
, . . . , 𝑒𝑖

dim𝑉𝑖
) are bases for 𝑉𝑖 , then{
𝑒1𝑖1 ⊗ · · · ⊗ 𝑒𝑟𝑖𝑟 : 𝑖 𝑗 ∈ {1, . . . , dim𝑉𝑗 }

}
is a basis for 𝑉1 ⊗ · · · ⊗ 𝑉𝑟 .

Proof. You should write a full proof as an exercise.

To just prove the dimension formula you can proceed as follows. We will implicitly prove later

that

𝑉1 ⊗ · · · ⊗ 𝑉𝑟 � 𝑉1 ⊗ (𝑉2 ⊗ · · · ⊗ 𝑉𝑟 )

Thus it suces to prove the result for 𝑟 = 2. For this case show that if 𝑉 = 𝑉 ′ ⊕ 𝑉 ′′
, then

𝑉 ⊗𝑊 = (𝑉 ′ ⊗𝑊 ) ⊕ (𝑉 ′′ ⊗𝑊 ).

Knowing this the dimension formula will follow by induction. You can make this proof more

concrete using a basis and prove the full result. �

Exercise 1.11. Use Proposition 1.2 to construct a linear map 𝑉 ∗ ⊗𝑊 → Hom(𝑉 ,𝑊 ). When is this

map injective? When is this map surjective?

1.2 The tensor algebra

Given any vector space, the tensor product gives rise to a natural unital graded algebra.
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Denition 1.12. A grading on a vector space 𝑉 is direct sum decomposition

𝑉 =
⊕
𝑟 ∈N0

𝑉 𝑟 .

We call𝑉 𝑟 the degree 𝑟 component of𝑉 . A vector space together with a grading is called a graded
vector space.

Denition 1.13. An algebra is a vector space 𝐴 together with a bilinear map 𝑚 : 𝐴 × 𝐴 → 𝐴

satisfying associativity, that is,

(1.14) 𝑚 ◦ (𝑚 × id𝐴) =𝑚 ◦ (id𝐴 ×𝑚) .

We often write 𝑥 · 𝑦 or 𝑥𝑦 instead of 𝑚(𝑥,𝑦). With this notation (1.14) becomes the familiar

𝑥 (𝑦𝑧) = (𝑥𝑦)𝑧.

Denition 1.15. A unital algebra is a algebra (𝐴,𝑚) together with an element 1𝐴 ∈ 𝐴 such that

𝑚(1𝐴, ·) =𝑚(·, 1𝐴) = id𝐴 .

Denition 1.16. A graded algebra is an algebra (𝐴,𝑚) with grading such that

𝑚(𝐴𝑟 , 𝐴𝑠) ⊂ 𝐴𝑟+𝑠 .

Example 1.17. Denote by 𝑘 [𝑥] the set of polynomials in the variable 𝑥 with coecients in 𝑘 .

The usual multiplication rule of polynomials is associative and makes 𝑘 [𝑥] into an algebra. The

polynomial 1 is a unit for this multiplication. This algebra has a natural grading with the 𝑟–th

graded component consisting of homogeneous polynomial of degree 𝑟 .

Proposition 1.18. Let 𝑟, 𝑠, 𝑡 ∈ N. Denote by (𝑉 ⊗𝑟 , 𝜇𝑟 ) the tensor product of 𝑟 copies of 𝑉 .

1. There exists unique bilinear map𝑚𝑟,𝑠 : 𝑉
⊗𝑟 ×𝑉 ⊗𝑠 → 𝑉 ⊗𝑟+𝑠 such that

𝑚𝑟,𝑠 ((𝑣1 ⊗ · · · ⊗ 𝑣𝑟 ), (𝑣𝑟+1 ⊗ · · · ⊗ 𝑣𝑟+𝑠)) = 𝑣1 ⊗ · · · ⊗ 𝑣𝑟 ⊗ 𝑣𝑟+1 ⊗ · · · ⊗ 𝑣𝑟+𝑠 .

2. The maps𝑚𝑟,𝑠 satisfy associativity

𝑚𝑟+𝑠,𝑡 ◦ (𝑚𝑟,𝑠 × id𝑉 ⊗𝑡 ) =𝑚𝑟,𝑠+𝑡 ◦ (id𝑉 ⊗𝑟 ×𝑚𝑠,𝑡 ) .

Remark 1.19. We extend 𝑚𝑟,𝑠 to 𝑟 = 0 and or 𝑠 = 0 as follows. Set 𝑉 ⊗0 = 𝑘 and denote by

𝑚0,𝑟 : 𝑘 × 𝑉 ⊗𝑟 → 𝑉 ⊗𝑟
and 𝑚𝑟,0 : 𝑉

⊗𝑟 × 𝑘 → 𝑉 ⊗𝑟
the scalar multiplication. In particular,the

element 1 ∈ 𝑘 = 𝑉 ⊗0
is a unit:

𝑚0,𝑟 (1, ·) =𝑚𝑟,0(·, 1) = id𝑉 ⊗𝑟 .
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Proof. This is basically trivial, but let me give a detailed proof to make it look complicated.

Given any vector space𝑊 , the maps

Mult((𝑉1 ⊗ · · · ⊗ 𝑉𝑟 ), (𝑉𝑟+1 ⊗ · · · ⊗ 𝑉𝑟+𝑠);𝑊 )
→ Mult(𝑉1 × · · · ×𝑉𝑟+1 × · · · ×𝑉𝑟+𝑠 ,𝑊 ), �̃� ↦→ �̃� ◦ (𝜇𝑟 × 𝜇𝑠)

and

Mult((𝑉1 ⊗ · · · ⊗ 𝑉𝑟 ), (𝑉𝑟+1 ⊗ · · · ⊗ 𝑉𝑟+𝑠), (𝑉𝑟+𝑡+1 ⊗ · · · ⊗ 𝑉𝑟+𝑠+𝑡 );𝑊 )
→ Mult(𝑉1 × · · · ×𝑉𝑟+𝑠+𝑡 ,𝑊 ), 𝐶 ↦→ 𝐶 ◦ (𝜇𝑟 × 𝜇𝑠 × 𝜇𝑡 )

are bijections. (It is an exercise to prove this using that (1.5) is a bijection.)

The desired property for𝑚𝑟,𝑠 is that

𝑚𝑟,𝑠 ◦ (𝜇𝑟 × 𝜇𝑟 ) = 𝜇𝑟,𝑠 .

By the above such a𝑚𝑟,𝑠 exists and is uniquely determined.

The associativity follows from the the fact that

(𝜇𝑟 × 𝜇𝑠) × 𝜇𝑡 = 𝜇𝑟 × 𝜇𝑠 × 𝜇𝑠 = 𝜇𝑟 × (𝜇𝑠 × 𝜇𝑡 )

with respect to the identication (𝑋 × 𝑌 ) × 𝑍 = 𝑋 × 𝑌 × 𝑍 = 𝑋 × (𝑌 × 𝑍 ), as well as

𝑚𝑟+𝑠,𝑡 ◦ (𝑚𝑟,𝑠 × id𝑉 ⊗𝑡 ) ◦ ((𝜇𝑟 × 𝜇𝑠) × 𝜇𝑡 ) =𝑚𝑟+𝑠,𝑡 ◦ (𝜇𝑟+𝑠 × 𝜇𝑡 ) = 𝜇𝑟+𝑠+𝑡

and

𝑚𝑟,𝑠+𝑡 ◦ (id𝑉 ⊗𝑟 ×𝑚𝑠,𝑡 ) ◦ (𝜇𝑟 × (𝜇𝑠 × 𝜇𝑡 )) =𝑚𝑟,𝑠+𝑡 ◦ (𝜇𝑟 × 𝜇𝑠+𝑡 ) = 𝜇𝑟+𝑠+𝑡 . �

Proposition 1.20. Set

𝑇𝑉 ≔

∞⊕
𝑟=0

𝑉 ⊗𝑟 .

Given 𝑥 ∈ 𝑇𝑉 , denote by 𝑥𝑟 the component of 𝑥 in 𝑉 ⊗𝑟 . The map𝑚 : 𝑇𝑉 ×𝑇𝑉 → 𝑇𝑉 dened by

𝑚(𝑥,𝑦) =
∑︁
𝑟,𝑠∈N0

𝑚𝑟,𝑠 (𝑥𝑟 , 𝑥𝑠) .

makes𝑇𝑉 into graded unital associative algebra with unit 1 ∈ 𝑘 = 𝑉 ⊗0 ⊂ 𝑇𝑉 with 𝑟–th graded piece
𝑉 ⊗𝑟 ⊂ 𝑇𝑉 .

Proposition 1.21 (Universal property of the tensor algebra). Denote by 𝑖 : 𝑉 → 𝑇𝑉 the inclusion
map 𝑉 = 𝑉 ⊗1 ⊂ 𝑇𝑉 . If 𝐴 is a 𝑘–algebra together with a linear map 𝑗 : 𝑉 → 𝐴, then there exists a
unique algebra homomorphism 𝑓 : 𝑇𝑉 → 𝐴 such that

𝑓 ◦ 𝑖 = 𝑗 .
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Proof. This is a consequence of the fact that 𝑉 generates 𝑇𝑉 and 𝑖 : 𝑉 → 𝑇𝑉 is injective. �

Denition 1.22. We call 𝑇𝑉 the tensor algebra on 𝑉 . We write 𝑥 ⊗ 𝑦 for𝑚(𝑥,𝑦).

Exercise 1.23. Let 𝑥1, . . . , 𝑥𝑛 be 𝑛 symbols. Denote by 𝑘 〈𝑥1, . . . , 𝑥𝑛〉 the free vector space generated
by these symbols. Prove that 𝑇𝑘 〈𝑥1, . . . , 𝑥𝑛〉 is the free 𝑘–algebra generated by 𝑥1, . . . , 𝑥𝑛 .

Exercise 1.24. Given a pair of algebras 𝐴 and 𝐵, construct an algebra structure on 𝐴 ⊗ 𝐵.
With respect to this algebra structure, establish an algebra isomorphism

𝑘 [𝑥] ⊗ 𝑘 [𝑦] � 𝑘 [𝑥,𝑦] .

1.3 The alternating tensor product

Denition 1.25. A multi-linear map𝑀 : 𝑉 ×𝑟 →𝑊 is called alternating if

𝑀 (𝑣1, . . . , 𝑣𝑟 ) = 0

whenever there is an 𝑖 = 1, . . . , 𝑟 − 1 such that 𝑣𝑖 = 𝑣𝑖+1. We write Alt
𝑟 (𝑉 ,𝑊 ) for the space of

alternating multi-linear maps 𝑉 𝑟 →𝑊 .

Remark 1.26. Over 𝑘 = R (or whenever 𝑘 is not of characteristic 2), alternating is the same as

𝑀 (𝑣1, . . . , 𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑟 ) = −𝑀 (𝑣1, . . . , 𝑣𝑖+1, 𝑣𝑖 , . . . , 𝑣𝑟 ) .

Number theorist and algebraists will be mad at you if you dene alternating like this in general.
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Proposition 1.27 (Construction and universal property of the alternating tensor product). Let 𝑉 be
a vector space and 𝑟 ∈ N.

1. Denote by 𝑅 the linear subspace of 𝑉 ⊗𝑟 spanned by elements of the form

𝑣1 ⊗ · · · ⊗ 𝑣𝑟

with 𝑣𝑖 = 𝑣𝑖+1 for some 𝑖 = 1, . . . , 𝑟 − 1. Set

Λ𝑟𝑉 ≔ 𝑉 ⊗𝑟/𝑅.

The multilinear map 𝛼 : 𝑉 ×𝑟 → Λ𝑟𝑉 dened by

𝛼 (𝑣1, . . . , 𝑣𝑟 ) ≔ [𝑣1 ⊗ · · · ⊗ 𝑣𝑟 ]

is alternating.

2. The pair (Λ𝑟𝑉 , 𝛼) satises the following universal property. For any vector space𝑊 , the map

Hom(Λ𝑟𝑉 ,𝑊 ) → Alt
𝑟 (𝑉 ,𝑊 ), ˜𝑀 ↦→ ˜𝑀 ◦ 𝛼

is bijective. In other words, if 𝑀 : 𝑉 ×𝑟 →𝑊 is an alternating multi-linear map, then there
exists a unique linear map ˜𝑀 : Λ𝑟𝑉 →𝑊 such that

𝑀 = ˜𝑀 ◦ 𝛼.

Proof. Exercise. �

Remark 1.28. Proposition 1.27 is often expressed by the following diagram:

𝑉 ×𝑟 𝑊

Λ𝑟𝑉

𝑀

𝛼
∃!�̃�

.

Denition 1.29. The vector space Λ𝑟𝑉 together with the multi-linear 𝛼 is called the 𝑘-th exterior
tensor product of 𝑉 . We write

𝑣1 ∧ · · · ∧ 𝑣𝑟 ≔ 𝛼 (𝑣1, · · · , 𝑣𝑟 ) .

Remark 1.30. If 𝜎 ∈ 𝑆𝑟 is a permutation of {1, . . . , 𝑘}, then

𝑣𝜎 (1) ∧ · · · ∧ 𝑣𝜎 (𝑘) = sign(𝜎)𝑣1 ∧ · · · ∧ 𝑣𝑟 .

Note that if 𝑘 has characteristic 2, then +1 = −1 ∈ 𝑘 .
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Proposition 1.31. Let 𝑉 ,𝑊 be vector spaces and 𝐴 : 𝑉 →𝑊 be a linear map. There exists a unique
linear map Λ𝑟𝐴 : Λ𝑟𝑉 → Λ𝑟𝑊 such that

(Λ𝑟𝐴) (𝑣1 ∧ . . . ∧ 𝑣𝑟 ) = 𝐴𝑣1 ∧ . . . ∧𝐴𝑣𝑟

Proof. Exercise. �

Proposition 1.32. If 𝑉 has dimension 𝑛 < ∞, then

dimΛ𝑟𝑉 =

(
𝑛

𝑟

)
.

More precisely if (𝑒1, . . . , 𝑒dim𝑉 ) is a basis for 𝑉 , then

{𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑟 : 1 6 𝑖1 < · · · < 𝑖𝑟 6 dim𝑉 }

is a basis for Λ𝑟𝑉 .

Proof. We can assume that 𝑉 = 𝑘 ⊕𝑛
with its standard basis. If 𝑟 = 0 or 𝑛 = 0, then the result is

obvious. If 𝑛 > 1, then

Λ𝑟𝑘 ⊕𝑛 � (𝑘 〈𝑒1〉 ⊗ Λ𝑟−1𝑘 ⊕𝑛) ⊕ Λ𝑟𝑘 〈𝑒2, . . . , 𝑒𝑛〉.

(You should prove this.) Set 𝑑 (𝑟, 𝑛) ≔ dimΛ𝑟𝑘 ⊕𝑛
. The above isomorphism implies that

𝑑 (𝑟, 𝑛) = 𝑑 (𝑟 − 1, 𝑛) + 𝑑 (𝑟, 𝑛 − 1).

From this the dimension formula follows. In fact, the above isomorphism gives a geometriza-

tion/categorication of the combinatorial identity(
𝑛

𝑟

)
=

(
𝑛

𝑟 − 1

)
+

(
𝑛 − 1

𝑟

)
.

�

Exercise 1.33. Denote by M𝑛 (𝑘) the set of 𝑛 × 𝑛–matrices over 𝑘 . If 𝑉 = 𝑘𝑛 and 𝐴 ∈ M𝑛 (𝑘) =
End(𝑘𝑛), then

Λ𝑛𝐴 = det𝐴.

(If your denition of det𝐴 is Λ𝑛𝐴, then work out the formula for det𝐴 in terms of the matrix

entries of 𝐴.)
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Proposition 1.34. Let 𝑟 ∈ N0. Suppose the characteristic of 𝑘 does not divide 𝑟 . Denote by 𝜋 : 𝑉 ⊗𝑟 →
Λ𝑟𝑉 the canonical projection map. There is a unique linear map 𝑖 : Λ𝑟𝑉 → 𝑉 ⊗𝑟 such that

𝜋 ◦ 𝑖 = idΛ𝑟𝑉

and
𝑖 (𝑣1 ∧ · · · ∧ 𝑣𝑟 ) =

1

𝑟 !

∑︁
𝜎 ∈𝑆𝑟

sign(𝜎)𝑣1 ⊗ · · · ⊗ 𝑣𝑟 .

In particular, 𝑖 : Λ𝑟𝑉 → 𝑉 ⊗𝑟 is an injection.

Proof. Exercise. �

Remark 1.35. If 𝑘 = R (or if 𝑘 has characteristic 0), then Λ𝑟𝑉 can be identied with a subspace of

𝑉 ⊗𝑟
, but in general it is a quotient.

1.4 The exterior algebra

Proposition 1.36.

1. There exists unique bilinear map𝑚𝑟,𝑠 : Λ
𝑟𝑉 × Λ𝑟𝑉 → Λ𝑟+𝑠𝑉 such that

𝑚𝑟,𝑠 ((𝑣1 ∧ · · · ∧ 𝑣𝑟 ), (𝑣𝑟+1 ∧ · · · ∧ 𝑣𝑟+𝑠)) = 𝑣1 ∧ · · · ∧ 𝑣𝑟 ∧ 𝑣𝑟+1 ∧ · · · ∧ 𝑣𝑟+𝑠 .

2. The maps𝑚𝑟,𝑠 satisfy associativity:

𝑚𝑟+𝑠,𝑡 ◦ (𝑚𝑟,𝑠 × idΛ𝑡𝑉 ) =𝑚𝑟,𝑠+𝑡 ◦ (idΛ𝑟𝑉 ×𝑚𝑠,𝑡 ).

3. The maps𝑚𝑟,𝑠 satisfy graded commutativity:

𝑚𝑟,𝑠 (𝑥,𝑦) = (−1)𝑟𝑠𝑚𝑠,𝑟 (𝑦, 𝑥) .

Proof. Exercise, cf. Proposition 1.18. �

We extend𝑚𝑟,𝑠 to the case 𝑟 = 0 and 𝑠 = 0 as in the construction of the tensor algebra.
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Proposition 1.37. Set

Λ𝑉 ≔

∞⊕
𝑟=0

Λ𝑟𝑉 .

Given 𝑥 ∈ Λ𝑉 , denote by 𝑥𝑟 the component of 𝑥 in Λ𝑟𝑉 . The map𝑚 : Λ𝑉 × Λ𝑉 → Λ𝑉 dened by

𝑚(𝑥,𝑦) =
∑︁
𝑟,𝑠∈N0

𝑚𝑟,𝑠 (𝑥𝑟 , 𝑦𝑠).

makes Λ𝑉 into a unital graded commutative associative algebra with unit 1 ∈ 𝑘 = 𝑉 ⊗0 ⊂ Λ𝑉 with
𝑟–th graded piece Λ𝑟𝑉 .

Denition 1.38. We call Λ𝑉 the exterior algebra on 𝑉 . We write 𝑥 ∧ 𝑦 for𝑚(𝑥,𝑦).

Corollary 1.39. Dene an alternating map (𝑉 ∗)𝑟 → Alt
𝑟 (𝑉 , 𝑘) by

(𝑣∗
1
, . . . , 𝑣∗𝑟 ) ↦→

(
(𝑣1, . . . , 𝑣𝑟 ) ↦→ det

(
(𝑣∗𝑖 (𝑣 𝑗 ))𝑟𝑖, 𝑗=1

) )
.

There is a unique linear map Λ𝑟𝑉 ∗ → Alt
𝑟 (𝑉 , 𝑘) such that the diagram

(𝑉 ∗)𝑟 Alt
𝑟 (𝑉 , 𝑘)

Λ𝑟𝑉 ∗
∃!

commutes. This map is injective. If 𝑉 is nite-dimensional, this map is an isomorphism.

Remark 1.40. The map Λ𝑟𝑉 ∗ → Alt
𝑟 (𝑉 , 𝑘) also make the following diagram commute:

Λ𝑟𝑉 ∗
Alt

𝑟 (𝑉 , 𝑘)

(𝑉 ∗)⊗𝑟 Mult(𝑉 𝑟 , 𝑘)

𝑖 ⊂
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Proposition 1.41. There exists a unique linear map 𝑉 ⊗ Λ𝑟𝑉 ∗ → Λ𝑘−1𝑉 ∗

𝑣 ⊗ 𝛼 ↦→ 𝑖 (𝑣)𝛼

such that

𝑣 ⊗ (𝑣∗
1
∧ · · · ∧ 𝑣∗𝑟 ) ↦→ 𝑖 (𝑣)

𝑟∑︁
𝑖=1

(−1)𝑖+1𝑣∗𝑖 (𝑣) · 𝑣∗1 ∧ · · · 𝑣∗𝑖−1 ∧ 𝑣∗𝑖+1 · · · ∧ 𝑣∗𝑟

Thinking of 𝛼 and 𝑖 (𝑣)𝛼 as elements of Alt𝑟 (𝑉 , 𝑘) and Alt𝑘−1(𝑉 , 𝑘) respectively, we have

(𝑖 (𝑣)𝛼) (𝑣1, . . . , 𝑣𝑟−1) = 𝛼 (𝑣, 𝑣1, . . . , 𝑣𝑟−1) .

Denition 1.42. The map 𝑖 (𝑣) called contraction with 𝑣 .

1.5 The symmetric tensor product and the symmetric algebra

Denition 1.43. A multi-linear map𝑀 : 𝑉 ×𝑟 →𝑊 is called symmetric if

𝑀 (𝑣1, . . . , 𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑟 ) = 𝑀 (𝑣1, . . . , 𝑣𝑖+1, 𝑣𝑖 , . . . , 𝑣𝑟 ).

for all 𝑖 = 1, . . . , 𝑟 −1. We write Sym
𝑟 (𝑉 ,𝑊 ) for the space of symmetric multi-linear maps𝑉 𝑟 →𝑊 .

Exercise 1.44. Work out the analogue of the discussion in Section 1.3 and Section 1.4. In particular,

construct the symmetric tensor product 𝑆𝑟𝑉 and the symmetric algebra 𝑆𝑉 . The symmetric

algebra is a unital commutative graded algebra, that is, it commutative on the nose not graded

commutative.

2 Quadratic Spaces

Denition 2.1. Let 𝑘 be a eld. Let𝑉 be a vector space. A quadratic form on𝑉 is a map 𝑞 : 𝑉 → 𝑉

of the form

𝑞(𝑣) = 𝑏 (𝑣, 𝑣)

for a bilinear map 𝑏 : 𝑉 ×𝑉 → 𝑘 . We call (𝑉 ,𝑞) a quadratic space.

Remark 2.2. This concept generalizes to commutative rings 𝑅, but for our purposes working over

elds 𝑘 is enough. In fact, we could assume 𝑘 = R or 𝑘 = C, but for the time being we will work

with a general eld for the fun of it.
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2.1 Relation with symmetric bilinear forms

Example 2.3. If (𝑎𝑖 𝑗 ) ∈ M𝑛 (𝑘), then 𝑞 : 𝑘 ⊕𝑛 → 𝑘 dened by

𝑞(𝑥1, . . . , 𝑥𝑛) ≔
𝑛∑︁

𝑖, 𝑗=1

𝑎𝑖 𝑗𝑥𝑖𝑥 𝑗

is a quadratic form.

Example 2.4. Let 𝑘 = Z/2Z. The matrices(
0 1

1 0

)
and

(
0 0

0 0

)
both give rise to the same quadratic form 𝑞 = 0.

Exercise 2.5. Let 𝑘 = Z/2Z. Show that the quadratic form 𝑞 : 𝑘 ⊕2 → 𝑘 dened by

𝑞(𝑥1, 𝑥2) ≔ 𝑥1𝑥2

cannot be represented by a symmetric matrix in M2(𝑘).

Remark 2.6. If 𝑘 is not of characteristic 2, then

𝑏 (𝑣,𝑤) ≔ 1

2

(𝑞(𝑣 +𝑤) − 𝑞(𝑣) − 𝑞(𝑤))

is a symmetric bilinear form inducing 𝑞.

If 𝑘 does not have characteristic 2, then quadratic forms are equivalent to symmetric bilinear

forms. If𝑘 does have characteristic 2, then quadratic formsmight not be representable by symmetric

bilinear forms and if they are representable by symmetric bilinear forms, the representatives might

be non-unique.

Because of this we will assume from now on that 𝑘 has charactersitic not equal to two.

2.2 Isometries
Denition 2.7. Let (𝑉1, 𝑞1), (𝑉2, 𝑞2) be quadratic spaces. A linear map 𝑓 : 𝑉1 → 𝑉2 is called an

isometry if 𝑓 is invertible and

𝑞1(𝑣) = 𝑞2(𝑓 (𝑣))

for all 𝑣 ∈ 𝑉 .

Remark 2.8. One can contemplate the more general notion of just a linear map satisfying 𝑞1(𝑣) =
𝑞2(𝑓 (𝑣)). Maybe one should call these maps quadratic, but quadratic linear map is an oxymoron.
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Remark 2.9. Quadratic spaces and isometries form a category.

Exercise 2.10. If 𝑘 does not have characteristic two and 𝑏1 and 𝑏2 are symmetric bilinear forms on

𝑉1 and 𝑉2 with associated quadratic forms 𝑞1 and 𝑞2, then 𝑓 : (𝑉1, 𝑞1) → (𝑉2, 𝑞2) is an isometry if

and only if

𝑏1(𝑣1, 𝑣2) = 𝑏2(𝑓 (𝑣1), 𝑓 (𝑣2)).

Denition 2.11. Let (𝑉 ,𝑞) be a quadratic space. The orthogonal group associated with (𝑉 ,𝑞) is
the group

O(𝑉 ,𝑞) ≔ {𝑓 : 𝑉 → 𝑉 : 𝑓 is an isometry}.

Exercise 2.12. Read the mathoverow post on “On the determination of a quadratic form from its

isotropy group”.

Denition 2.13. Let (𝑉 ,𝑞) be a quadratic space. The special orthogonal group associated with

(𝑉 ,𝑞) the group
SO(𝑉 ,𝑞) ≔ {𝑓 ∈ O(𝑉 ,𝑞) : det 𝑓 = 1}.

2.3 The Cartan–Dieudonné Theorem

Denition 2.14. Let (𝑉 ,𝑞) be a quadratic space over eld of characteristic not equal to 2. Denote

by 𝑏 the symmetric bilinear map associated with 𝑞. We say that 𝑞 is non-degenerate if the map

𝑉 → 𝑉 ∗
dened by

𝑣 ↦→ 𝑏 (𝑣, ·)

is an isomorphism.

Denition 2.15. Let (𝑉 ,𝑞) be a quadratic space. We say that 𝑣 ∈ 𝑉 is isotropic if 𝑞(𝑣) = 0 and

anisotropic if 𝑞(𝑣) ≠ 0.

Exercise 2.16. Let (𝑉 ,𝑞) be a quadratic space over eld of characteristic not equal to 2. Denote by

𝑏 the symmetric bilinear map associated with 𝑞. If 𝑣 ∈ 𝑉 is anisotropic, then the map 𝑟𝑣 : 𝑉 → 𝑉

dened by

𝑟𝑣 (𝑤) ≔ 𝑤 − 2

𝑏 (𝑣,𝑤)
𝑞(𝑣) 𝑣

is an isometry of (𝑉 ,𝑞).

Denition 2.17. We call 𝑟𝑣 the reection in 𝑣 .

Theorem 2.18 (Cartan–Dieudonné). If 𝑞 is a non-degenerate quadratic form on a vector space 𝑉 ,
then any element of 𝑂 (𝑉 ,𝑞) can be written as the composition of at most 𝑛 reections.

Proof. See Pete Clark’s lecture notes. �
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2.4 Classication of real and complex quadratic forms

We will be mostly interested in quadratic forms over 𝑘 = R and 𝑘 = C. For these quadratic forms

are classied as follows.

Theorem 2.19 (Sylvester’s Law of Inertia). Suppose 𝑘 is a Euclidean eld,a e.g., 𝑘 = R. Let (𝑉 ,𝑞)
be a quadratic space of dimension 𝑛. There are unique numbers 𝑛+, 𝑛−, 𝑛0 ∈ N0 such that (𝑉 ,𝑞) is
isometric to (1)⊕𝑛+ ⊕ (−1)𝑛− ⊕ (0)𝑛0 .

a
A eld 𝑘 is called Euclidean if it is ordered and every 𝑥 > 0 admits a square root.

Exercise 2.20. Prove Theorem 2.19.

Denition 2.21. The signature of 𝑞 is the number

𝜎 (𝑞) ≔ 𝑛+ − 𝑛−

and the nullity of 𝑞 is the number 𝑛0.

Theorem 2.22. Suppose 𝑘 is algebraically closed, e.g., 𝑘 = C. If (𝑉 ,𝑞) is a quadratic space of dimension
𝑛, then there is a unique number 𝑝 ∈ N0 such that (𝑉 ,𝑞) is isometric to (1)⊕𝑝 ⊕ (0)𝑛−𝑝

3 Cliord algebras

The classical reference for the material in this section is Atiyah, Bott, and Shapiro [ABS64].

3.1 Construction and universal property of Cliord algebras

If 𝑉 is vector space, then we denote by

𝑇𝑉 =

∞⊕
𝑟=0

𝑉 ⊗𝑟

the tensor algebra over 𝑉 .
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Proposition 3.1 (Construction of universal property of the Cliord algebra). Let (𝑉 ,𝑞) be a quadratic
space.

1. Denote by 𝐼𝑞 the ideal in 𝑇𝑉 generated by elements for the form

𝑣 ⊗ 𝑣 − 𝑞(𝑣).

Set

(3.2) Cℓ (𝑉 ,𝑞) ≔ 𝑇𝑉 /𝐼𝑞 .

The obvious linear mapa 𝛾 : 𝑉 → Cℓ (𝑉 ,𝑞) satises

(3.3) 𝛾 (𝑣)2 = 𝑞(𝑣).

2. If 𝐴 is an algebra together with a linear map 𝛿 : 𝑉 → 𝐴 such that

𝛿 (𝑣)2 = 𝑞(𝑣),

then there exists a unique algebra homomorphism 𝑓 : Cℓ (𝑉 ,𝑞) → 𝐴 such that

𝑓 (𝛾 (𝑣)) = 𝛿 (𝑣) .
a
In case you disagree that there is a canonical obvious map,𝛾 = 𝜋 ◦𝑖 where 𝑖 : 𝑉 = 𝑉 ⊗1 ⊂ 𝑇𝑉 and 𝜋 : 𝑇𝑉 → Cℓ (𝑉 ,𝑞)

is canonical projection.

Proof. By the universal property of𝑇𝑉 , there exists a unique algebra homomorphism
˜𝑓 : 𝑇𝑉 → 𝐴

such that the diagram

𝑉 𝑇𝑉

𝐴

𝑖

𝛿
˜𝑓

commutes. Since 𝑗 (𝑣)2 = 𝑞(𝑣), ˜𝑓 vanishes on the ideal 𝐼𝑞 and thus factors through Cℓ (𝑉 ,𝑞). This
proves the existence of 𝑓 . Since 𝑓 extends to 𝑇𝑉 , it also proves the uniqueness by the universal

property of 𝑇𝑉 . �

Denition 3.4. We call Cℓ (𝑉 ,𝑞) together with 𝛾 the Cliord algebra associated with (𝑉 ,𝑞).

Remark 3.5. We have

Cℓ (𝑉 , 0) = Λ𝑉 .

Proposition 3.6. The map 𝛾 is injective.
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Proof. Exercise. Hint: The map 𝜄 : 𝑉 → 𝑇𝑉 is obviously injective. You need to prove that

im 𝜄 ∩ 𝐼𝑞 = {0}.

Suppose that 𝑣 = 𝑥𝑦 for 𝑥 ∈ 𝑇𝑉 and 𝑦 =
∑
𝑤𝑖 ⊗𝑤𝑖 − 𝑞(𝑤𝑖) and derive that 𝑣 = 0. �

Notation 3.7. Given that 𝛾 is injective, we will (from time to time) simply write 𝑣 for 𝛾 (𝑣) ∈
Cℓ (𝑉 ,𝑞).

3.2 Automorphisms of Cℓ (𝑉 ,𝑞)
Exercise 3.8. Let 𝑓 : (𝑉1, 𝑞1) → (𝑉2, 𝑞2) be an isometry. Prove that there is a unique algebra

homomorphism Cℓ (𝑓 ) : Cℓ (𝑉1, 𝑞1) → Cℓ (𝑉2, 𝑞2) such that

Cℓ (𝑓 ) ◦ 𝑖𝑉1 = 𝑖𝑉2 ◦ 𝑓 .

Prove that Cℓ (𝑓 ) is an algebra isomorphism.

Remark 3.9. The above makes Cℓ into a functor from the category of quadratic spaces (with

morphisms being isometries) to the category of algebras.

Corollary 3.10. O(𝑉 ,𝑞) ⊂ Aut(Cℓ (𝑉 ,𝑞)).

Denition 3.11. The map 𝑉 → 𝑉 , 𝑣 ↦→ −𝑣 induces an involution 𝛼 : Cℓ (𝑉 ,𝑞) → Cℓ (𝑉 ,𝑞).

Denition 3.12. The anti-involution 𝑣1 ⊗ 𝑣2 ⊗ · · · ⊗ 𝑣𝑛 ↦→ 𝑣𝑛 ⊗ · · · ⊗ 𝑣2 ⊗ 𝑣1 on 𝑇𝑉 preserves 𝐼𝑞
and, hence, denes an anti-involution ·𝑡 : Cℓ (𝑉 ,𝑞) → Cℓ (𝑉 ,𝑞) called transposition.

Denition 3.13. The anti-involution ·̄ ≔ 𝛼 ◦ (·)𝑡 is called conjugation.

Denition 3.14. Let 𝐴 be a unital algebra. An element 𝑥 ∈ 𝐴 is called a unit if there exists an
𝑥−1 ∈ 𝐴 such that 𝑥𝑥−1 = 𝑥−1𝑥 = 1𝐴. We write 𝐴×

for the group of units in 𝐴.

Proposition 3.15. If (𝑉 ,𝑞) is a non-degenerate quadratic space, then every automorphism arising
from O(𝑉 ,𝑞) is of the form

𝑦 ↦→ 𝑥𝑦𝛼 (𝑥)−1

for some 𝑥 ∈ Cℓ (𝑉 ,𝑞)×.

Proof. By Theorem 2.18 it suces to prove that if 𝑣 ∈ 𝑉 is aniostropic, then the reection 𝑟𝑣 induces

an automorphism of Cℓ (𝑉 ,𝑞) of the asserted form. To this end observe that if 𝑣 is anisotropic, then

𝑣−1 =
𝑣

𝑞(𝑣) ∈ Cℓ (𝑉 ,𝑞)
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and

−𝑣𝑤𝑣−1 = −𝑣𝑤 𝑣

𝑞(𝑣) = 𝑣 − 2

𝑏 (𝑣,𝑤)
𝑞(𝑣) 𝑣 = 𝑟𝑣𝑤.

Since the automorphism of Cℓ (𝑉 ,𝑞) associated with 𝑟𝑣 is determined by its action on 𝑉 , it follows

that it must be equal to 𝑦 ↦→ 𝑣𝑦𝛼 (𝑣)−1. �

3.3 Real and complex Cliord algebras

One can develop the theory of Cliord algebras and study their structure over arbitrary 𝑘 . We

will be particularly (or rather: exclusively) interested in 𝑘 = R and 𝑘 = C. In light of the previous

exercises and Theorem 2.19 and Theorem 2.22, this means we care about the following Cliord

algebras.

Denition 3.16. Given 𝑟, 𝑠 ∈ N0, we dene

Cℓ𝑟,𝑠 ≔ Cℓ (R⊕𝑟+𝑠 , 𝑞𝑟,𝑠) with 𝑞𝑟,𝑠 = diag(1, . . . , 1︸  ︷︷  ︸
𝑟

,−1, . . . ,−1︸      ︷︷      ︸
𝑠

)

and

Cℓ𝑟 ≔ Cℓ (C⊕𝑟 , 𝑞𝑟 ) with 𝑞𝑟 = diag(1, . . . , 1︸  ︷︷  ︸
𝑟

) .

Our rst major result in this lecture course will be the precise determination of what Cℓ𝑟,𝑠 and

Cℓ𝑟 are. The rst step is to work out what these algebras are if 𝑟, 𝑠 are rather small.

Proposition 3.17. If𝑉 = 𝑘 ⊕𝑛 and 𝑞 = diag(𝑞1, . . . , 𝑞𝑛), the there exists a unique algebra isomorphism

Cℓ (𝑉 ,𝑞) � 𝑘 〈𝑥1, . . . , 𝑥𝑛〉/ ˜𝐼𝑞

with ˜𝐼𝑞 generated by 𝑥2𝑗 − 𝑞 𝑗 and 𝑥𝑖𝑥 𝑗 + 𝑥 𝑗𝑥𝑖 such that 𝑓 𝛾 = 𝛾 with 𝛾 : 𝑘 ⊕𝑛 → 𝑘 〈𝑥1, . . . , 𝑥𝑛〉/ ˜𝐼𝑞
dened by

𝛾 (𝑎1, . . . , 𝑎𝑛) = 𝑎1𝑥1 + · · · + 𝑎𝑛𝑥𝑛 .

Proof. The linear map 𝛾 satises

𝛾 (𝑎1, . . . , 𝑎𝑛)2 =
𝑛∑︁
𝑖=1

𝑎2𝑖𝑞𝑖 .

Moreover, if 𝐴 is an algebra and 𝛿 : 𝑘 ⊕𝑛 → 𝐴 is a linear map such that

𝛿 (𝑎)2 = 𝑞,
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then 𝑓 : 𝑘 〈𝑥1, . . . , 𝑥𝑛〉/ ˜𝐼𝑞 → 𝐴 dened by

𝑓 (𝑎1𝑥1 + · · · + 𝑎𝑛𝑥𝑛 + 𝑏) ≔
𝑛∑︁
𝑖=1

𝑎𝑖𝛿 (𝑒𝑖) + 𝑏

is the unique algebra homomorphism satisfying

𝑓 𝛾 = 𝛿.

This means that 𝑘 〈𝑥1, . . . , 𝑥𝑛〉/𝐼𝑞 satises the universal property of Cℓ (𝑉 ,𝑞). The existence and
uniqueness of 𝑓 follows immediately. �

Alternative proof. Identify 𝑇𝑘 ⊕𝑛 = 𝑘 〈𝑥1, . . . , 𝑥𝑛〉 and observe that 𝐼𝑞 = ˜𝐼𝑞 . �

Corollary 3.18. Suppose 𝑛 = 1, that is, Cℓ (𝑘, 𝑞) = 𝑘 [𝑥]/(𝑥2 − 𝑞). If 𝑞 = 0, then Cℓ (𝑘, 𝑞) is the ring
of dual numbers over 𝑘 . If there is a non-zero square root

√
𝑞 ∈ 𝑘 , then Cℓ (𝑘, 𝑞) � 𝑘 ⊕ 𝑘 via

𝑎 + 𝑏𝑥 ↦→ (𝑎 + √
𝑞𝑏, 𝑎 − √

𝑞𝑏) .

Otherwise, Cℓ (𝑉 ,𝑞) is the quadratic eld extension 𝑘 (√𝑞) of 𝑘 .

Remark 3.19. Suppose 𝑛 = 2, that is,

Cℓ (𝑘 ⊕2, diag(𝑞1, 𝑞2)) = 𝑘 〈𝑥1, 𝑥2〉/(𝑥21 − 𝑞1, 𝑥22 − 𝑞2, 𝑥1𝑥2 + 𝑥2𝑥1).

This is isomorphic to the quaternion algebra (𝑞1, 𝑞2)𝑘 , that is, Cℓ (𝑉 ,𝑞) = 𝑘 〈1, 𝑖, 𝑗, 𝑘〉 with

𝑖2 = 𝑞1, 𝑗2 = 𝑞2, 𝑖 𝑗 = 𝑘 and 𝑗𝑖 = −𝑘.

If 𝑘 = R and 𝑞1 = 𝑞2 = −1, then this gives the Hamilton’s quaternions H.

Remark 3.20. We have (1, 1)𝑘 � M2(𝑘) with

𝑖 =

(
1

−1

)
, 𝑗 =

(
0 1

1 0

)
, and 𝑖 𝑗 = − 𝑗𝑖 =

(
0 1

−1 0

)
and (1,−1)𝑘 � M2(𝑘) with

𝑖 =

(
1

−1

)
, 𝑗 =

(
0 1

−1 0

)
, and 𝑖 𝑗 = − 𝑗𝑖 =

(
0 1

1 0

)
.

Knowing all of this it is easy to work out the real and complex Cliord algebras in dimension

one and two.

22



Corollary 3.21. We have

Cℓ1,0 = R ⊕ R, Cℓ0,1 = C, Cℓ2,0 = M2(R), Cℓ1,1 = M2(R), and Cℓ0,2 = H

and
Cℓ1 = C ⊕ C and Cℓ2 = M2(C).

3.4 Digression: ltrations and gradings

Denition 3.22. Let𝑉 be a vector space. A ltration on𝑉 is a subspace 𝐹 𝑟𝑉 ⊂ 𝑉 for every 𝑟 ∈ N0

such that

𝐹 𝑟𝑉 ⊂ 𝐹 𝑟+1𝑉

for all 𝑟 ∈ N0 and

𝑉 =
⋃
𝑟 ∈N0

𝐹 𝑟𝑉 .

A vector space together with a ltration is called a ltered vector space.

Every graded vector space 𝑉 has a canonical ltration given by

𝐹 𝑟𝑉 = 𝑉 6𝑟 ≔
⊕
𝑠6𝑟

𝑉 𝑠 .

Denition 3.23. Given a ltered vector space 𝑉 , the associated graded vector space gr𝑉 is

gr𝑉 ≔

∞⊕
𝑟=0

gr
𝑟 𝑉 with gr

𝑟 𝑉 ≔ 𝐹 𝑟𝑉 /𝐹 𝑟−1𝑉 .

Here we use the convention 𝐹−1𝑉 = {0}.

Exercise 3.24. If 𝑉 is a graded vector space, then the associated graded vector space gr𝑉 of 𝑉

with the canonical ltration is isomorphic to 𝑉 .

Exercise 3.25. If 𝑉 is ltered vector space, then there is a canonical linear map 𝑖 : 𝑉 → gr𝑉 . The

map 𝑖 is injective and, hence, an isomorphism if 𝑉 is nite-dimensional.

Denition 3.26. Let (𝐴,𝑚) be a 𝑘–algebra. A ltration in𝐴 is a ltration on the underlying vector

space such that

𝑚(𝐹 𝑟𝐴, 𝐹 𝑠𝐴) ⊂ 𝐹 𝑟+𝑠𝐴.

Exercise 3.27. If 𝐴 is a ltered algebra, then gr𝐴 inherits the structure of graded algebra.

Denition 3.28. If 𝐴 is a ltered algebra, then gr𝐴 is called the associated graded algebra.
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Exercise 3.29. Let 𝐴 be a ltered algebra and let 𝐼 be an ideal in 𝐴. Given 𝑟 ∈ N0, dene

𝐹 𝑟 (𝐴/𝐼 ) ≔ (𝐹 𝑟𝐴)/(𝐼 ∩ 𝐹 𝑟𝐴) .

This denes a ltration on 𝐴/𝐼 .

3.5 The ltration on the Cliord algebra

Corollary 3.30. Cℓ (𝑉 ,𝑞) is a ltered algebra.

Proposition 3.31. The linear maps

𝛿 : 𝑉 ⊗𝑟 → gr
𝑟
Cℓ (𝑉 ,𝑞) = 𝐹 𝑟Cℓ (𝑉 ,𝑞)/𝐹 𝑟−1Cℓ (𝑉 ,𝑞)

factor through Λ𝑟𝑉 and induce an isomorphism of algebras

𝛿 : Λ𝑉 � gr Cℓ (𝑉 ,𝑞) .

Proof. The linear map 𝛿 : 𝑉 ⊗𝑟 → gr
𝑟
Cℓ (𝑉 ,𝑞) is surjective. Since

𝑣1 · · · 𝑣𝑖−1𝑣𝑣𝑣𝑖+2 · · · 𝑣𝑟 = 𝑞(𝑣)𝑣1 · · · 𝑣𝑖−1𝑣𝑖+2 · · · 𝑣𝑟 ∈ 𝐹 𝑟−1Cℓ (𝑉 ,𝑞),

the kernel 𝛿 contains 𝐼0. Consequently, 𝛿 factors through Λ𝑟𝑉 . We will prove that ker𝛿 = 𝐼0 and

thus the map Λ𝑟𝑉 → gr
𝑟
Cℓ (𝑉 ,𝑞) is injective. The kernel of the map 𝜀 : 𝑉 ⊗𝑟 → 𝐹 𝑟Cℓ (𝑉 ,𝑞) is

𝐼𝑞 ∩𝑉 ⊗𝑟
. Therefore the kernel of 𝛿 is

∞⊕
𝑟=0

𝜀−1(𝐹 𝑟−1Cℓ (𝑉 ,𝑞)) =
∞⊕
𝑟=0

𝑉 ⊗𝑟 ∩ (𝐼𝑞 +𝑇𝑉 6𝑟−1) = 𝐼0. �

Corollary 3.32. dim𝑘 Cℓ (𝑉 ,𝑞) = 2
dim𝑘 𝑉 .

Exercise 3.33. Suppose 𝑘 has characteristic zero. Denote by 𝑖 : Λ𝑉 → 𝑇𝑉 the map from Proposi-

tion 1.34 Prove that the map

Λ𝑉
𝑖−→ 𝑇𝑉 → Cℓ (𝑉 ,𝑞)

is an isomorphism.

This means that as a vector space we can identify Cℓ (𝑉 ,𝑞) with Λ𝑉 but this a non-standard

multiplication which does not preserve the grading but only the ltration.

Exercise 3.34. Work out how to write the multiplication induced on Λ𝑉 via the vector space

isomorphism Λ𝑉 � Cℓ (𝑉 ,𝑞).
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3.6 The Z2 grading on the Cliord algebra

Denition 3.35. A Z2 grading on a vector space 𝑉 is direct sum decomposition

𝑉 = 𝑉 0 ⊕ 𝑉 1.

We call 𝑉 𝑟 the degree 𝑟 component of 𝑉 . A vector space together with a grading is called a Z2

graded vector space or a super vector space.

Denition 3.36. A Z2 graded algebra (or super algebra) is an algebra (𝐴,𝑚) together with a Z2

grading such that

𝑚(𝐴𝑟 , 𝐴𝑠) ⊂ 𝐴𝑟+𝑠

for al 𝑟, 𝑠 ∈ {0, 1} = Z2.

Denition 3.37. Let 𝐴 be Z2 graded algebra and let 𝐼 ⊂ 𝐴 be an ideal. We say 𝐼 is homogeneous if
for all 𝑥 ∈ 𝐼 we have 𝑥0 ∈ 𝐼 and 𝑥1 ∈ 𝐼 .

Exercise 3.38. If 𝐼 is an homogeneous ideal in a Z2 graded algebra 𝐴, then 𝐴/𝐼 is Z/2 graded.

Denition 3.39. We dene a Z2–grading on 𝑇𝑉 by declaring that

𝑇𝑉 0 ≔
⊕
𝑟 ∈N0

𝑉 2𝑟
and 𝑇𝑉 1 ≔

⊕
𝑟 ∈N0

𝑉 2𝑟+1.

Since 𝐼𝑞 is homogeneous with respect to this Z2 grading, Cℓ (𝑉 ,𝑞) inherits a canonical Z2 grading.

3.7 Cliord algebra of direct sums

The following shows that the Z2 grading on Cℓ (𝑉 ,𝑞) is, in principle, very useful because it allows

us to determine Cℓ (𝑉1 ⊕ 𝑉2, 𝑞1 ⊕ 𝑞2) in terms of Cℓ (𝑉1, 𝑞1) and Cℓ (𝑉2, 𝑞2).

Denition 3.40. Let 𝐴, 𝐵 be two Z2 graded algebras. The Z2 graded tensor product is Z2 graded

algebra 𝐴 ⊗̂ 𝐵 with underlying vector space 𝐴 ⊗ 𝐵, grading

(𝐴 ⊗̂ 𝐵)0 = 𝐴0 ⊗̂ 𝐵0 ⊕ 𝐴1 ⊗̂ 𝐵1 and (𝐴 ⊗̂ 𝐵)1 = 𝐴0 ⊗̂ 𝐵1 ⊕ 𝐴1 ⊗̂ 𝐵0,

and multiplication

𝑚(𝑎1 ⊗̂ 𝑏1, 𝑎2 ⊗̂ 𝑏2) = (−1)deg𝑎2 ·deg𝑏1 (𝑎1𝑎2) ⊗̂ (𝑏1𝑏2).
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Proposition 3.41. The linear map 𝛾⊕ : 𝑉1 ⊕ 𝑉2 → Cℓ (𝑉1, 𝑞1) ⊗̂ Cℓ (𝑉2, 𝑞2) dened by

𝛾⊕ (𝑣 ⊕𝑤) = 𝛾1(𝑣) ⊗̂ 1 + 1 ⊗̂ 𝛾2(𝑤)

satises
𝛾⊕ (𝑣 ⊕𝑤)2 = 𝑞1(𝑣) + 𝑞2(𝑤) .

Given an algebra 𝐴 together with a linear map 𝛿 : 𝑉1 ⊕ 𝑉2 → 𝐴 such that

𝛿 (𝑣 ⊕𝑤)2 = 𝑞1(𝑣) + 𝑞2(𝑤),

there exists a unique algebra homomorphism 𝑓 : Cℓ (𝑉1, 𝑞1) ⊗̂ Cℓ (𝑉2, 𝑞2) → 𝐴 such that

𝛿 = 𝑓 ◦ 𝛾⊕ .

In particular, there is a canonical isomorphism

Cℓ (𝑉1 ⊕ 𝑉1, 𝑞1 ⊕ 𝑞2) � Cℓ (𝑉1, 𝑞1) ⊗̂ Cℓ (𝑉2, 𝑞2).

Proof. We have

𝛾⊕ (𝑣 ⊕𝑤)2 = (𝛾1(𝑣) ⊗̂ 1 + 1 ⊗̂ 𝛾2(𝑤))2

= 𝛾1(𝑣)2 ⊗̂ 1 + 𝛾1(𝑣) ⊗̂ 𝛾2(𝑤) − 𝛾1(𝑣) ⊗̂ 𝛾2(𝑤) + 1 ⊗̂ 𝛾𝑤 (𝑤))2

= 𝑞1(𝑣) + 𝑞2(𝑤) .

Remark 3.42. The minus sign in the above computation comes from the sign in the denition of ⊗̂.
This sign is crucial.

Let 𝐴 be an algebra and 𝛿 : 𝑉1 ⊕ 𝑉2 → 𝐴 such that

𝛿 (𝑣 ⊕𝑤) = 𝑞1(𝑣) + 𝑞2(𝑤) .

By the universal property ofCℓ (𝑉1, 𝑞1) andCℓ (𝑉2, 𝑞2) there are unique algebra homomorphisms

𝑓 : Cℓ (𝑉 ,𝑞) → 𝐴 and 𝑔 : Cℓ (𝑊, 𝑝) → 𝐴 such that

𝛿 (𝑣 ⊕𝑤) = 𝑓 ◦ 𝛾1(𝑣) + 𝑔 ◦ 𝛾2(𝑤) = (𝑓 ⊗̂ 𝑔) ◦ 𝛾⊕ (𝑣 ⊕𝑤) .

The universal property of the tensor product shows that 𝑓 ⊗̂ 𝑔 is the unique linear map with this

property.

This means that (Cℓ (𝑉1, 𝑞1) ⊗̂Cℓ (𝑉2, 𝑞2), 𝛾⊕) satises the universal property of Cliord algebra
and hence is isomorphic to it through a canonical isomorphism. �

Proposition 3.41 and our determination ofCℓ1,0 andCℓ0,1 seems to be the answer to our question:

Which algebra is Cℓ𝑟,𝑠? After all, it yields an isomorphism

Cℓ𝑟,𝑠 � Cℓ1,0 ⊗̂ · · · ⊗̂ Cℓ1,0︸                 ︷︷                 ︸
𝑟

⊗̂ Cℓ0,1 ⊗̂ · · · ⊗̂ Cℓ0,1︸                 ︷︷                 ︸
𝑠

.
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It turns out, however, that it is not that easy to work out what the right hand side is.

Exercise 3.43. We have Cℓ0,1 = R ⊕ R with

Cℓ0
1,0 = R(1, 1) and Cℓ1

1,0 = R(1,−1) .

Therefore,

Cℓ2,0 = 〈(1, 1) ⊗̂ (1, 1), (1, 1) ⊗̂ (1,−1), (1,−1) ⊗̂ (1, 1), (1,−1) ⊗̂ (1,−1)〉.

Work out the multiplication table for the above generators and nd an explicit isomorphism to

M2(R).

3.8 Digression: What does it mean to determine an algebra?

One of our major goals in the rst part of this lecture course is to determine what Cℓ𝑟,𝑠 is. Although

it is not strictly necessary for the rest of the course, we should pause here and ask “what does that

even mean?” We gave the denition of Cℓ𝑟,𝑠 . Isn’t that enough? Also, Proposition 3.41 as well as

our computation of Cℓ1,0 and Cℓ0,1 allows us to write Cℓ𝑟,𝑠 in terms of simple pieces. Why bother

any more? Largely, the reason for studying algebras is to understand their representations. A good

answer to “what algebra is 𝐴?” should allow us to immediately understand the representations of

𝐴. Wedderburn’s Structure Theorem tells us that this is possible—in principle.

Denition 3.44. Let 𝐴 be an algebra and let 𝑉 be a vector space. A representation of 𝐴 on 𝑉 is an

algebra homomorphism 𝜌 : 𝐴 → End(𝑉 ).
It is customary to make 𝜌 implicit and call 𝑉 the representation of 𝐴 and write 𝑥𝑣 for 𝜌 (𝑥)𝑣 .

Denition 3.45. A representation 𝜌 : 𝐴 → End(𝑉 ) is called irreducible if 𝑉 ≠ {0} and for every

𝑊 ⊂ 𝑉 satisfying

𝜌 (𝑥)𝑊 ⊂𝑊

for all 𝑥 ∈ 𝐴 we have either𝑊 = {0} or𝑊 = 𝑉 .

Exercise 3.46. Let 𝑉 be a vector space and let 𝜌 : Λ𝑉 → End(𝑊 ) be an irreducible representation

of Λ𝑉 . Show that dim𝑊 = 1 and that every 𝑥 ∈ Λ>1𝑉 acts trivially on𝑊 .

Denition 3.47. Let 𝐴 be a nite dimensional algebra. The Jacobson radical of 𝐴 is

𝐽 (𝐴) ≔ {𝑥 ∈ 𝐴 : 𝜌 (𝑥) = 0 for all irreducible representations 𝜌}.

Remark 3.48. The previous exercise shows that 𝐽 (Λ𝑉 ) = Λ>1𝑉 .

Exercise 3.49. Prove that 𝐽 (𝐴) is an ideal of 𝐴.
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Denition 3.50. A nite dimensional algebra 𝐴 is called semisimple if 𝐽 (𝐴) = 0.

Denition 3.51. Let 𝜌 : 𝐴 → End(𝑉 ) be an irreducible representation. The commuting algebra of
𝜌 is the subalgebra

End𝐴 (𝑉 ) = {𝑥 ∈ End𝑘 (𝑉 ) : [𝑥, 𝜌 (𝑦)] = 0 for all 𝑦 ∈ 𝐴}.

Lemma 3.52 (Schur’s Lemma). Let𝑉 and𝑊 be irreducible representation of𝐴. If 𝑓 ∈ Hom𝐴 (𝑉 ,𝑊 ) ⊂
Hom𝑘 (𝑉 ,𝑊 ), that is, 𝑓 : 𝑉 →𝑊 is 𝑘–linear and

𝑓 (𝑥𝑣) = 𝑥 𝑓 (𝑣)

for all 𝑥 ∈ 𝐴, then either 𝑓 = 0 or 𝑓 is invertible.

Corollary 3.53. If 𝑉 is an irreducible representation, then End𝐴 (𝑉 ) is a division algebra over 𝑘 , that
is, every non-zero 𝑥 ∈ End𝐴 (𝑉 ) is invertible.

Theorem 3.54 (Frobenius). If 𝐷 is a division algebra over R, then 𝐷 is isomorphic to either R, C, or H.

Proposition 3.55. If 𝑘 is an algebraically closed eld, e.g., 𝑘 = C, then any division algebra over 𝑘 is
isomorphic to 𝑘 .

Theorem 3.56 (Wedderburn’s Structure Theorem). Let 𝐴 be a nite dimensional algebra.

1. 𝐴 has only nitely many irreducible representations𝑉1, . . . ,𝑉𝑛 and each𝑉𝑖 is nite dimensional.

2. Denote by 𝐷𝑖 the commuting algebra of 𝑉𝑖 . We have

𝐴/𝐽 (𝐴) �
𝑛∏
𝑖=1

End𝐷𝑖
(𝑉𝑖) .

Proof. You can nd a proof in Igusa’s lectures notes. �

3.9 Digression: Representation theory of nite groups

Theorem 3.56 together with the following result largely clarify the representation theory of nite

groups.

Theorem 3.57 (Maschke’s Theorem). If the characteristic of 𝑘 does not divide |𝐺 |, then 𝑘 [𝐺] is
semisimple.
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Proof. Suppose 𝑘 [𝐺] → End(𝑉 ) is a representation and𝑊 ⊂ 𝑉 is an invariant subspace. Denote

by 𝜋 : 𝑉 → 𝑉 a projection on𝑊 , that is, im𝜋 =𝑊 and 𝜋 |𝑊 = id𝑊 . Averaging over 𝐺 , we can

assume that 𝜋 is 𝐺–invariant. Set𝑊 ⊥ ≔ ker𝜋 . This is an invariant subspace.

This means that we can decompose 𝑘 [𝐺] into irreducible representations 𝑘 [𝐺] =
⊕

𝑉𝑖 .

Every non-zero 𝑥 ∈ 𝑘 [𝐺] acts non-trivially on 𝑘 [𝐺] and thus on at least one of the irreducible

representations 𝑉𝑖 . Consequently, 𝐽 (𝑘 [𝐺]) = {0}. �

3.10 Determination of Cℓ𝑟,𝑠

Exercise 3.58. Let 𝑘 be a eld, let 𝐷 be a 𝑘–algebra, and let 𝑛,𝑚 ∈ N0. We have

M𝑛 (𝑘) ⊗ M𝑚 (𝑘) � M𝑛𝑚 (𝑘) and M𝑛 (𝑘) ⊗𝑘 𝐷 � M𝑛 (𝐷) .

Theorem 3.59. For 𝑟, 𝑠 ∈ {0, . . . , 7}, Cℓ𝑟,𝑠 is as in Table 1. Moreover, we have

Cℓ𝑟+8,𝑠 � Cℓ𝑟,𝑠 ⊗ M16(R) and Cℓ𝑟,𝑠+8 � Cℓ𝑟,𝑠 ⊗ M16(R) .

The proof of this result relies on the following observation.

Proposition 3.60. Let (𝑉 ,𝑞) be a quadratic space. We have

Cℓ
(
(𝑉 ,𝑞) ⊕ (±1)⊕2

)
� Cℓ (𝑉 ,−𝑞) ⊗ Cℓ

(
(±1)⊕2

)
and

Cℓ ((𝑉 ,𝑞) ⊕ (1) ⊕ (−1)) � Cℓ (𝑉 ,𝑞) ⊗ Cℓ ((1) ⊕ (−1)) .

Proof. Denote by (𝑒1, 𝑒2) the standard basis of 𝑘 ⊕2
. Dene 𝛾 : 𝑉 ⊕𝑘 ⊕2 → Cℓ (𝑉 ,−𝑞) ⊗Cℓ

(
(±1)⊕2

)
by

𝛾 (𝑣, 𝑥,𝑦) ≔ 𝑣 ⊗ 𝑒1𝑒2 + 1 ⊗ 𝑥𝑒1 + 1 ⊗ 𝑦𝑒2.

Since

𝛾 (𝑣, 𝑥,𝑦)2 = −𝑞(𝑣) ± 𝑥2 ± 𝑦2,

𝛾 induces an algebra homomorphism Cℓ
(
(𝑉 ,𝑞) ⊕ (±1)⊕2

)
→ Cℓ (𝑉 ,−𝑞) ⊗ Cℓ

(
(±1)⊕2

)
. This map

is surjective because it maps onto a set of generators. For dimension reasons it also injective and,

hence, an algebra isomorphism.

The second isomorphism is constructed by the same argument. �

Corollary 3.61. For 𝑟, 𝑠 ∈ N0, we have

Cℓ𝑟,𝑠 ⊗ M2(R) � Cℓ𝑠+2,𝑟 ,

Cℓ𝑟,𝑠 ⊗ H � Cℓ𝑠,𝑟+2, and

Cℓ𝑟,𝑠 ⊗ M2(R) � Cℓ𝑟+1,𝑠+1.
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𝑟 = 0 1 2 3 4 5 6 7

𝑠 = 0 R R⊕2
M2(R) M2(C) M2(H) M2(H)⊕2 M4(H) M8(C)

1 C M2(R) M2(R)⊕2 M4(R) M4(C) M4(H) M4(H)⊕2 M8(H)
2 H M2(C) M4(R) M4(R)⊕2 M8(R) M8(C) M8(H) M8(H)⊕2
3 H⊕2

M2(H) M4(C) M8(R) M8(R)⊕2 M16(R) M16(C) M16(H)
4 M2(H) M2(H)⊕2 M4(H) M4(C) M16(R) M16(R)⊕2 M32(R) M32(C)
5 M4(C) M4(H) M4(H)⊕2 M8(H) M8(C) M32(R) M32(R)⊕2 M64(R)
6 M8(R) M8(C) M8(H) M8(H)⊕2 M16(H) M16(C) M64(R) M64(R)⊕2
7 M8(R)⊕2 M16(R) M16(C) M16(H) M16(H)⊕2 M32(H) M32(C) M128(R)

Table 1: Cℓ𝑟,𝑠
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Proposition 3.62. We have

C ⊗R C � C ⊕ C, C ⊗R H � M2(C), and H ⊗R H � M4(R)

Proof. The the isomorphism C ⊗R C → C ⊗ C is given by

𝑧 ⊗𝑤 ↦→ 𝑧𝑤 ⊕ 𝑧�̄� .

Identifying H = C ⊕ C 𝑗 = C2
, C ⊗R H acts on C2

via

(𝑧 ⊗ 𝑞) · 𝑣 = 𝑧𝑣𝑞.

This action isC–linear. A computation shows that the resulting mapC⊗RH → EndC(C2) � M2(C)
is an isomorphism.

Identifying H = R4
, H ⊗R H acts on R4

via

(𝑝 ⊗ 𝑞) · 𝑣 = 𝑝𝑣𝑞.

This action isC–linear. A computation shows that the resulting mapH⊗RH → EndR (R4) � M4(R)
is an isomorphism. �

Proof of Theorem 3.59. The proof now proceeds as follows:

1. Determine Cℓ3,0, Cℓ4,0 using Cℓ0,𝑠 ⊗ M2(R) � Cℓ𝑠+2,0.

2. Determine Cℓ0,3,...,Cℓ0,6 using Cℓ𝑟,0 ⊗ H � Cℓ0,𝑟+2

3. Determine Cℓ5,0, Cℓ7,0 using Cℓ0,𝑠 ⊗ M2(R) � Cℓ𝑠+2,0

4. Determine Cℓ0,7 using Cℓ𝑟,0 ⊗ H � Cℓ0,𝑟+2

5. Determine the rest of Table 1 using Cℓ𝑟,𝑠 ⊗ M2(R) � Cℓ𝑟+1,𝑠+1.

The establish the periodicity in 𝑟 and 𝑠 , observe that

Cℓ𝑟+8,𝑠 � Cℓ𝑠,𝑟+6 ⊗ M2(R) � Cℓ𝑟+4,𝑠 ⊗ M2(H) � Cℓ𝑠,𝑟+2 ⊗ M4(H) � Cℓ𝑟,𝑠 ⊗ M16(R)

and, similarly,

Cℓ𝑠,𝑟+8 � Cℓ𝑠,𝑟 ⊗ M16(R) .

�
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Proposition 3.63. Denote by 𝜈𝑟,𝑠 the number of irreducible representation of Cℓ𝑟,𝑠 . Denote by 𝐷𝑟,𝑠
the commuting algebra of an irreducible representation of Cℓ𝑟,𝑠 . Denote by 𝑑𝑟,𝑠 the dimension of an
irreducible representation of Cℓ𝑟,𝑠 over 𝐷𝑟,𝑠 . We have

𝜈𝑟,𝑠 =

{
2 if 𝑟 − 𝑠 = 1 mod 4

1 if 𝑟 − 𝑠 ≠ 1 mod 4,

𝐷𝑟,𝑠 =


R if 𝑟 − 𝑠 = 0, 1, 2 mod 8

C if 𝑟 − 𝑠 = 3 mod 4

H if 𝑟 − 𝑠 = 4, 5, 6 mod 8, and

𝑑𝑟,𝑠 =
2
𝑟+𝑠

𝜈𝑟,𝑠 · dimR 𝐷𝑟,𝑠
.

Proof. This is a direct consequence of Theorem 3.59 �

3.11 Determination of Cℓ𝑟
Proposition 3.64. For 𝑟 ∈ N0, we have

Cℓ𝑟 �

{
M

2
𝑟/2 (C) if 𝑟 is even

M
2
(𝑟−1)/2 (C)⊕2 if 𝑟 is odd.

Exercise 3.65. Prove that Cℓ𝑟,𝑠 ⊗ C = Cℓ𝑟+𝑠 .

Exercise 3.66. Derive Proposition 3.64 from Theorem 3.59.

3.12 Digression: determining Cℓ𝑟,𝑠 via the representation theory of nite groups

Here is an alternative strategy for determining Cℓ𝑟,𝑠 . Denote by 𝑒1, . . . , 𝑒𝑟+𝑠 the standard orthonor-

mal basis of (R𝑟+𝑠 , 𝑞𝑟,𝑠). Let 𝐺𝑟,𝑠 be the nite subgroup of Cℓ×𝑟,𝑠 of elements of the form

±𝑒𝑖1 · · · 𝑒𝑖𝑛 .

Show that a Cℓ𝑟,𝑠 representation is equivalent to a 𝐺𝑟,𝑠 representation in which −1 ∈ 𝐺𝑟,𝑠 acts as
−1. Determine the irreducible representations of 𝐺𝑟,𝑠 using the representation theory of nite

groups. Prove that Cℓ𝑟,𝑠 is semi-simple. Use Theorem 3.56 to determine Cℓ𝑟,𝑠 .

This is strategy is carried out in [Roe98] for Cℓ𝑟 where it is attributed to J.F. Adams.

3.13 Chirality

The following assumes 𝑟 + 𝑠 > 0. From our determination of Cℓ𝑟,𝑠 and Cℓ𝑟 we know that these

algebras decompose into the direct sum of two algebras if 𝑟 − 𝑠 = 1 mod 4 and 𝑟 = 1 mod 2

respectively. The following explains where this splitting comes from and how to distinguish the

summands in the splitting.
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Denition 3.67. Fix an orientation on R⊕𝑟+𝑠
and denote by 𝑒1, . . . , 𝑒𝑟+𝑠 a positive orthonormal

basis for 𝑞𝑟,𝑠 that is

𝑏𝑟,𝑠 (𝑒𝑖 , 𝑒 𝑗 ) = ±𝛿𝑖 𝑗 .

The volume element is
𝜔 ≔ 𝑒1 · · · 𝑒𝑟+𝑠 ∈ Cℓ𝑟,𝑠 .

Proposition 3.68. The volume element𝜔 is central in Cℓ (𝑉 ,𝑞) (that is: 𝜔𝑥 = 𝑥𝜔 for all 𝑥 ∈ Cℓ (𝑉 ,𝑞))
if and only if 𝑟 + 𝑠 = 1 mod 2 and it satises 𝜔2 = 1 if and only if 𝑟 − 𝑠 ∈ {0, 1} mod 4.

Proof. We have

𝑒1 · · · 𝑒𝑟+𝑠 · 𝑒1 · · · 𝑒𝑟+𝑠 = (−1)𝑟+𝑠−1𝑒2
1
𝑒2 · · · 𝑒𝑟+𝑠 · 𝑒2 · · · 𝑒𝑟+𝑠

= (−1)
(𝑟+𝑠 ) (𝑟+𝑠−1)

2 𝑒2
1
𝑒2
2
· · · 𝑒2𝑟+𝑠

= (−1)
(𝑟+𝑠 ) (𝑟+𝑠−1)

2
+𝑠

and

𝑣𝜔 = (−1)𝑟+𝑠−1𝜔𝑣

for all 𝑣 ∈ Cℓ (𝑉 ,𝑞). Consequently, 𝜔 is central and satises 𝜔2 = 1 if and only if

𝑟 − 𝑠 = (𝑟 + 𝑠)2 mod 4 and 𝑟 + 𝑠 = 1 mod 2

respectively. This implies the assertion by checking the possible values of 𝑟 − 𝑠 mod 4. �

Remark 3.69. The volume element 𝜔 is central and 𝜔2 = 1 if and only if 𝑟 − 𝑠 = 1 mod 4. The

volume element 𝜔 is not central and 𝜔2 = 1 if and only if 𝑟 − 𝑠 = 0 mod 4 and 𝑟 + 𝑠 > 0.
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Proposition 3.70. Suppose that 𝑟 − 𝑠 = 1 mod 4.

1. The linear maps 𝜋± : Cℓ𝑟,𝑠 → Cℓ𝑟,𝑠 dened by

𝜋±(𝑥) ≔
1

2

(1 ± 𝜔)𝑥

are algebra homomorphisms and satisfy

𝜋2

± = 𝜋±, 𝜋+𝜋− = 𝜋−𝜋+ = 0, and 𝜋+ + 𝜋− = id.

Consequently,
Cℓ±𝑟,𝑠 ≔ ker(𝜋∓) = im(𝜋±)

are subalgebras and
Cℓ𝑟,𝑠 = Cℓ+𝑟,𝑠 ⊕ Cℓ−𝑟,𝑠 .

2. Cℓ±𝑟,𝑠 are isomorphic via the automorphism 𝛼 ∈ Aut(Cℓ𝑟,𝑠).

3. Cℓ𝑟,𝑠 has two irreducible representations 𝑆+ and 𝑆−. The volume element 𝜔 acts as ±id𝑆± on 𝑆±.
Cℓ∓𝑟,𝑠 acts trivially on 𝑆±.

Proof. The assertions about 𝜋± follow immediately from the fact that 𝜔 is central and that 𝜔2 = 1.

The fact that Cℓ±𝑟,𝑠 are isomorphic via 𝛼 follows from the fact that 𝜔 is odd and thus 𝛼 (𝜔) = −𝜔
and, consequently, 𝜋±𝛼 = 𝛼𝜋∓. The assertion about the irreducible representations is left as an

exercise. �

Denition 3.71. We call Cℓ±𝑟,𝑠 the positive chirality and negative chirality summand of Cℓ𝑟,𝑠
respectively. We call 𝑆± the positive chirality and negative chirality irreducible representation of

Cℓ𝑟,𝑠 .

These algebras are the two summands appearing in Cℓ𝑟,𝑠 if 𝑟 − 𝑠 = 1 mod 4. Reversing the

orientation on R𝑟+𝑠 reverses the labels on the summands.

Proposition 3.72. Suppose that 𝑟 − 𝑠 = 0 mod 4 and 𝑟 + 𝑠 > 0.

1. If 𝑆 is a representation of Cℓ𝑟,𝑠 , then there is a decomposition

𝑆 = 𝑆+ ⊕ 𝑆−

into the ±1–eigenspaces of 𝜔 .

2. If 𝑣 ∈ R𝑟+𝑠 with 𝑞𝑟,𝑠 (𝑣) ≠ 0, then the action of 𝑣 induces isomorphisms 𝑆± → 𝑆∓.

3. 𝑆± are representations of Cℓ0𝑟,𝑠 .

Proof. Exercise. �
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Denition 3.73. We call 𝑆± the positive chirality and negative chirality summand of 𝑆 respectively.

The discussion for Cℓ𝑟 is very similar, except that one uses the complex volume element 𝜔C
dened by

𝜔C ≔ 𝑖 b
𝑟+1
2
c𝑒1 · · · 𝑒𝑟 ∈ Cℓ𝑟

for a positive orthonormal basis 𝑒1, . . . , 𝑒𝑟 . I leave it to you actually carry out the discussion.

4 Pin and Spin Groups

Throughout, we assume that (𝑉 ,𝑞) is non-degenerate.

Denition 4.1. The twisted adjoint representation is the map Ãd : Cℓ (𝑉 ,𝑞)× → GL(Cℓ (𝑉 ,𝑞))
dened by

Ãd(𝑥)𝑦 ≔ 𝑥𝑦𝛼 (𝑥)−1.

4.1 The Cliord group

Before introducing the Pin and Spin groups it will be helpful to consider a slightly larger group.

Denition 4.2. Let (𝑉 ,𝑞) be a non-degenerate quadratic space. The Cliord group of (𝑉 ,𝑞) is the
group

Γ(𝑉 ,𝑞) ≔
{
𝑥 ∈ Cℓ (𝑉 ,𝑞)× : Ãd(𝑥) (𝑉 ) ⊂ 𝑉

}
.

The special Cliord group of (𝑉 ,𝑞) is the group

𝑆Γ(𝑉 ,𝑞) ≔ Γ(𝑉 ,𝑞) ∩ Cℓ (𝑉 ,𝑞)0.

Proposition 4.3.

1. If 𝑥 ∈ Γ(𝑉 ,𝑞), then Ãd(𝑥) ∈ O(𝑉 ,𝑞) ⊂ GL(𝑉 ).

2. The group homomorphism Ãd : Γ(𝑉 ,𝑞) → O(𝑉 ,𝑞) is surjective and its kernel is 𝑘×; that is,
we have an exact sequence

0 → 𝑘× → Γ(𝑉 ,𝑞) Ãd−−→ O(𝑉 ,𝑞) → 0.

Corollary 4.4. Suppose (𝑉 ,𝑞) is non-degenerate. Γ(𝑉 ,𝑞) is the subgroup of Cℓ (𝑉 ,𝑞)× generated by
𝑘× and anisotropic vectors 𝑣 ∈ 𝑉 .
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Proposition 4.5. Dene 𝑁 : Cℓ (𝑉 ,𝑞) → Cℓ (𝑉 ,𝑞) by

𝑁 (𝑥) ≔ 𝑥𝑥 .

1. Given 𝑥 ∈ Γ(𝑉 ,𝑞),
𝑁 (𝑥) ∈ 𝑘× ⊂ Cℓ (𝑉 ,𝑞).

2. If 𝑣 ∈ 𝑉 \{0} ⊂ Γ(𝑉 ,𝑞), then 𝑁 (𝑣) = −𝑞(𝑣).

3. The map 𝑁 : Γ(𝑉 ,𝑞) → 𝑘× is a group homomorphism.

Denition 4.6. The group homomorphism 𝑁 : Γ(𝑉 ,𝑞) → 𝑘× is called the Cliord norm.

Denition 4.7. Since 𝑁 (𝑘×) ⊂ (𝑘×)2, the Cliord norm induces a group homomorphism

𝑁 : O(𝑉 ,𝑞) → 𝑘×/(𝑘×)2

called the spinor norm.

Proof that ker Ãd∩Γ(𝑉 ,𝑞) = 𝑘×. Suppose 𝑥 ∈ Γ(𝑉 ,𝑞) and Ãd(𝑥) = id𝑉 . Denote by 𝑥0 the even

part of 𝑥 and by 𝑥1 its odd part. We have

(4.8) 𝑣𝑥0 = 𝑥0𝑣 and − 𝑣𝑥1 = 𝑥1𝑣 .

In an orthogonal basis 𝑒1, . . . , 𝑒𝑛 of 𝑣 we can write 𝑥0 = 𝑦0 + 𝑒1𝑦1 with 𝑦0 and 𝑦1 only involving

𝑒2, . . . , 𝑒𝑛 . Since 𝑥0 is even, 𝑦0 must be even and 𝑦1 must be odd. Applying (4.8) with 𝑣 = 𝑒1 yields

𝑒1𝑦0 + 𝑒21𝑦1 = 𝑦0𝑒1 + 𝑒1𝑦1𝑒1
= 𝑒1𝑦0 − 𝑒21𝑦1.

Consequently, 𝑒2
1
𝑦1 = 𝑞(𝑒1)𝑦1 = 0 and thus 𝑦1 = 0. This means that 𝑥0 does not actually involve 𝑒1.

Arguing inductively it follows that 𝑥0 does not involve any 𝑒𝑖 and thus 𝑥0 ∈ 𝑘 .
We now write 𝑥1 = 𝑦1 + 𝑒1𝑦0 with 𝑦0 even and 𝑦1 odd and neither involving 𝑒1. From (4.8) with

𝑣 = 𝑒1 it follows that

−𝑒1𝑦1 − 𝑒21𝑦0 = 𝑦1𝑒1 + 𝑒1𝑦0𝑒1
= −𝑒1𝑦1 + 𝑒21𝑦0

and thus 𝑦0 = 1. This proves that 𝑥1 does not involve 𝑒1. It follows inductively that 𝑥1 does not

involve any 𝑒𝑖 and thus 𝑥1 ∈ 𝑘 . In fact, 𝑥1 = 0 because it is odd. Consequently, 𝑥 ∈ 𝑘 . Since 𝑥 is

invertible, we must have 𝑥 ∈ 𝑘×. �
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Proof of Proposition 4.5. We prove (1). Given 𝑥 ∈ Γ(𝑉 ,𝑞), we have

(Ãd(𝑥)𝑣)𝑡 = Ãd(𝑥)𝑣

and, therefore,

Ãd(𝑁 (𝑥))𝑣 = 𝑥 (𝑥𝑣𝛼 (𝑥)−1) (𝑥𝑡 )−1

= 𝑥 (𝑥𝑣𝛼 (𝑥)−1)𝑡 (𝑥𝑡 )−1

= 𝑥𝑥−1𝑣𝑥𝑡 (𝑥𝑡 )−1 = 𝑣

for all 𝑣 ∈ 𝑉 . Therefore, 𝑁 (𝑥) ∈ ker Ãd = 𝑘×.
The assertion (2) is trivial.

We prove (3). If 𝑥,𝑦 ∈ Γ(𝑉 ,𝑞), then

𝑁 (𝑥𝑦) = 𝑦𝑥𝑥𝑦 = 𝑦𝑁 (𝑥)𝑦 = 𝑁 (𝑥)𝑦𝑦 = 𝑁 (𝑥)𝑁 (𝑦) .

�

Proof of Proposition 4.3. We prove (1). Given 𝑥 ∈ Γ(𝑉 ,𝑞) and 𝑣 ∈ 𝑉 with 𝑞(𝑣) ≠ 0, since 𝑁 (𝛼 (𝑥)) =
𝑁 (𝑥), we have

𝑁 (Ãd(𝑥)𝑣) = 𝑁 (𝑥𝑣𝛼 (𝑥)−1) = 𝑁 (𝑥)𝑁 (𝑥)−1𝑁 (𝑣) = 𝑁 (𝑣).

Consequently,

𝑞(Ãd(𝑥)𝑣) = 𝑞(𝑣)

for all non-zero 𝑣 ; hence Ãd(𝑥) ∈ O(𝑉 ,𝑞).
The fact that ker Ãd = 𝑘× was already proved and we also already proved that Ãd maps onto

O(𝑉 ,𝑞). �

Exercise 4.9. Prove that 𝑥 ∈ Γ(𝑉 ,𝑞) implies 𝑥 ∈ Γ(𝑉 ,𝑞).

4.2 Spin(𝑉 ,𝑞) and Pin(𝑉 ,𝑞)
Denition 4.10. The pin group associated with (𝑉 ,𝑞) is the group

Pin(𝑉 ,𝑞) ≔ ker𝑁 ⊂ Γ(𝑉 ,𝑞) .

The spin group associated with (𝑉 ,𝑞) is the group

Spin(𝑉 ,𝑞) ≔ Pin(𝑉 ,𝑞) ∩ 𝑆Γ(𝑉 ,𝑞) .

The following is a consequence of Corollary 4.4.
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Corollary 4.11. The pin and spin group can be described explicitly as follows

Pin(𝑉 ,𝑞) =
{
𝜆𝑣1 · · · 𝑣𝑛 ∈ Cℓ (𝑉 ,𝑞)× : 𝜆2

∏
𝑖

𝑞(𝑣𝑖) = (−1)𝑛
}

and

Spin(𝑉 ,𝑞) =
{
𝜆𝑣1 · · · 𝑣2𝑛 ∈ Cℓ (𝑉 ,𝑞)× : 𝜆2

∏
𝑖

𝑞(𝑣𝑖) = 1

}
.

Here 𝜆 ∈ 𝑘× and 𝑣𝑖 ∈ 𝑉 are anisotropic vectors.

Remark 4.12. In [LM89] Pin(𝑉 ,𝑞) and Spin(𝑉 ,𝑞) are dened dierently and their denitions do

indeed give rise to dierent groups. However, for 𝑘 = R and positive and negative denite forms

our spin groups will be identical to those dened in [LM89]. In as much as denitions can be

wrong, I think their denition is wrong.

There are exact sequences

0 → {±1} → Pin(𝑉 ,𝑞) → O(𝑉 ,𝑞) 𝑁−→ 𝑘×/(𝑘×)2

and

0 → {±1} → Spin(𝑉 ,𝑞) → SO(𝑉 ,𝑞) 𝑁−→ 𝑘×/(𝑘×)2.

Example 4.13. Suppose 𝑞 = 𝑞𝑟,𝑠 on R𝑟+𝑠 . We have R×/(R×)2 � {±1}. The spinor norm of a

reection 𝑟𝑣 ∈ O(𝑉 ,𝑞) in an anisotropic vector 𝑣 is − sign(𝑞(𝑣)). If 𝑠 = 0, that is, 𝑞 is positive

denite, then 𝑁 = (−1)det. Therefore, Spin𝑟,0 = Pin𝑟,0! If 𝑟 = 0, that is, 𝑞 is negative denite, then

𝑁 = 1.

Denition 4.14. Given 𝑟, 𝑠 ∈ N0, we dene

Pin𝑟,𝑠 ≔ Pin(R𝑟+𝑠 , 𝑞𝑟,𝑠) and Spin𝑟,𝑠 ≔ Spin(R𝑟+𝑠 , 𝑞𝑟,𝑠) .

We will later restrict to denite quadratic forms and use the following conventions.

Denition 4.15. We dene

O(𝑛) ≔ O0,𝑛 and SO(𝑛) ≔ SO0,𝑛 .

as well as

Pin(𝑛) ≔ Pin0,𝑛 and Spin(𝑛) ≔ Spin
0,𝑛 .

Of course, O(𝑛) = O𝑛,0 but the choice of the negative sign makes certain identities come out

cleaner.
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4.3 Digression: The Lorentz Group

The Lorentz group O(1, 3) = O(R4, 𝑞1,3) is the group of matrices 𝐴 ∈ M4(R) such that

𝐴𝑡𝑄𝐴 = 𝑄 with 𝑄 = diag(1,−1,−1,−1)

Denition 4.16. A vector 𝑣 ∈ (R4, 𝑞 = 𝑞1,3) is called time-like, space-like, or light-like if 𝑞(𝑣) > 0,

𝑞(𝑣) < 0, 𝑞(𝑣) = 0 respectively. We say that 𝑣 = (𝑣0, 𝑣1, 𝑣2, 𝑣3) is positive if 𝑣0 > 0.

The set of all light-like vector forms the light-cone.

The complement of light-cone in R4
has 3 components: positive light-like vectors, negative

light-like vectors, and space-like vectors. Any Lorentz transformation 𝐴 ∈ O(1, 3) preserves the
light-cone, but it might interchange the positive and negative light-cone; e.g., the time-inversion

𝑇 = diag(−1, 1, 1, 1).

A moment’s thought shows that 𝐴 = (𝑎𝑖 𝑗 ) switches the positive and negative light-like directions

if and only if 𝑎00 < 0.

Denition 4.17. A Lorentz transformation 𝐴 = (𝑎𝑖 𝑗 ) ∈ O(1, 3) is called orthochronous if 𝑎00 > 0.

The orthochronous Lorentz group is the group

O
+(1, 3) = {𝐴 ∈ O(1, 3) : 𝑎00 > 0}

and the proper, orthochronous Lorentz group or restricted Lorentz group is

SO
+(1, 3) = SO(1, 3) ∩ O

+(1, 3) .

Proposition 4.18. The group SO
+(1, 3) is a connected normal subgroup. The quotient

O(1, 3)/SO+(1, 3) is isomorphic to the subgroup of O(1, 3) generated by

𝑇 = diag(−1, 1, 1, 1) and 𝑃 = diag(1,−1,−1,−1)

which is itself isomorphic to the Klein four group. In particular O(1, 3) has 4 connected components.

Proof. This should be in any self-respecting book on Special Relativity. �

Let 𝑣 ∈ (R4, 𝑞1,3). If 𝑣 is space-like, then 𝑁 (𝑣) > 0 and Ãd(𝑣) ∈ 𝑃 · SO+(1, 3). If 𝑣 is time-like,

then 𝑁 (𝑣) < 0 and Ãd(𝑣) ∈ 𝑇 · SO+(1, 3). This means that the image of Pin1,3 is {1, 𝑃} · SO+(1, 3) =
O
+(1, 3) while the image of Spin

1,3 is SO
+(1, 3).
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4.4 Pin𝑟,𝑠 and Spin𝑟,𝑠

One can prove, more generally, that if 𝑟, 𝑠 ∈ N0, then O𝑟,𝑠 has at most 4 connected components

distinguished by the value of det×𝑁 : O𝑟,𝑠 → {±1} × {±1}. More precisely,

𝜋0(O𝑟,𝑠) =
{
Z2 × Z2 if 𝑟, 𝑠 > 0,

Z2 otherwise.

Following the notation above we set

SO
+
𝑟,𝑠 ≔ (det×𝑁 )−1(+1, +1) and O

+
𝑟,𝑠 ≔ 𝑁 −1(+1).

We have exact sequences

0 → Z2 → Pin𝑟,𝑠 → O
+
𝑟,𝑠 → 0 and 0 → Z2 → Spin𝑟,𝑠 → SO

+
𝑟,𝑠 → 0.

Corollary 4.19. Spin𝑟,𝑠 is a Lie group.

Proposition 4.20. If 𝑟, 𝑠 ∈ N but (𝑟, 𝑠) ≠ (1, 1), then the covering maps Pin𝑟,𝑠 → O
+
𝑟,𝑠 and Spin𝑟,𝑠 →

SO
+
𝑟,𝑠 are non-trivial on each connected component of the base.

Proof. It suces to prove that +1 and −1 are connected in Spin𝑟,𝑠 . Fix an orthonormal set 𝑒1, 𝑒2
with 𝑞(𝑒1) = 𝑞(𝑒2) = ±1 and dene a path 𝛾 : [0, 𝜋/2] → Spin𝑟,𝑠 by

𝛾 (𝑡) = (𝑒1 cos(𝑡) + 𝑒2 sin(𝑡)) (𝑒1 cos(𝑡) − 𝑒2 sin(𝑡)) .

Since

𝛾 (𝜋/2) = 𝑒2
1
= ±1 and 𝛾 (𝜋/2) = −𝑒2

2
= ∓1,

this completes the proof. �

4.5 Comparing 𝔰𝔭𝔦𝔫𝑟,𝑠 and 𝔰𝔬𝑟,𝑠 .

Denition 4.21. We denote by 𝔰𝔭𝔦𝔫𝑟,𝑠 the Lie algebra of Spin𝑟,𝑠 .

Proposition 4.22. With respect to the identication

Λ2R𝑛 =
{
1

2
(𝑣𝑤 −𝑤𝑣) : 𝑣,𝑤 ∈ R𝑛

}
⊂ Cℓ0,𝑛,

we have
𝔰𝔭𝔦𝔫𝑟,𝑠 = Λ2R𝑛 .
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Proof. Fix an orthonormal basis 𝑒1, . . . , 𝑒𝑛 of R𝑛 . For 𝑖 < 𝑗 , the curve

𝛾 (𝑡) = (𝑒𝑖 cos(𝑡/2) + 𝑒 𝑗 sin(𝑡/2)) · (−𝑒𝑖 cos(𝑡/2) + 𝑒 𝑗 sin(𝑡/2))
= cos(𝑡) + sin(𝑡)𝑒𝑖𝑒 𝑗

lies in Spin(𝑛) and its tangent vector at 𝛾 (0) is 𝑒𝑖𝑒 𝑗 . This means that 𝔰𝔭𝔦𝔫𝑟,𝑠 ⊂ Λ2R𝑛 . By dimension

counting the inclusion must be an identity. �

There also is a natural isomorphism Λ2R𝑛 � 𝔰𝔬𝑟,𝑠 given by

(𝑣 ∧𝑤)𝑥 = 𝑏𝑟,𝑠 (𝑤, 𝑥)𝑣 − 𝑏𝑟,𝑠 (𝑣, 𝑥)𝑤.

Here 𝑏𝑟,𝑠 is the symmetric bilinear form associated with 𝑞𝑟,𝑠 .

Remark 4.23. This isomorphism is simply raising one index using 𝑏𝑟,𝑠 .

Remark 4.24. For SO(𝑛) = SO0,𝑛 , we have

(𝑣 ∧𝑤)𝑥 = 〈𝑣, 𝑥〉𝑤 − 〈𝑤, 𝑥〉𝑣

with respect to the positive denite inner product 〈·, ·〉 on R𝑛 .

Proposition 4.25. The Lie algebra map Lie(Ãd) : 𝔰𝔭𝔦𝔫𝑟,𝑠 → 𝔰𝔬𝑟,𝑠 is given by

Lie(Ãd)𝑒𝑖𝑒 𝑗 = 2𝑒𝑖 ∧ 𝑒 𝑗

or, more invariantly, by
Lie(Ãd) ( [𝑣,𝑤]) = 4𝑣 ∧𝑤.

Proof. Consider the curve 𝛾 (𝑡) = cos(𝑡) + sin(𝑡)𝑒𝑖𝑒 𝑗 in Spin(𝑛). We have ¤𝛾 (0) = 𝑒𝑖𝑒 𝑗 and

d

d𝑡

����
𝑡=0

Ãd(𝛾 (𝑡))𝑣 = 𝑒𝑖𝑒 𝑗𝑣 − 𝑣𝑒𝑖𝑒 𝑗

= 𝑒𝑖𝑒 𝑗𝑣 + 𝑒𝑖𝑣𝑒 𝑗 − 2𝑏𝑟,𝑠 (𝑣, 𝑒𝑖)𝑒 𝑗
= 2𝑏𝑟,𝑠 (𝑣, 𝑒 𝑗 )𝑒𝑖 − 2𝑏𝑟,𝑠 (𝑣, 𝑒𝑖)𝑒 𝑗
= 2(𝑒𝑖 ∧ 𝑒 𝑗 )𝑣 . �

4.6 Identifying Cℓ (𝑉 ,𝑞)0

In light of the denition of Spin(𝑉 ,𝑞), it becomes a relevant question to ask: what is Cℓ (𝑉 ,𝑞)0 and
what are its representatons?

If 𝑆 = 𝑆+ ⊕ 𝑆− is Z2 graded vector space, then End(𝑆) is a Z2 graded algebra with

End(𝑆)0 = End(𝑆+) ⊕ End(𝑆−) and

End(𝑆)1 = Hom(𝑆+, 𝑆−) ⊕ Hom(𝑆−, 𝑆+).
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Denition 4.26. Let 𝐴 be a Z2 graded algebra. A graded representation of 𝐴 is a Z2 graded vector

space 𝑆+ ⊕ 𝑆− together with a graded algebra homomorphism 𝐴 → End(𝑆).

The following allows us to explicitly determine Cℓ0𝑟,𝑠 .

Proposition 4.27. We have

Cℓ (𝑉 ⊕ 𝑘, 𝑞 ⊕ (−1))0 � Cℓ (𝑉 ,𝑞) and Cℓ (𝑉 ⊕ 𝑘, 𝑞 ⊕ (1))0 � Cℓ (𝑉 ,−𝑞)

In particular,
Cℓ0𝑟,𝑠+1 � Cℓ𝑟,𝑠 , Cℓ0𝑟+1,𝑠 � Cℓ𝑠,𝑟 , and Cℓ0𝑟+1 � Cℓ𝑟 .

Proof. Set 𝑒0 ≔ (0, 1) ∈ 𝑉 ⊕ 𝑘 . Dene 𝛾 : 𝑉 → Cℓ (𝑉 ⊕ 𝑘)0 by

𝛾 (𝑣) ≔ 𝑒0𝑣 .

Since

𝛾 (𝑣) = 𝑒0𝑣𝑒0𝑣 = −𝑒2
0
𝑣2 = 𝑞(𝑣),

𝛾 induces an algebra homomorphism Cℓ (𝑉 ,𝑞) → Cℓ (𝑉 ⊕ 𝑘, 𝑞 ⊕ (−1))0.

Exercise 4.28. Prove that the homomorphism is surjective by proving that 𝑒0𝑣 generatesCℓ (𝑉 ⊕𝑘)0.

Multiplication with 𝑒0 induces a vector space isomorphism Cℓ (𝑉 ⊕ 𝑘, 𝑞 ⊕ (−1))0 → Cℓ (𝑉 ⊕ 𝑘, 𝑞 ⊕
(−1))1. Consequently, dimCℓ (𝑉 ⊕ 𝑘, 𝑞 ⊕ (−1))0 = 2

dim𝑉+1/2 = dimCℓ (𝑉 ,𝑞). It follows that the
algebra homomorphism is also injective.

The second isomorphism follows by the same argument. �

Remark 4.29. Note that the isomorphism Cℓ0𝑟+1,𝑠 � Cℓ𝑠,𝑟 changes the order of 𝑟 and 𝑠 .

4.7 Representation theory of Pin(𝑉 ,𝑞) and Spin(𝑉 ,𝑞)
We are interested in representation of Pin(𝑉 ,𝑞) and Spin(𝑉 ,𝑞) in which −1 acts non-trivially.

Representations in which −1 acts trivial, actually are representations of

Ω(𝑉 ,𝑞) ≔ im(Pin(𝑉 ,𝑞) → O(𝑉 ,𝑞)) and

𝑆Ω(𝑉 ,𝑞) ≔ im(Spin(𝑉 ,𝑞) → SO(𝑉 ,𝑞))

and thus yield nothing new.

Proposition 4.30. If 𝜌 : Cℓ (𝑉 ,𝑞) → End(𝑊 ) is a representation of Cℓ (𝑉 ,𝑞), then its restriction
to Pin(𝑉 ,𝑞) is a representation of Pin(𝑉 ,𝑞) in which −1 acts as −id𝑊 If 𝑁 (Γ(𝑉 ,𝑞)) ⊂ (𝑘×)2, then
every such representation of Pin(𝑉 ,𝑞) arises from this construction.
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Proof. The rst part of each of the assertions is trivial. Suppose 𝑁 (Γ(𝑉 ,𝑞)) ⊂ (𝑘×)2. If 𝑣 ∈ 𝑉 is

anisotropic that is 𝑁 (𝑣) = −𝑞(𝑣) ≠ 0, then 𝑣/
√︁
𝑁 (𝑣) ∈ Pin(𝑉 ,𝑞). In fact, Pin(𝑉 ,𝑞) is generated

by ±1 and vectors 𝑣 ∈ 𝑉 with 𝑁 (𝑣) = 1. There is basis (𝑣1, . . . , 𝑣𝑛) of 𝑉 with 𝑏 (𝑣𝑖 , 𝑣 𝑗 ) = 𝛿𝑖 𝑗 . Let
𝜎 : Pin(𝑉 ,𝑞) → GL(𝑊 ) be a representation with 𝜎 (−1) = −id𝑊 . Dene 𝛿 : 𝑉 → End(𝑊 ) to be

the unique linear map such that

𝛿 (𝑣𝑖) = 𝜎 (𝑣𝑖) .

Since

𝛿 (𝑣𝑖)2 = 𝜎 (𝑣𝑖)2 = 𝜎 (−1)2 = −id𝑊 ,

𝛿 extends to a representation 𝜌 : Cℓ (𝑉 ,𝑞) → End(𝑊 ). By construction 𝜌 extends 𝜎 . �

Using this one can introduce the notion of a pinor representation. In this course, we will

not work with pinors, but only spinors. Thus, let us proceed to the construction of the spinor

representation immediately.

Proposition 4.31. Denote by 𝑆 the restriction of an irreducible representation of Cℓ𝑟,𝑠 to Spin𝑟,𝑠 .

1. 𝑆 is independent of the choice of irreducible representation of Cℓ𝑟,𝑠 .

2. If 𝑟 − 𝑠 ∈ {−1,−2} mod 8, then 𝑆 of Spin𝑟,𝑠 decomposes into two equivalent Cℓ0𝑟,𝑠–irreducible
representations 𝑆 = 𝑆 ′ ⊕ 𝑆 ′. If 𝑟 − 𝑠 ∈ {−3,−5,−6,−7} mod 8, then 𝑆 of Spin𝑟,𝑠 is Cℓ

0

𝑟,𝑠–
irreducible.

3. If 𝑟 − 𝑠 = 0 mod 4, then 𝑆 of Spin𝑟,𝑠 decomposes into two inequivalent Cℓ0𝑟,𝑠–irreducible
representations 𝑆 = 𝑆+ ⊕ 𝑆−. 𝑆± is characterized by the volume element 𝜔 acting as ±id𝑆± .
Moreover, if 𝑣 ∈ 𝑉 , then 𝛾 (𝑣)𝑆± ⊂ 𝑆∓.

Remark 4.32. If 𝑁 (𝑆Γ(𝑉 ,𝑞)) ⊂ (𝑘×)2, then irreducible for Cℓ0𝑟,𝑠 implies irreducible for Spin𝑟,𝑠 . This

condition does not hold for indenite quadratic forms (that is, when 𝑟, 𝑠 > 0). In this case, I am

not sure whether irreducible for Cℓ0𝑟,𝑠 implies irreducible for Spin𝑟,𝑠 .

Denition 4.33. We call 𝑆 in Proposition 4.31 the spinor representation of Spin𝑟,𝑠 and we call 𝑆+

and 𝑆− the positive chirality spinor representation and negative chirality spinor representation.

Proof of Proposition 4.31. We prove (1). If 𝑟 − 𝑠 ≠ 1 mod 4, there is a unique irreducible represen-

tation of Cℓ𝑟,𝑠 . For 𝑟 = 𝑠 = 1 mod 4, there are two irreducible representations 𝑆+ and 𝑆− and the

Cliord algebra decomposes as Cℓ𝑟,𝑠 = Cℓ+𝑟,𝑠 ⊕ Cℓ−𝑟,𝑠 . The involution 𝛼 interchanges Cℓ+𝑟,𝑠 and Cℓ
−
𝑟,𝑠

as well as 𝑆+ and 𝑆−. This means that if (𝑥,𝑦) ∈ Cℓ+𝑟,𝑠 ⊕ Cℓ−𝑟,𝑠 , then 𝛼 (𝑥,𝑦) = (𝛼𝑦, 𝛼𝑥). Therefore,

Cℓ0𝑟,𝑠 = {(𝑥, 𝛼 (𝑥)) ∈ Cℓ+𝑟,𝑠 ⊕ Cℓ−𝑟,𝑠 }.

Since the two irreducible representations 𝑆+ and 𝑆− are related by 𝛼 , they agree on Cℓ0𝑟,𝑠 .
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(2) follows by inspecting Table 1 and using Proposition 4.27. E.g., Cℓ0,1 = C has the irreducible

representation C. Restricting to Cℓ0
0,0 = Cℓ0,0 = R this representation splits as C = R ⊕ 𝑖R = R⊕2

.

Similarly, Cℓ0,2 = H has the irreducible representation H. Restricting to Cℓ0
0,2 = Cℓ0,1 = C

this representation splits as H = C ⊕ 𝑗C = C⊕2
. However, the irreducible representation H of

Cℓ0,3 = H⊕2
stays irreducible upon restriction to Cℓ0

0,3 = Cℓ0,2 = H.
(3) is immediate from Proposition 3.72. �

Proposition 4.34. The spinor representations 𝑆 and the representations 𝑆 ′ are faithful.

Proof. Exercise using Table 1. �

Proposition 4.35.

1. The spinor representation 𝑆 of Spin𝑟,𝑠 admits an inner product invariant under the action of
Spin𝑟,𝑠 . If 𝑟 = 0 or 𝑠 = 0, the inner product can be chosen to be positive denite. The action of
R⊕𝑟+𝑠 on 𝑆 is skew-adjoint with respect to this inner product. If 𝑟 − 𝑠 = 0 mod 4, then 𝑆+ ⊥ 𝑆−.

2. If 𝑟 − 𝑠 = −1 mod 8, then 𝑆 admits a complex structure 𝐼 which is invariant under the action
of Spin𝑟,𝑠 and orthogonal with respect to the Euclidean inner product. The action of R⊕𝑟+𝑠 on 𝑆
is C–linear. The complex structure 𝐼 does not preserve 𝑆 ′ ⊂ 𝑆 .

3. If 𝑟 − 𝑠 = −2, mod 8, then 𝑆 admits a quaternionic structure 𝐼 , 𝐽 , 𝐾 which is invariant under
the action of Spin𝑟,𝑠 and orthogonal with respect to the Euclidean inner product. The action of
R⊕𝑟+𝑠 on 𝑆 is H–linear. The complex structure 𝐼 does preserve 𝑆 ′ ⊂ 𝑆 , but 𝐽 and 𝐾 do not.

4. If 𝑟 − 𝑠 = −3,−4 mod 8, then 𝑆 admits a quaternionic structure 𝐼 , 𝐽 , 𝐾 which is invariant
under the action of Spin𝑟,𝑠 and orthogonal with respect to the Euclidean inner product. The
action of R⊕𝑟+𝑠 on 𝑆 is H–linear.

5. If 𝑟 − 𝑠 = −5 mod 8, then 𝑆 admits a quaternionic structure 𝐼 , 𝐽 , 𝐾 which is invariant under
the action of Spin𝑟,𝑠 and orthogonal with respect to the Euclidean inner product; moreover, the
action of R⊕𝑟+𝑠 on 𝑆 is C–linear with respect to the complex structure 𝐼 , but not with respect to
𝐽 and 𝐾 .

Proof. If 𝑟 = 0 or 𝑠 = 0, then Spin𝑟,𝑠 is compact and the inner product can be constructed by

averaging. In general, the construction is discussed in [Har90].

The rest is an exercise using Table 1. �

The preceding proposition, dimension counting, and some Lie algebra theory can be used to

prove the following accidental isomorphisms.
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Proposition 4.36.

Spin
0,2 = U(1),

Spin
0,3 = Sp(1),

Spin
0,4 = Sp(1) × Sp(1),

Spin
0,5 = Sp(2),

Spin
0,6 = SU(4) .

4.8 Pin
𝑐 and Spin

𝑐

If there is one thing we have learned to so far is that the dependence of real Cliord algebras, spin

representations, etc. on 𝑟 and 𝑠 is unpleasantly complicated. The whole story should be much

simpler over the complex numbers. Our construction of Pin(𝑉 ,𝑞) and Spin(𝑉 ,𝑞) directly carries

over to complex vector spaces, but we do not want to work complex vector spaces to start with.

One way out is to complexify and pass to 𝑉 ⊗ C, but then the pin and spin groups do not act on

𝑉 any more. There is a modication of the denition of the Cliord group, and the pin and spin

groups using the real structure (that is: the complex conjugation) on 𝑉 ⊗ C. You can read about

that in [ABS64, p. 9]. Here we will directly make the following denitions.

Denition 4.37. The pin𝑐 and spin
𝑐
groups are dened as

Pin
𝑐 (𝑉 ,𝑞) ≔ Pin(𝑉 ,𝑞) ×Z2

U(1) and Spin
𝑐 (𝑉 ,𝑞) ≔ Spin(𝑉 ,𝑞) ×Z2

U(1)

We dene

Pin
𝑐
𝑠 ≔ Pin

𝑐 (R𝑠 , 𝑞0,𝑠) and Spin
𝑐
𝑠 ≔ Spin

𝑐 (R𝑠 , 𝑞0,𝑠).

Identifying U(1) = {𝑧 ∈ C : |𝑧 | = 1}, these groups naturally sit in Cℓ (𝑉 ⊗ C, 𝑞) via

C ⊗ Cℓ (𝑉 ,𝑞) � Cℓ (𝑉 ⊗ C, 𝑞) .

Denition 4.38. The complex spinor representation𝑊 of Spin
𝑐
𝑠 is the restriction of an irreducible

representation of Cℓ𝑠 . If 𝑠 = 0 mod 2, then we can decompose𝑊 =𝑊 + ⊕𝑊 −
according to the

action of the complex volume element. We call𝑊 ±
the positive/negative chirality complex spinor

representation.

Remark 4.39. The complex spinor representations carries a Hermitian inner product which is

Spin
𝑐
𝑠 invariant.

Remark 4.40. Since Spin
0,𝑠 ⊂ Spin

𝑐
𝑠 , we will also talk about the complex spinor representation of

Spin
0,𝑠 .
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Remark 4.41. If 𝐺 is a Lie group and with a choice of embedding Z2 ⊂ 𝑍 (𝐺), then one can also

consider Spin
𝐺
𝑟,𝑠 = Spin𝑟,𝑠 ×Z2

𝐺 . This plays a role in the discussion of certain Seiberg–Witten

equations.

Throughout,𝑀 is an oriented manifold of dimension dim𝑀 = 𝑛 together with a Riemannian
metric 𝑔 ∈ Γ(𝑆2𝑇 ∗𝑀). All of the theory developed in this chapter can be extended to the case of

semi-Riemannian indenite metrics. If you are used to working with semi-Riemannian manifold,

you will probably have no trouble adjusting the following development to that case.

5 Cliord bundles

Denition 5.1. Let 𝜋 : 𝐸 → 𝑀 be a vector bundle of rank 𝑟 together with a Euclidean metric ℎ.

The orthornormal frame bundle O(𝐸) is the principal O(𝑟 )–bundle dened by

O(𝐸) ≔ {(𝑥, 𝑒1, . . . , 𝑒𝑟 ) ∈ 𝑀 × 𝐸×𝑟 : 𝜋 (𝑒𝑖) = 𝑥, ℎ(𝑒𝑖 , 𝑒 𝑗 ) = 𝛿𝑖 𝑗 }.

If 𝐸 is oriented, then we also dened the orthornormal frame bundle SO(𝐸) as the principal

SO(𝑟 )–bundle dened by

SO(𝐸) ≔ {(𝑥, 𝑒1, . . . , 𝑒𝑟 ) ∈ O(𝐸) : 𝑒1 ∧ · · · ∧ 𝑒𝑟 > 0}.

Exercise 5.2. Construct the obvious principal bundle structures on O(𝐸) and SO(𝐸).

Remark 5.3. If𝑀 is a manifold, then the Serre–Swan theorem identies vector bundles 𝐸 over𝑀

(or rather their spaces of sections Γ(𝐸)) with nitely-generated projective modules over the ring

𝑅 ≔ 𝐶∞(𝑀). The choice of an Euclidean metric is then simply a quadratic form on Γ(𝐸). One can
construct Cℓ (𝐸) using a straight-forward extension of the theory developed earlier to quadratic

forms on modules over rings (as opposed to just quadratic forms on vector spaces). I do not know

if this is useful for anything.

Recall from Corollary 3.10, that O(𝑛) acts on the Cliord algebra Cℓ0,𝑛 .

Denition 5.4. If (𝐸,ℎ) is a Euclidean rank 𝑟 vector bundle, then the Cliord bundle associated
with (𝐸,ℎ) is the bundle

Cℓ (𝐸) ≔ O(𝐸) ×O(𝑟 ) Cℓ0,𝑟 .

We denote by 𝛾 : 𝐸 → Cℓ (𝐸) the map induced by the inclusion R⊕𝑟 → Cℓ0,𝑟 .

Remark 5.5. As vector bundles
Cℓ (𝐸) = Λ𝐸.

Clearly, the bre Cℓ (𝐸)𝑥 of Cℓ (𝐸) over 𝑥 ∈ 𝑀 is the Cliord algebra Cℓ (𝐸𝑥 ,−ℎ). All structures
discussed on Cℓ0,𝑛 naturally carry over to Cℓ (𝐸). In particular, the involution 𝛼 induces a bundle
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map 𝛼 : Cℓ (𝐸) → Cℓ (𝐸) and its (+1)– and (−1)–eigenspaces correspond to the even part Cℓ (𝐸)0
and Cℓ (𝐸)1. Similarly, if 𝑛 = 1 = −3 mod 4 and 𝐸 is oriented, then Cℓ (𝐸) splits as Cℓ (𝐸) =

Cℓ (𝐸)+ ⊕ Cℓ (𝐸)−.

Remark 5.6. If 𝐸 is orientable, there is a splitting but without an choice of orientation we cannot

label the summands. If 𝐸 is not-orientable, the splitting exists locally, but globally it does not; there

will be monodromies exchanging the summands in the splitting.

Denition 5.7. We denote the Cliord bundle associated to (𝑇𝑀,𝑔) by Cℓ (𝑀).

Proposition 5.8. There is a unique covariant derivative ∇ = ∇Cℓ : Γ(Cℓ (𝑀)) → Ω1(𝑀,Cℓ (𝑀)) on
Cℓ (𝑀) such that for all 𝑣 ∈ Γ(𝑇𝑀), and 𝑥,𝑦 ∈ Γ(Cℓ (𝑀)) we have

∇Cℓ𝛾 (𝑣) = 𝛾 (∇LC𝑣) and ∇Cℓ (𝑥𝑦) = (∇Cℓ𝑥)𝑦 + 𝑥 (∇Cℓ𝑦) .

6 Cliord module bundles
Denition 6.1. A Cliord module bundle over𝑀 is a vector bundle 𝜋 : 𝑆 → 𝑀 together with a

smooth map of algebra bundles Cℓ (𝑀) → End(𝑆); that is, the map is smooth and for each 𝑥 ∈ 𝑀
the induced map Cℓ (𝑀)𝑥 → End(𝑆𝑥 ) is an algebra homomorphism.

Denition 6.2. A complex Cliord module bundle over𝑀 is a complex vector bundle 𝜋 : 𝑆 → 𝑀

together with a smooth map of algebra bundles Cℓ (𝑀) → EndC(𝑆).

Denition 6.3. If 𝑆 is a Cliord module bundle, then the induced map 𝛾 : 𝑇𝑀 → End(𝑆) is called
the Cliord multiplication.

Exercise 6.4. Prove that the Cliord multiplication satises

𝛾 (𝑣)2 = −|𝑣 |2id𝑆 .

Prove that the existence of such a Cliord multiplication is equivalent to the existence of a Cliord

module structure.

Example 6.5. Cℓ (𝑀) is a Cliord module bundle.
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Example 6.6. The bundle of exterior algebras

𝑆 ≔ Λ𝑇𝑀 =

𝑛⊕
𝑟=0

Λ𝑟𝑇𝑀

is a Cliord module bundle. To see this we need to dene a Cliord multiplication 𝛾 : 𝑇𝑀 →
End(𝑆). The map 𝛾 dened by

𝛾 (𝑣) (𝑤1 ∧ · · · ∧𝑤𝑟 ) = 𝑣 ∧𝑤1 ∧ · · · ∧𝑤𝑟 −
𝑟∑︁
𝑠=1

(−1)𝑠 〈𝑣,𝑤𝑠〉𝑤1 ∧ · · · ∧ �̂�𝑠 ∧ · · · ∧𝑤𝑟

satises

𝛾 (𝑣)𝛾 (𝑣) (𝑤1 ∧ · · · ∧𝑤𝑟 ) = −|𝑣 |2𝑤1 ∧ · · · ∧𝑤𝑟

−
𝑟∑︁
𝑠=1

(−1)𝑠+1〈𝑣,𝑤𝑠〉𝑣 ∧𝑤1 ∧ · · · ∧ �̂�𝑠 ∧ · · · ∧𝑤𝑟

−
𝑟∑︁
𝑠=1

(−1)𝑠 〈𝑣,𝑤𝑠〉𝑣 ∧𝑤1 ∧ · · · ∧ �̂�𝑠 ∧ · · · ∧𝑤𝑟

= −|𝑣 |2𝑤1 ∧ · · · ∧𝑤𝑟 ;

hence, it is a Cliord multiplication.

The previous example has a natural Z2–grading given by

𝑆0 ≔ Λeven𝑇𝑀 and 𝑆1 ≔ Λodd𝑇𝑀.

This makes it a graded Cliord module bundle.

Exercise 6.7 (Twisting Cliord modules). Suppose 𝑆 is a Cliord module bundle and 𝐸 is a vector

bundle. Show that 𝑆 ⊗ 𝐸 also is a Cliord module bundle.
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Proposition 6.8. Suppose𝑀 is oriented.

1. If 𝑛 = 0 mod 4, then every Cliord module bundle 𝑆 splits according to the action of the
volume element 𝜔 = 𝑒1 · · · 𝑒𝑛 ∈ Cℓ (𝑀) as

𝑆 = 𝑆+ ⊕ 𝑆−.

The Cliord multiplication exchanges 𝑆+ and 𝑆−.

2. If 𝑛 = 0 mod 2, then every complex Cliord module bundle 𝑆 splits according to the action of
the complex volume element 𝜔 = 𝑖 b

𝑛+1
2

c𝑒1 · · · 𝑒𝑛 ∈ Cℓ (𝑀) ⊗ C as

𝑆 = 𝑆+ ⊕ 𝑆−.

The Cliord multiplication exchanges 𝑆+ and 𝑆−.

7 Dirac bundles and Dirac operators

Denition 7.1. A Dirac bundle is a Cliord module bundle 𝑆 together with an inner product 〈·, ·〉
and a covariant derivative ∇ = ∇𝑆 : Γ(𝑆) → Ω1(𝑀, 𝑆) satisfying

〈𝛾 (𝑣)𝑠, 𝑡〉 + 〈𝑠, 𝛾 (𝑣)𝑡〉 = 0 and d〈𝑠, 𝑡〉 = 〈∇𝑆𝑠, 𝑡〉 + 〈𝑠,∇𝑆𝑡〉

as well as

∇𝑆 (𝑥𝑠) = (∇Cℓ𝑥)𝑠 + 𝑥 (∇𝑆𝑠) .

A complex Dirac bundle is Dirac bundle where 𝑆 is a complex vector bundle, the complex

structure 𝐼 is orthogonal with respect to 〈·, ·〉, and ∇𝑆 is complex linear.

Exercise 7.2. Show that if 𝑆 is a (complex) Dirac bundle and 𝐸 is a Euclidean (Hermitian) vector

bundle with a compatible connection ∇𝐸 , then 𝑆 ⊗ 𝐸 is a (complex) Dirac bundle.

Remark 7.3. The rst identity above means that 𝛾 (𝑣)∗ = −𝛾 (𝑣) with respect to 〈·, ·〉. The second
means that the map Cℓ (𝐸) → End(𝑆) is parallel with respect to ∇Cℓ and ∇𝑆 .

Exercise 7.4. Let 𝑆 be a Dirac bundle. Let (𝑒1, . . . , 𝑒𝑛) be a local orthonormal frame of 𝑇𝑀 and 𝑠 a

local section of 𝑆 . The expression

𝐷𝑠 =

𝑛∑︁
𝑖=1

𝛾 (𝑒𝑖)∇𝑆,𝑒𝑖𝑠

does not depend on the choice of (𝑒1, . . . , 𝑒𝑛).

Proof. Since this is a crucial point, let me give the proof. If (𝑓1, . . . , 𝑓𝑛) is another local orthonormal

frame, then there is an orthogonal matrix𝐴 = (𝑎𝑖 𝑗 ) such that 𝑓𝑖 = 𝐴𝑒𝑖 . Therefore, using
∑𝑛
𝑖 𝑎𝑖 𝑗𝑎𝑖𝑘 =
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(𝐴𝑡𝐴) 𝑗𝑘 = 𝛿 𝑗𝑘 , we have

𝑛∑︁
𝑖=1

𝛾 (𝑓𝑖)∇𝑆,𝑓𝑖 =
𝑛∑︁

𝑖, 𝑗,𝑘=1

𝑎𝑖 𝑗𝑎𝑖𝑘𝛾 (𝑒 𝑗 )∇𝑆,𝑒𝑘 =

𝑛∑︁
𝑗,𝑘=1

𝛿 𝑗𝑘𝛾 (𝑒 𝑗 )∇𝑆,𝑒𝑘 =

𝑛∑︁
𝑖=1

𝛾 (𝑒𝑖)∇𝑆,𝑒𝑖 .

�

Remark 7.5. There is a slicker looking argument which says that this is just 𝛾 (∇𝑆𝑠). There is a
secret identication 𝑇𝑀 = 𝑇 ∗𝑀 in this argument; that is, one considers the Cliord multiplication

as a map 𝑇 ∗𝑀 → End(𝑆). To justify this one uses the trace and proving yields the same denition

of 𝐷 involves the invariance of the trace, which is of course proved by the above argument. If one

really wants to avoid the above computation, then one should dene Cℓ (𝑀) = Cℓ (𝑇 ∗𝑀). This is
probably “the right thing”, but let us not bother with such details.

Denition 7.6. The Dirac operator associated with a Dirac bundle 𝑆 is the dierential operator

𝐷 : Γ(𝑆) → Γ(𝑆) dened by

𝐷𝑠 ≔

𝑛∑︁
𝑖=1

𝛾 (𝑒𝑖)∇𝑆,𝑒𝑖 .

Example 7.7. 𝑆 = Λ𝑇𝑀 with its natural Euclidean metric and covariant derivative is a Dirac bundle.

The corresponding Dirac operator is

𝐷 = d + d
∗
: Λ𝑇𝑀 → Λ𝑇𝑀.

Proposition 7.8. Suppose 𝑀 is oriented. With respect to the splittings from Proposition 6.8 the
following hold.

1. Let 𝑆 be a Dirac bundle. If 𝑛 = 0 mod 4, then 𝐷 : Γ(𝑆+ ⊕ 𝑆−) → Γ(𝑆+ ⊕ 𝑆−) decomposes as

𝐷 =

(
0 𝐷−

𝐷+
0

)
.

2. Let 𝑆 be a complex Dirac bundle. If 𝑛 = 0 mod 2, then 𝐷 : Γ(𝑆+ ⊕ 𝑆−) → Γ(𝑆+ ⊕ 𝑆−)
decomposes as

𝐷 =

(
0 𝐷−

𝐷+
0

)
.
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Proposition 7.9. We have

〈𝐷𝑠, 𝑡〉 − 〈𝑠, 𝐷𝑡〉 = div𝑉 with 𝑉 ≔

𝑛∑︁
𝑖=1

〈𝛾 (𝑒𝑖)𝑠, 𝑡〉𝑒𝑖

In particular, if𝑀 is a compact manifold with boundary and 𝜈 denotes outward pointing unit normal,
then

〈𝐷𝑠, 𝑡〉𝐿2 − 〈𝑠, 𝐷𝑡〉𝐿2 =
ˆ
𝜕𝑀

〈𝛾 (𝜈)𝑠, 𝑡〉;

and every𝐷 : Γ(𝑆) → Γ(𝑆) Dirac operator is formally self-adjoint, that is, if 𝑠, 𝑡 ∈ Γ(𝑆) are compactly
supported, then

〈𝐷𝑠, 𝑡〉𝐿2 = 〈𝑠, 𝐷𝑡〉𝐿2 .

Proof. Let (𝑒1, . . . , 𝑒𝑛) be a local orthonormal frame. We compute

〈𝐷𝑠, 𝑡〉 =
𝑛∑︁
𝑖=1

〈𝛾 (𝑒𝑖)∇𝑆,𝑒𝑖𝑠, 𝑡〉

=

𝑛∑︁
𝑖=1

〈∇𝑆,𝑒𝑖 (𝛾 (𝑒𝑖)𝑠), 𝑡〉 − 〈𝛾 (∇LC,𝑒𝑖𝑒𝑖)𝑠), 𝑡〉

=

𝑛∑︁
𝑖=1

〈𝑠,𝛾 (𝑒𝑖)∇𝑆,𝑒𝑖 𝑡〉 + 𝜕𝑒𝑖 〈𝛾 (𝑒𝑖)𝑠, 𝑡〉 − 〈𝛾 (∇LC,𝑒𝑖𝑒𝑖)𝑠, 𝑡〉.

Since

div𝑉 =

𝑛∑︁
𝑖, 𝑗=1

〈∇LC,𝑒𝑖 〈𝛾 (𝑒 𝑗 )𝑠, 𝑡〉𝑒 𝑗 , 𝑒𝑖〉

=

𝑛∑︁
𝑖=1

𝜕𝑒𝑖 〈𝛾 (𝑒𝑖)𝑠, 𝑡〉 + 〈𝛾 (𝑒 𝑗 )𝑠, 𝑡〉〈∇LC,𝑒𝑖𝑒 𝑗 , 𝑒𝑖〉

=

𝑛∑︁
𝑖=1

𝜕𝑒𝑖 〈𝛾 (𝑒𝑖)𝑠, 𝑡〉 − 〈𝛾 (𝑒 𝑗 )𝑠, 𝑡〉〈𝑒 𝑗 ,∇LC,𝑒𝑖𝑒𝑖〉

=

𝑛∑︁
𝑖=1

𝜕𝑒𝑖 〈𝛾 (𝑒𝑖)𝑠, 𝑡〉 − 〈𝛾 (∇LC,𝑒𝑖𝑒𝑖)𝑠, 𝑡〉,

the assertion follows. �

Exercise 7.10. If 𝐷 is a Dirac operator on 𝑆 , 𝑠 ∈ Γ(𝑆) and 𝑓 ∈ 𝐶∞(𝑀), then

𝐷 (𝑓 𝑠) = 𝛾 (∇𝑓 )𝑠 + 𝑓 𝐷𝑠.
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8 Spin structures, spinor bundles, and the Atiyah–Singer operator

It is a natural question, whether a given manifold admits a Cliord module bundle with irreducible

bres. By Proposition 4.30 this question is tightly related to the existence of pin structures.

Assuming the underlying manifold is oriented, this itself is essentially the same as the existence of

spin structures. This is why we will directly go to spin structures and skip pin structures.

Denition 8.1. Let 𝐸 be an oriented Euclidean vector bundle of rank 𝑟 over𝑀 . A spin structure
on 𝐸 is a principal Spin(𝑟 )–bundle 𝔰 over𝑀 together with an isomorphism

𝔰 ×Spin(𝑛) SO(𝑛) � SO(𝐸) .

Denition 8.2. A spin structure on a Riemannian manifold is a spin structure on 𝑇𝑀 . A spin
manifold is a Riemannian manifold with a choice of spin structure.

Denition 8.3. If 𝔰 is a spin structure and 𝑆 is the spinor representation, then we denote by 𝑆 the

associated bundle

𝔰 ×Spin(𝑛) 𝑆.

We call 𝑆 the spinor bundle associated with 𝔰. If 𝔰 is the spinor bundle of a spin manifold, we also

write /𝑆 for the spinor bundle.

A section of /𝑆 is called a spinor eld or, simply, spinor.

The structure of the spinor representation described Proposition 4.35 induces corresponding

structures on 𝑆 . In particular, 𝑆 comes with an Euclidean metric with respect to which the

Cliord multiplication 𝛾 : 𝐸 → End(𝑆) is skew-adjoint. Suppose 𝑀 is a spin manifold and 𝑆 is

the corresponding spinor bundle. What is missing in order to make 𝑆 into a Dirac bundle is a

covariant derivative compatible with the inner product and the Cliord multiplication. Before

discussing this point in detail, we will address the existence question for spin structures.

8.1 Existence of spin structures

We begin by reviewing the axiomatic denition of the second Stiefel–Whitney class.

Denition 8.4. Let 𝐸 be a real vector bundle of rank 𝑟 over a topological space 𝑋 . Let 𝑘 ∈ N0. The

second Stiefel–Whitney class is the unique class𝑤2(𝐸) ∈ 𝐻 2(𝑋,Z2) such that:

1. If 𝐸 → 𝐵SO(𝑟 ) is the universal bundle over 𝐵SO(𝑟 ), then𝑤2(𝐸) ≠ 0 ∈ 𝐻 2(𝐵SO(𝑟 ),Z2) � Z2.

2. If 𝑓 : 𝑋 → 𝑌 is continuous, then

𝑤 (𝑓 ∗𝐸) = 𝑓 ∗𝑤 (𝐸) .
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Proposition 8.5.

1. 𝐸 admits a spin structure if and only if𝑤2(𝐸) = 0.

2. If𝑤2(𝐸) = 0, then the set of spin structures is a 𝐻 1(𝑀,Z2)–torsor.

Proof. The proof relies on the following observation.

Proposition 8.6. There is a bijection between the set of spin structures on 𝐸 and the set of 2–sheeted
covers of SO(𝐸) such that the restriction to a bre of SO(𝐸) is a non-trivial cover.

Proof. The isomorphism 𝔰 ×Spin(𝑛) SO(𝑛) � SO(𝐸) denes a 2–sheeted covering map Ãd via

𝔰 → 𝔰 × {1} → 𝔰 ×Spin(𝑛) SO(𝑛) � SO(𝐸); moreover, Ãd satises Ãd(𝑥𝑔) = Ãd(𝑥) Ãd(𝑔).
Conversely, any Ãd gives rise to and isomorphism 𝔰 ×Spin(𝑛) SO(𝑛) � SO(𝐸). The proposition now

follows by observing that the cover Spin(𝑛) → SO(𝑛) is non-trivial. �

The set of 2–sheeted covers of SO(𝐸) is identied with 𝐻 1(SO(𝐸),Z2). The bijection is given

by the monodromy. Associated to the bration SO(𝐸) → 𝑀 with bre SO(𝑛) there is an exact

sequence

0 → 𝐻 1(𝑀,Z2)
𝜋∗
−−→ 𝐻 1(SO(𝐸),Z2)

res−−→ 𝐻 1(SO(𝑛),Z2)
𝛽𝐸−−→ 𝐻 2(𝑀,Z2) .

If 𝜉 ∈ 𝐻 1(SO(𝐸),Z2) is a 2–sheeted cover of SO(𝐸), then res(𝜉) is its restriction to𝐻 1(SO(𝑛),Z2) =
Z2. If 𝜉 corresponds to a spin structure on 𝐸, then res(𝜉) must be non-trivial, i.e., res(𝜉) = [−1].
Since the above sequence is exact, we must have 𝛽𝐸 ( [−1]) = 0. Conversely, if 𝛽𝐸 ( [−1]) = 0, then

such an 𝜉 exists. Moreover, the set of such 𝜉 is 𝐻 1(𝑀,Z2)–torsor.
It remains to identify 𝛽𝐸 ( [−1]) with𝑤2(𝐸). Since 𝛽𝐸 ( [−1]) is clearly natural, one only needs

to verify by direct computation that𝑤2(𝐸) ≠ 0 for 𝐸 → 𝐵SO(𝑟 ) the universal bundle over 𝐵SO(𝑟 ).
This completes the proof. �

Proof using Čech cohomology. For 𝐺 equal to Z2, Spin(𝑟 ), or SO(𝑟 ), denote by 𝐺 the sheaf of

continuous maps to 𝐺 . The exact sequence

0 → Z2 → Spin(𝑟 ) → SO(𝑟 ) → 0

of groups induces a corresponding exact sequence of sheaves. Since SO(𝑟 ) is connected, ˇ𝐻 0(𝑀, SO(𝑟 )) =
{0}. Hence, the above yields the following exact sequence of Čech cohomology groups:

0 → ˇ𝐻 1(𝑀,Z2) → ˇ𝐻 1(𝑀, Spin(𝑟 )) → ˇ𝐻 1(𝑀, SO(𝑟 ))
𝛽
−→ ˇ𝐻 2(𝑀,Z2) .

𝐸 corresponds to an element in
ˇ𝐻 1(𝑀, SO(𝑟 )), which we also denote by 𝐸. A spin structure on

𝐸 corresponds to an element of
ˇ𝐻 1(𝑀, Spin(𝑟 )) mapping to 𝐸. By exactness of the above sequence,
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the obstruction to the existence of such an element is precisely 𝛽 (𝐸) and the set of such elements

is an torsor over
ˇ𝐻 1(𝑀,Z2).

Since Z2 is discrete, Z2 is the sheaf of locally constant sections of Z2. Therefore,
ˇ𝐻 1(𝑀,Z2) =

𝐻 1(𝑀,Z2).
It remains to identify 𝛽 (𝐸) with 𝑤2(𝐸). This follows from the naturality 𝛽 (𝐸) and checking

that 𝛽 (𝐸) is non-trivial for the universal bundle over 𝐵SO(𝑛). �

Remark 8.7. Recall, that 𝐸 being orientable means is equivalent to𝑤1(𝐸) = 0 is equivalent to 𝑓 ∗𝐸
being trivial for every continuous map 𝑓 : 𝑆1 → 𝑀 . 𝐸 admitting a spin structure is equivalent to

𝑓 ∗𝐸 being trivial for all continuous map from any compact surface to𝑀 .

Theorem 8.8. If𝑀 is an orientable 3–manifold, then𝑤2(𝑀) = 0.

8.2 Connections on spinor bundles

Proposition 8.9. Given any metric covariant derivative ∇𝐸 on 𝐸, there exists a unique metric covariant
derivative on 𝑆 such that

∇𝑆 (𝛾 (𝑣)𝑠) = 𝛾 (∇𝐸𝑣)𝑠 + 𝛾 (𝑣)∇𝑆𝑠 .

Sketch of proof of Proposition 8.9. A metric covariant derivative on 𝐸 is equivalent to a connection

the principal bundle SO(𝐸). The relation is as follows. SupposeE = (𝑒1, . . . , 𝑒𝑛) is a local section
of SO(𝐸). The covariant derivative on 𝐸 induced by 𝜃 is dened by the rule

∇𝑒𝑖 = (E∗𝜃 ) (𝑒𝑖) .

A connection on SO(𝐸) is encoded by a SO(𝑛)–equivariant 1–form

𝜃 ∈ Ω1(SO(𝐸), 𝔰𝔬(𝑟 ))

which restricts to the Maurer–Cartan form on the bres. The desired covariant derivative on 𝑆 is

equivalent to a connection the principal bundle 𝔰 such that the corresponding Spin(𝑛)–equivariant
1–form

˜𝜃 ∈ Ω1(𝔰, 𝔰𝔭𝔦𝔫(𝑟 )) satises
˜𝜃 = 𝜉∗𝜃

with 𝜉 : 𝔰 → SO(𝐸) denoting the covering map induced by 𝔰 ×Spin(𝑛) SO(𝑛) � SO(𝐸) and under

the identication 𝔰𝔭𝔦𝔫(𝑟 ) = Λ2R⊕𝑟 = 𝔰𝔬(𝑟 ). �

54



Remark 8.10. If the connection 1–form of ∇𝐸 is given by

𝜃𝐸 =
∑︁
𝑖, 𝑗

𝜃𝑖 𝑗𝑒𝑖𝑒
𝑗

then the connection 1–form of ∇𝑆 is given by

𝜃𝑆 =
1

4

∑︁
𝑖, 𝑗

𝜃𝑖 𝑗 · 𝑒𝑖 ∧ 𝑒 𝑗 ,

If we dene 𝐹𝐸
𝑖 𝑗𝑘

ℓ
by

𝐹𝐸 (𝑒𝑖 , 𝑒 𝑗 )𝑒𝑘 =
∑︁
ℓ

𝐹𝐸
𝑖 𝑗𝑘

ℓ
𝑒ℓ ,

then 𝐹𝑆 the curvature of ∇𝑆 is given by

𝐹𝑆 =
1

4

∑︁
𝑘,ℓ

𝑅ℓ
𝑖 𝑗𝑘
𝛾 (𝑒𝑘 )𝛾 (𝑒ℓ ).

8.3 The Atiyah–Singer operator

Denition 8.11. If 𝑀 is a spin manifold, then by the preceding discussion the spinor bundle /𝑆
naturally is a Dirac bundle. The associated Dirac operator /𝐷 is called the Atiyah–Singer operator.

Denition 8.12. A spinor Φ ∈ Γ(/𝑆) is called harmonic if /𝐷Φ = 0.

8.4 Universality of spinor bundles

Proposition 8.13. Suppose𝑀 is a spin manifold and denote by /𝑆 its spinor bundle. Denote by 𝐷 the
commuting algebra for the spin representation of Spin(dim𝑀). Given any Dirac bundle 𝑆 over 𝑀 ,
there exists a unique Euclidean vector bundle (𝐸,ℎ) over𝑀 together with a metric connection such
that

𝑆 = /𝑆 ⊗𝐷 𝐸

as Dirac bundles.

Proof. Take 𝐸 = HomCℓ (𝑀) (/𝑆, 𝑆). �

8.5 Spin𝑐 structures

The condition to admit a spin structure is somewhat restrictive. One could be interested in a

slightly weaker version.
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Denition 8.14. Let 𝐸 be an oriented Euclidean vector bundle of rank 𝑟 over𝑀 . A spin𝑐 structure
on 𝐸 is a principal Spin

𝑐 (𝑟 )–bundle 𝔴 over𝑀 together with an isomorphism

𝔴 ×Spin
𝑐 (𝑛) SO(𝑛) � SO(𝐸) .

Denition 8.15. A spin𝑐 structure on a Riemannian manifold is a spin structure on 𝑇𝑀 . A spin𝑐

manifold is a Riemannian manifold with a choice of spin
𝑐
structure.

Denition 8.16. If 𝔴 is a spin
𝑐
structure and 𝑆 is the complex spinor representation, then we

denote by𝑊 the associated bundle

𝔴 ×Spin
𝑐 (𝑛)𝑊 .

We call𝑊 the spinor bundle associated with𝔴. Moreover, the characteristic line bundle associated
with 𝔴 is the complex line bundle

𝐿 ≔ 𝔴 ×Spin
𝑐 (𝑛) C

associated with the representation in which [𝑥, 𝑧] ∈ Spin
𝑐 (𝑟 ) = Spin(𝑟 ) ×Z2

C acts as 𝑧2.

Denition 8.17. Denote by 𝛽2 : 𝐻𝑘 (𝑀,Z2) → 𝐻𝑘+1(𝑀,Z) the Bockstein homomorphism induced

by the exact sequence 0 → Z
2×−−→ Z → Z2 → 0. We dene

𝑊𝑘+1(𝐸) ≔ 𝛽2𝑤𝑘 (𝐸).

Proposition 8.18.

1. 𝑀 admits a spin𝑐 structure if and only if𝑤2(𝑀) ∈ im(𝐻 2(𝑀,Z) → 𝐻 2(𝑀,Z2) if and only if
𝑊3(𝑀) = 0.

2. If𝑀 admits a spin𝑐 structure, then the set of spin𝑐 structures is a torsor over 𝐻 2(𝑀,Z).

Proof. For 𝐺 a topological group, denote by 𝐺 the sheaf of continuous maps to 𝐺 . The exact

sequence

0 → U(1) → Spin
𝑐 (𝑟 ) → SO(𝑟 ) → 0

of groups induces a corresponding exact sequence of sheaves. Since SO(𝑟 ) is connected, ˇ𝐻 0(𝑀, SO(𝑟 )) =
{0}. Hence, the above yields the following exact sequence of Čech cohomology groups:

0 → ˇ𝐻 1(𝑀,U(1)) → ˇ𝐻 1(𝑀, Spin𝑐 (𝑟 )) → ˇ𝐻 1(𝑀, SO(𝑟 ))
𝛽
−→ ˇ𝐻 2(𝑀,U(1)) .

𝐸 corresponds to an element in
ˇ𝐻 1(𝑀, SO(𝑟 )), which we also denote by 𝐸. A spin

𝑐
structure on

𝐸 corresponds to an element of
ˇ𝐻 1(𝑀, Spin𝑐 (𝑟 )) mapping to 𝐸. By exactness of the above sequence,

the obstruction to the existence of such an element is precisely 𝛽 (𝐸) and the set of such elements

is an torsor over
ˇ𝐻 1(𝑀,U(1)).
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The exact sequence

0 → Z
2𝜋𝑖×−−−→ 𝑖R

exp

−−→ U(1) → 0,

gives rise to an exact sequence

ˇ𝐻 1(𝑀, 𝑖R) → ˇ𝐻 1(𝑀,U(1)) → ˇ𝐻 2(𝑀,Z) → ˇ𝐻 2(𝑀, 𝑖R) .

Since 𝑖R is soft,
ˇ𝐻𝑘 (𝑀, 𝑖R) for all 𝑘 > 0. Therefore,

ˇ𝐻𝑘 (𝑀,U(1)) = ˇ𝐻𝑘+1(𝑀,Z) = 𝐻𝑘+1(𝑀,Z)

for all 𝑘 > 0.

It remains to identify 𝛽 (𝐸) ∈ ˇ𝐻 2(𝑀,U(1)) = ˇ𝐻 3(𝑀,Z) as𝑊3(𝐸). There is a commutative

diagram

�̌� 1(𝑀, Spin(𝑟 ))

ˇ𝐻 1(𝑀, Spin𝑐 (𝑟 )) ˇ𝐻 1(𝑀, SO(𝑟 )) ˇ𝐻 2(𝑀,U(1))

ˇ𝐻 2(𝑀,Z2) ˇ𝐻 2(𝑀,U(1)).

=

Given this and the fact that𝑤2(𝐸) is the image of 𝐸 under the map
ˇ𝐻 1(𝑀, SO(𝑟 )) → ˇ𝐻 2(𝑀,Z2),

we only need to prove that

𝐻 2(𝑀,Z2) = ˇ𝐻 2(𝑀,Z2) → ˇ𝐻 2(𝑀,U(1)) = 𝐻 3(𝑀,Z)

agrees with 𝛽2. This can be proved by a diagram chase. Specically, one considers the exact

sequence

1 Z2 U(1) U(1) 1

(−)2

and proves that the diagram

𝐻𝑘 (𝑀,Z2) ˇ𝐻𝑘 (𝑀,𝑈 (1)) ˇ𝐻𝑘 (𝑀,𝑈 (1))

𝐻𝑘 (𝑀,Z2) 𝐻𝑘+1(𝑀,Z) 𝐻𝑘+1(𝑀,Z) .

(−)2

� �

2×

commutes. �

Remark 8.19. The obstruction to admitting a spin
𝑐
–structure is that𝑤2(𝐸) lifts to an integral class.

This holds for the tangent bundle of any orientable 4–manifold.
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Remark 8.20. It is not uncommon to see the characteristic line bundle called the determinant
bundle. The reason for that is that if𝑀 is an spin 4–manifold, then

𝐿 = Λ2𝑊 + = Λ2𝑊 −.

Similary, if𝑀 is an spin 3–manifold, then

𝐿 = Λ2𝑊 .

If one is not talking exclusively about 3– or 4–manifold, one should not call 𝐿 the determinant

line bundle.

Proposition 8.21. Given a metric covariant derivative on 𝐸 and a metric covariant derivative on 𝐿,
there exits a unique covariant derivative on 𝑆 which makes the Cliord multiplication parallel and
which induces the given covariant derivative on 𝐿.

Remark 8.22. The fact that the spin connection depends on the choice of a connection on 𝐿, is

important in the formulation of the classical Seiberg–Witten equation.

9 Weitzenböck formulae

Denition 9.1. Given a Dirac bundle 𝑆 , we denote by 𝐹𝑆 ∈ Ω2(𝑀, 𝔰𝔬(𝑆)) the curvature of ∇𝑆 .
DeneF𝑆 ∈ Γ(End(𝑆)) by

F𝑆 =
1

2

𝑛∑︁
𝑖, 𝑗=1

𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )𝐹𝑆 (𝑒𝑖 , 𝑒 𝑗 ) .

Proposition 9.2 (Weitzenböck formula for Dirac bundles).

𝐷2 = ∇∗
𝑆∇𝑆 +F𝑆 .

Proof. We pick a local orthonormal frame (𝑒1, . . . , 𝑒𝑛) around a point 𝑥 ∈ 𝑀 such that at 𝑥 we have

∇𝑒𝑖 = 0. At the point 𝑥 ∈ 𝑀 , we compute

𝑛∑︁
𝑖, 𝑗=1

𝛾 (𝑒𝑖)∇𝑆,𝑒𝑖𝛾 (𝑒 𝑗 )∇𝑆,𝑒 𝑗 =
𝑛∑︁

𝑖, 𝑗=1

𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )∇𝑆,𝑒𝑖∇𝑆,𝑒 𝑗

= −
𝑛∑︁
𝑖=1

∇𝑆,𝑒𝑖∇𝑆,𝑒𝑖 +
𝑛∑︁
𝑖< 𝑗

𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 ) [∇𝑆,𝑒𝑖 ,∇𝑆,𝑒 𝑗 ]

= ∇∗
𝑆∇𝑆 +

𝑛∑︁
𝑖< 𝑗

𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )𝐹𝑠 (𝑒𝑖 , 𝑒 𝑗 ) . �
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Proposition 9.3 (Bochner). If𝑀 is compact and F𝑆 is non-negative denite (that is: 〈F𝑆Φ,Φ〉 > 0),
then 𝐷Φ = 0 implies ∇𝑆Φ = 0. Moreover,F𝑆 is positive denite somewhere, then Φ = 0.

Proof. If 𝐷Φ = 0, then we have ˆ
𝑀

|∇Φ|2 + 〈F𝑆Φ,Φ〉 = 0. �

The usefulness of Proposition 9.2 and Proposition 9.3 crucially depends on being able to

understand whatF𝑆 is. In the following we will try to better understand 𝐹𝑆 and, hence,F𝑆 .

Denition 9.4. Let 𝑆 be a Dirac bundle. Dene 𝑅𝑆 ∈ Ω2(𝑀, 𝔰𝔬(𝑆)) by

𝑅𝑆 (𝑣,𝑤) ≔ 1

4

𝑛∑︁
𝑖, 𝑗=1

𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )〈𝑅(𝑣,𝑤)𝑒𝑖 , 𝑒 𝑗 〉.

Proposition 9.5. Let 𝑆 be a Dirac bundle. Denote by 𝐹𝑆 ∈ Ω2(𝑀, End(𝑆)) the curvature of ∇𝑆 . There
is an 𝐹 tw

𝑆
∈ Ω2(𝑀, 𝔰𝔬(𝑆)) which commutes with Cliord multiplication such that

𝐹𝑆 = 𝑅𝑆 + 𝐹 tw𝑆 .

Proof. This result follows from the following two propositions.

Proposition 9.6. Let 𝑆 be a Dirac bundle. Denote by 𝐹𝑆 ∈ Ω2(𝑀, End(𝑆)) the curvature of ∇𝑆 . We
have

[𝐹𝑆 (𝑢, 𝑣), 𝛾 (𝑤)] = 𝛾 (𝑅(𝑢, 𝑣)𝑤) .

Proof. We pick a local orthonormal frame (𝑒1, . . . , 𝑒𝑛) around a point 𝑥 ∈ 𝑀 such that at 𝑥 we have

∇𝑒𝑖 = 0. At the point 𝑥 ∈ 𝑀 , we compute

[𝐹𝑆 (𝑒𝑖 , 𝑒 𝑗 ), 𝛾 (𝑒𝑘 )] = [[∇𝑆,𝑒𝑖 ,∇𝑆,𝑒 𝑗 ], 𝛾 (𝑒𝑘 )]
= [∇𝑆,𝑒𝑖 , [∇𝑆,𝑒 𝑗 , 𝛾 (𝑒𝑘 )]] − [∇𝑆,𝑒 𝑗 , [∇𝑆,𝑒𝑖 , 𝛾 (𝑒𝑘 )]]
= [∇𝑆,𝑒𝑖 , 𝛾 (∇𝑒 𝑗𝑒𝑘 )] − [∇𝑒 𝑗 , 𝛾 (∇𝑒𝑖𝑒𝑘 )]
= 𝛾 (∇𝑒𝑖∇𝑒 𝑗𝑒𝑘 ) − 𝛾 (∇𝑒 𝑗∇𝑒𝑖𝑒𝑘 )
= 𝛾 (𝑅(𝑒𝑖 , 𝑒 𝑗 )𝑒𝑘 ) . �

Proposition 9.7. Let 𝑆 be a Dirac bundle. We have

[𝑅𝑆 (𝑢, 𝑣), 𝛾 (𝑤)] = 𝛾 (𝑅(𝑢, 𝑣)𝑤) .
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Proof. We pick a local orthonormal frame (𝑒1, . . . , 𝑒𝑛) and compute

[𝑅𝑆 (𝑒𝑘 , 𝑒ℓ ), 𝛾 (𝑒𝑚)] =
1

4

𝑛∑︁
𝑖, 𝑗=1

〈𝑅(𝑒𝑘 , 𝑒ℓ )𝑒𝑖 , 𝑒 𝑗 〉[𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 ), 𝛾 (𝑒𝑚)]

=
1

4

𝑛∑︁
𝑖, 𝑗=1

〈𝑅(𝑒𝑘 , 𝑒ℓ )𝑒𝑖 , 𝑒 𝑗 〉(𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )𝛾 (𝑒𝑚) − 𝛾 (𝑒𝑚)𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )) .

We have

𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )𝛾 (𝑒𝑚) − 𝛾 (𝑒𝑚)𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 ) =


0 if 𝑖 = 𝑗,

0 if 𝑖, 𝑗,𝑚 are pairwise distinct,

2𝛾 (𝑒 𝑗 ) if 𝑖 ≠ 𝑗 and 𝑖 =𝑚,

−2𝛾 (𝑒𝑖) if 𝑖 ≠ 𝑗 and 𝑗 =𝑚.

Therefore,

[𝑅𝑆 (𝑒𝑘 , 𝑒ℓ ), 𝛾 (𝑒𝑚)] =
1

2

𝑛∑︁
𝑗=1

〈𝑅𝑆 (𝑒𝑘 , 𝑒ℓ )𝑒𝑚, 𝑒 𝑗 〉𝛾 (𝑒 𝑗 ) −
1

2

𝑛∑︁
𝑖=1

〈𝑅𝑆 (𝑒𝑘 , 𝑒ℓ )𝑒𝑖 , 𝑒𝑚〉𝛾 (𝑒𝑖)

=

𝑛∑︁
𝑗=1

〈𝑅𝑆 (𝑒𝑘 , 𝑒ℓ )𝑒𝑚, 𝑒 𝑗 〉𝛾 (𝑒 𝑗 ) . �

Given the above, simply dene

𝐹 tw𝑆 ≔ 𝐹𝑆 − 𝑅𝑆 . �

Denition 9.8. The Ricci curvature of 𝑔 is

Ric(𝑣,𝑤) ≔
𝑛∑︁
𝑖=1

〈𝑅(𝑒𝑖 , 𝑣)𝑤, 𝑒𝑖〉

and the scalar curvature of 𝑔 is

scal𝑔 ≔

𝑛∑︁
𝑖=1

Ric(𝑒𝑖 , 𝑒𝑖) .

Exercise 9.9. Prove that Ric(𝑣,𝑤) = Ric(𝑤, 𝑣).

Proposition 9.10 (Weitzenböck formula for Dirac Bundles, II). With

Ftw

𝑆 =
1

2

𝑛∑︁
𝑖, 𝑗=1

𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )𝐹 tw𝑆 (𝑒𝑖 , 𝑒 𝑗 )

and with scal𝑔 denoting the scalar curvature of 𝑔, we have

𝐷2 = ∇∗
𝑆∇𝑆 +

1

4

scal𝑔 +Ftw

𝑆 .
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Remark 9.11. Why is this better than Proposition 9.2? We know that Ftw

𝑆
is Cℓ (𝑀)–linear this

strongly restricts what Ftw

𝑆
could possibly be and, sometimes, makes easy to work out what it

actually is.

The proof relies on the following computation. On rst sight the computation looks o-putting,

but the result of the computation is of fundamental importance and will be used repeatedly later.

Proposition 9.12. We have

𝑛∑︁
𝑖, 𝑗,ℓ=1

𝛾 (𝑒ℓ )𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )〈𝑅(𝑒𝑘 , 𝑒ℓ )𝑒𝑖 , 𝑒 𝑗 〉 = −2
𝑛∑︁
𝑖=1

𝛾 (𝑒𝑖)Ric(𝑒𝑘 , 𝑒𝑖)

and
𝑛∑︁

𝑖, 𝑗,𝑘,ℓ=1

𝛾 (𝑒ℓ )𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )〈𝑅(𝑒𝑘 , 𝑒ℓ )𝑒𝑖 , 𝑒 𝑗 〉 = 2scal𝑔 .

Proof. The rst identity implies the second directly.

If 𝑖, 𝑗, ℓ are pairwise distinct, then

𝛾 (𝑒ℓ )𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 ) = 𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )𝛾 (𝑒ℓ ) = 𝛾 (𝑒 𝑗 )𝛾 (𝑒ℓ )𝛾 (𝑒𝑖) .

By the algebraic Bianchi identity

〈𝑅(𝑒𝑘 , 𝑒ℓ )𝑒𝑖 , 𝑒 𝑗 〉 + 〈𝑅(𝑒𝑘 , 𝑒𝑖)𝑒 𝑗 , 𝑒ℓ〉 + 〈𝑅(𝑒𝑘 , 𝑒 𝑗 )𝑒ℓ , 𝑒𝑖〉 = 0.

Thus the sum of terms with 𝑖, 𝑗, ℓ pairwise distinct appearing the the left-hand side vanishes. The

terms with 𝑖 = 𝑗 vanish because 𝑅(𝑒𝑘 , 𝑒ℓ ) is skew-symmetric.

If 𝑖 ≠ 𝑗 = ℓ , then

𝛾 (𝑒ℓ )𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )〈𝑅(𝑒𝑘 , 𝑒ℓ )𝑒𝑖 , 𝑒 𝑗 〉 = 𝛾 (𝑒𝑖)〈𝑅(𝑒𝑘 , 𝑒 𝑗 )𝑒𝑖 , 𝑒 𝑗 〉 = −𝛾 (𝑒𝑖)〈𝑅(𝑒 𝑗 , 𝑒𝑘 )𝑒𝑖 , 𝑒 𝑗 〉.

The sum of these expressions contributes

−
𝑛∑︁
𝑖=1

𝛾 (𝑒𝑖)Ric(𝑒𝑘 , 𝑒𝑖)

to the left-hand side. If 𝑗 ≠ 𝑖 = ℓ , then

𝛾 (𝑒ℓ )𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )〈𝑅(𝑒𝑘 , 𝑒ℓ )𝑒𝑖 , 𝑒 𝑗 〉 = −𝛾 (𝑒 𝑗 )〈𝑅(𝑒𝑖 , 𝑒𝑘 )𝑒 𝑗 , 𝑒𝑖〉

The sum of these expressions also contributes

−
𝑛∑︁
𝑖=1

𝛾 (𝑒𝑖)Ric(𝑒𝑘 , 𝑒𝑖)

to the left-hand side. �
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Proof of Proposition 9.10. Given an orthonormal frame (𝑒1, . . . , 𝑒𝑛), by the previous proposition we

have

1

2

𝑛∑︁
𝑘,ℓ=1

𝛾 (𝑒𝑘 )𝛾 (𝑒ℓ )𝑅𝑆 (𝑒𝑘 , 𝑒ℓ ) =
1

8

𝑛∑︁
𝑖, 𝑗,𝑘,ℓ=1

𝛾 (𝑒𝑘 )𝛾 (𝑒ℓ )𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )〈𝑅(𝑒𝑘 , 𝑒ℓ )𝑒𝑖 , 𝑒 𝑗 〉

=
1

4

scal𝑔 . �

Proposition 9.13. If 𝑆 = /𝑆 is the spinor bundle, then

𝐹𝑆 = 𝑅𝑆 .

In particular,

𝐷2 = ∇∗
𝑆∇𝑆 +

1

4

scal𝑔 .

Therefore, if scal𝑔 > 0, then every harmonic spinor is parallel; if scal𝑔 is positive somewhere, then
harmonic spinors must vanish.

Proof. The twisting curvature 𝐹 tw
𝑆

is 2–form with values in skew-symmetric endomorphisms of /𝑆
which commute with the Cliord multiplication. Since /𝑆 arises from an irreducible representation,

by Schur’s Lemma an endomorphism of /𝑆 commuting with the Cliord multiplication must be a

scalar. A skew-symmetric scalar vanishes. This shows that 𝐹 tw
𝑆

= 0. �

Alternative proof. One can proof directly that 𝐹𝑆 = 𝑅𝑆 using Proposition 4.25. �

Exercise 9.14. If 𝑆 =𝑊 is a complex spinor bundle, associated to a spin
𝑐
–structure prove that

𝐹 tw
𝑆

∈ Ω2(𝑀, 𝑖R). Identify 𝐹 tw
𝑆

in terms of the curvature of the connection on the characteristic line

bundle 𝐿. More precisely, prove that 𝐹 tw
𝑆

= 1

2
𝐹𝐴 where 𝐹𝐴 denotes the curvature of the connection

on 𝐿.

10 Parallel spinors and Ricci at metrics

Proposition 10.1 (cf. Hitchin [Hit74, Theorem 1.2]). Let 𝑀 be a spin manifold. If there exists a
non-zero spinor Φ ∈ Γ(/𝑆) such that

∇Φ = 0,

then𝑀 is Ricci at.

Remark 10.2. This is well-known among physicists, because non-zero parallel spinor are closely

related to super symmetry.

Proof. Since Ric is a symmetric tensor, we can chose a local orthonormal frame and functions

𝜆1, . . . , 𝜆𝑛 such that

Ric(𝑒𝑖 , 𝑒 𝑗 ) = 𝜆𝑖𝛿𝑖 𝑗 .
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If Φ is parallel, then in particular 𝑅𝑆Φ = 0. By Denition 9.4 and Proposition 9.12, this means that

0 =

𝑛∑︁
ℓ=1

𝛾 (𝑒ℓ )𝑅𝑆 (𝑒𝑘 , 𝑒ℓ )Φ

=
1

4

𝑛∑︁
𝑖, 𝑗,ℓ=1

𝛾 (𝑒ℓ )𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )〈𝑅(𝑒𝑘 , 𝑒ℓ )𝑒𝑖 , 𝑒 𝑗 〉Φ

= −1
2

𝑛∑︁
𝑖=1

𝛾 (𝑒𝑖)Ric(𝑒𝑘 , 𝑒𝑖)Φ

= −1
2

𝜆𝑘𝛾 (𝑒𝑘 )Φ.

It follows that 𝜆1 = · · · = 𝜆𝑛 = 0 and therefore Ric = 0. �

All known Ricci at manifold have special holonomy, that is, Hol(𝑔) is a strict subgroup of

SO(𝑛). It is a famous open question whether there are any compact Ricci-at manifolds with

Hol(𝑔) = SO(𝑛). If𝑀 admits a parallel spinor, then it is impossible that Hol(𝑔) = SO(𝑛), because
the holonomy group of the spin bundle must reduce to a subgroup Spin(𝑛 − 1) ⊂ Spin(𝑛). The
possible holonomy groups have been classied by Berger [Ber55]. The following theorem claries

the relation between parallel spinors and special holonomy.

Theorem 10.3 (Wang [Wan89]). Let 𝑀 be a complete, simply connected, irreducible spin manifold of
dimension 𝑛. Set 𝑑 ≔ dim ker /𝐷 . If𝑀 is not at, then one of the following holds:

1. 𝑛 = 2𝑚, Hol(𝑔) = SU(𝑚) (that is: 𝑀 is Calabi–Yau,) and 𝑑 = 2.

2. 𝑛 = 4𝑚, Hol(𝑔) = Sp(𝑚) (that is: 𝑀 is hyperkähler), and 𝑑 =𝑚 + 1.

3. 𝑛 = 7, Hol(𝑔) = 𝐺2, and 𝑑 = 1.

4. 𝑛 = 8, Hol(𝑔) = Spin(7), and 𝑑 = 1.

Remark 10.4 (Friedrich [Fri00, Chatper 3, Exercise 4]). For 𝑐 > 0, the metric

𝑔 =
𝑥1

𝑥1 + 𝑐
(d𝑥1)2 + 𝑥21 (d𝑥2)2 + 𝑥1 sin(𝑥2)2(d𝑥3)2 +

𝑥1 + 𝑐
𝑥1

(d𝑥4)2

is Ricci at, but does not admit a non-trivial parallel spinor.
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11 Spin structures and spin𝑐 structures on Kähler manifolds

Proposition 11.1 (Atiyah, Bott, and Shapiro [ABS64, pp. 10, 13, 14]).

1. The map 𝜌 : U(𝑛) → SO(2𝑛) does not lift to Spin(2𝑛).

2. The map 𝜌 × det : U(𝑛) → SO(2𝑛) × U(1) lifts to Spin𝑐 (𝑛); that is,

Spin
𝑐 (2𝑛)

U(𝑛) SO(2𝑛) × U(1) .
Ãd×(−)2

𝜌×det

3. The complex spinor representation can be identied with ΛC(C𝑛)∗ such that the lift U(𝑛) →
Spin

𝑐 (𝑛) makes the following diagram commutative:

U(𝑛) Spin
𝑐 (𝑛)

EndC(C𝑛) EndC(ΛC(C𝑛)∗) .
(−)∗◦Λ

The Cliord multiplication on ΛC(C𝑛)∗ is given by

𝛾 (𝑣)𝛼 = 𝑣∗ ∧ 𝛼 − 𝑖 (𝑣)𝛼.

Proof. (1) is a consequence of the fact that 𝜋1(𝜌) : 𝜋1(U(𝑛)) = Z → 𝜋1(SO(2𝑛)) = Z2 is surjective,

while the image of the map 𝜋1(Ãd) : 𝜋1(Spin(2𝑛)) → 𝜋1(SO(2𝑛)) is trivial.
(2) is proved by constructing the lift explicitly. Given 𝑓 ∈ U(𝑛), chose a unitary basis (𝑒1, . . . , 𝑒𝑛)

of C𝑛 in which 𝑓 is diagonal; that is: 𝑓 = diag(𝑒𝑖𝛼1, · · · , 𝑒𝑖𝛼𝑛 ). An orthonormal basis of the 2𝑛–

dimensional real Euclidean space C𝑛 is given by (𝑒1, 𝑖𝑒1, . . . , 𝑒𝑛, 𝑖𝑒𝑛). Dene ˜𝑓 ∈ Spin
𝑐 (2𝑛) by

˜𝑓 ≔

𝑛∏
𝑗=1

[ (
cos(𝛼 𝑗/2) + sin(𝛼 𝑗/2)𝑒 𝑗 (𝑖𝑒 𝑗 )

)
× 𝑒 𝑖

2
𝛼 𝑗

]
.

Observe that 𝛼 𝑗 ∈ R/2𝜋Z, so 𝛼 𝑗/2 ∈ R/𝜋Z. Consequently, the both factors individually are only

dened up to a sign. Their product, however, is well-dened. Clearly,

(∏𝑛
𝑗=1 𝑒

𝑖
2
𝛼 𝑗

)
2

= det(𝑓 ). The
fact that 𝜌 (𝑓 ) = Ãd( ˜𝑓 ) follows from following observation.

Proposition 11.2. Let (𝑒1, 𝑒2) be an orthonormal basis of R2 and let 𝛼 ∈ R. We have

Ãd (cos(𝛼/2) + sin(𝛼/2)𝑒1𝑒2) =
(
cos(𝛼) − sin(𝛼)
sin(𝛼) cos(𝛼)

)
.
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Proof. Since
𝛼 (cos(𝛼/2) + sin(𝛼/2)𝑒1𝑒2)−1 = cos(𝛼/2) − sin(𝛼/2)𝑒1𝑒2,

we have

Ãd (cos(𝛼/2) + sin(𝛼/2)𝑒1𝑒2) 𝑒𝑖 = (cos(𝛼/2) + sin(𝛼/2)𝑒1𝑒2)2 𝑒𝑖
=

(
cos(𝛼/2)2 − sin(𝛼/2)2

+ 2 cos(𝛼/2) sin(𝛼/2)𝑒1𝑒2
)
𝑒𝑖

= (cos(𝛼) + sin(𝛼)𝑒1𝑒2) 𝑒𝑖 .

From this the assertion follows directly. �

The formula for the Cliord multiplication denes how Spin
𝑐 (2𝑛) acts on ΛC(C𝑛)∗. Proving

(3) is a matter of a calculation using the explicit formula for the lift constructed above. �

Remark 11.3. Recall that if 𝑉 is a real vector space with a complex structure 𝐼 , then we decompose

𝑉 ⊗R C = 𝑉 0,1 ⊕ 𝑉 1,0

with

𝑉 1,0 ≔ {𝑣 ∈ 𝑉 ⊗ C : 𝐼𝑣 = 𝑖𝑣} and 𝑉 0,1 ≔ {𝑣 ∈ 𝑉 ⊗ C : 𝐼𝑣 = −𝑖𝑣}.

Given 𝑣 ∈ 𝑉 , we denote by 𝑣0,1 and 𝑣1,0 its projections to𝑉 0,1
and𝑉 1,0

respectively; more precisely,

𝑣1,0 ≔
1

2

(𝑣 − 𝑖𝐼𝑣) and 𝑣0,1 ≔
1

2

(𝑣 + 𝑖𝐼𝑣) .

If 𝑉 has Hermitian metric, then with respect to the induced metric on 𝑉 ⊗R C, we have

|𝑣1,0 |2 = 1

4

( |𝑣 |2 + |𝐼𝑣 |2) = 1

2

|𝑣 |2 and |𝑣0,1 |2 = 1

2

|𝑣 |2.

Consequently, 𝑣 ↦→
√
2𝑣0,1 is an isometry.

Denition 11.4. If𝑀 is a complex manifold, then its canonical bundle is

K𝑀 = Λ𝑛C𝑇
1,0𝑀∗

and the anti-canonical bundle isK∗
𝑀
.

Remark 11.5. If𝑀 is a Kähler manifold with volume form vol, then there is a pairing (Λ𝑛𝑇 1,0𝑀∗) ⊗
(Λ𝑛𝑇 0,1𝑀∗) → C given by

𝛼 ⊗ 𝛽 ↦→ 𝛼 ∧ 𝛽
vol

.

In particular,

K∗
𝑀 � Λ𝑛𝑇 0,1𝑀∗ � Λ𝑛𝑇 1,0𝑀.
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Proposition 11.6. Suppose𝑀 is a Kähler manifold.

1. For any Hermitian line bundle 𝐿, there is a unique spin𝑐 structure 𝔴 on 𝑀 whose complex
spinor bundle is

𝑊 =

𝑛⊕
𝑘=0

Λ𝑘𝑇 0,1𝑀∗ ⊗ 𝐿

whose characteristic line bundle is 𝐿⊗2 ⊗C K∗
𝑀
. We have

𝑊 + =

𝑛
2⊕
𝑘=0

Λ2𝑘𝑇 0,1𝑀∗ ⊗ 𝐿 and 𝑊 − =

(𝑛−1)
2⊕
𝑘=0

Λ2𝑘+1𝑇 0,1𝑀∗ ⊗ 𝐿

2. The Cliord multiplication on𝑊 is given by

𝛾 (𝑣)𝛼 =
√
2(𝑣0,1)∗ ∧ 𝛼 −

√
2𝑖 (𝑣0,1)𝛼.

3. If 𝐴 is a Hermitian connection on 𝐿, then the corresponding connection on𝑊 induced by the
Levi–Civita connection on Λ𝑘 (𝑇 ∗𝑀)0,1 is compatible with the Cliord multiplication.

4. If 𝐴 induces a holomorphic structure 𝜕L on 𝐿 (that is: 𝐹 0,2
𝐴

= 0), then

𝐷 =
√
2(𝜕L + 𝜕∗L) : Ω0,•(𝑀,L) → Ω0,•(𝑀,L).

In particular, if𝑀 is compact, then the space of positive and negative harmonic spinors can be
identied with the cohomology groups

b𝑛/2c⊕
𝑘=0

𝐻 2𝑘 (𝑀,L) and
b (𝑛−1)/2c⊕
𝑘=0

𝐻 2𝑘+1(𝑀,L) .

Proof. If𝑀 is a Kähler manifold, then the structure group of𝑇𝑀 is canonically reduced from SO(2𝑛)
to U(𝑛). It follows from Proposition 11.1, that any Kähler manifold has a canonical spin

𝑐
structure;

moreover, the complex spinor bundle is given

⊕𝑛

𝑘=0 Λ
𝑘 (𝑇 ∗𝑀)0,1 and the Cliord multiplication is

as asserted. It is computation to verify that the characteristic line bundle of the canonical spin
𝑐

structure is given by K∗
𝑀
. Taking into account that the set of spin

𝑐
structures is a torsor over the

group of Hermitian line bundles, the above proves (1) and (2). (3) is obvious and the rst half of (4)

follows by a direct computation. The second half of (4) follows by Hodge theory. �

Proposition 11.7. A spin𝑐 structure 𝔴 arises from a spin structure if and only if its characteristic
line bundle is trivial. The set of spin structures inducing a xed spin𝑐 structure is a torsor over
ker(𝐻 1(𝑀,Z2) → 𝐻 2(𝑀,Z) (that is: the group of Euclidean line bundles with trivial complexica-
tion).
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Proof. Spin𝑐 (𝑛) = Spin(𝑛) ×Z2
U(1) and we have an exact sequence

0 → Spin(𝑛) → Spin
𝑐 (𝑛) → U(1) → 0.

Since characteristic line bundle is associated to the representation Spin
𝑐 (𝑛) → U(1), its triviality

is precisely the obstruction to lifting a spin
𝑐
structure to a spin structure. This proves the rst

part. The second part follows by observing that any two spin structures dier by a Euclidean line

bundle 𝔩, while any two spin
𝑐
structures dier by a Hermitian line bundle. �

Remark 11.8. Serre duality asserts that for a holomorphic vector bundleE over a compact complex

manifold,

𝐻𝑘 (𝑀,E) � 𝐻𝑛−𝑘 (𝑀,E∗ ⊗ K𝑀 )∗.

In terms of the Dolbeault resolution, this duality is induced on chain-level by the pairing

(Λ𝑘𝑇 0,1𝑀∗ ⊗E) ⊗ (Λ𝑛−𝑘𝑇 0,1𝑀∗ ⊗E∗ ⊗ K𝑀 ) � K∗
𝑀 ⊗ K𝑀 ⊗E ⊗E∗

→ Λ2𝑛𝑇 ∗𝑀 ⊗ C
→ C.

This pairing induces an isomorphism

Λ𝑘𝑇 0,1𝑀∗ ⊗E � (Λ𝑛−𝑘𝑇 0,1𝑀∗ ⊗E∗ ⊗ K𝑀 )∗.

Using the Hermitian inner product onK𝑀 , we obtain an anti-linear isomorphism

𝜎 : Λ𝑘𝑇 0,1𝑀∗ ⊗E � Λ𝑛−𝑘𝑇 0,1𝑀∗ ⊗E∗ ⊗ K𝑀 .

In particular, if L is a square root ofK𝑀 (that is: L⊗2 � K𝑀 ), then

𝜎 : Λ𝑘𝑇 0,1𝑀∗ ⊗ L � Λ𝑛−𝑘𝑇 0,1𝑀∗ ⊗ L.
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Proposition 11.9. Let𝑀 be a Kähler manifold.

1. 𝑀 admits a spin structure if and only if there is a complex line bundle 𝐿 satisfying 𝐿⊕2 � K𝑀 .

2. Suppose𝑀 is compact. There is a bijective correspondence between the set of spin structures on
𝑀 and the set of isomorphism classes of holomorphic line bundlesL satisfyingL⊗2 � K𝑀 .
(Each suchL inherits a Hermitian metric fromK𝑀 .)

3. Suppose𝑀 is compact. Suppose thatL is a square root ofK𝑀 and𝑊 denotes the associated
complex spinor bundle.

(a) If dimC𝑀 = 1 mod 4, then

/𝑆 =𝑊 and /𝐷 =
√
2(𝜕 + 𝜕∗) .

The is a complex structure 𝐽 on /𝑆 which commutes with Cliord multiplication and
anti-commutes with the complex structure 𝑖 .

(b) If dimC𝑀 = 2 mod 4, then

/𝑆± =𝑊 ± and /𝐷±
=
√
2(𝜕 + 𝜕∗);

moreover, there is a complex structure 𝐽 on /𝑆± which commutes with Cliordmultiplication
and anti-commutes with the complex structure 𝑖 .

(c) If dimC𝑀 = 3 mod 4, then is a real structure on𝑊 which respect to which
√
2(𝜕 + 𝜕∗)

is real. With respect to this real structure we have

/𝑆 = Re𝑊 and /𝐷 =
√
2(𝜕 + 𝜕∗) .

(d) If dimC𝑀 = 4 mod 4, then is a real structure on𝑊 ± With respect to this real structure
we have

/𝑆± = Re𝑊 ± and /𝐷 =
√
2(𝜕 + 𝜕∗) .

Proof. (1) follows from Proposition 11.7.

(2) Denote O×
the sheaf of nowhere vanishing holomorphic functions on𝑀 . There is a short

exact sequence of sheaves

1 → Z2 → O× 𝑥 ↦→𝑥2−−−−→ O× → 1.

The corresponding long exact sequence in cohomology reads as follows:

𝐻 0(𝑀,O×) → 𝐻 0(𝑀,O×) → 𝐻 1(𝑀,Z2)
𝛼−→ 𝐻 1(𝑀,O×) → 𝐻 1(𝑀,O×)

𝛽
−→ 𝐻 2(𝑀,Z2)

The map 𝛼 is injective, because the map C× = 𝐻 0(𝑀,O×) → 𝐻 0(𝑀,O×) = C×
is surjective. Recall,

that 𝐻 1(𝑀,O×) classies a holomorphic line bundles. A holomorphic line bundle L has a square
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root if and only if 𝛽 ( [L]) = (𝑐1(𝐿) mod 2) = 0. If 𝛽 ( [L]) = 0, then by the above the set of

square roots is a torsor over 𝐻 1(𝑀,Z2).
For the proof of (3), using 1, one rst analyzes the relationship between the spinor representation

𝑆 and the complex spinor representation𝑊 in dimension 𝑛 and determines the following:

1. If 𝑛 = 2 mod 8, then 𝑆 =𝑊 and𝑊 has a complex anti-linear complex structure 𝐽 . 𝑆 = H,
𝑊 =𝑊 + ⊕𝑊 − = C ⊕ C.

2. If 𝑛 = 4 mod 8, then 𝑆± =𝑊 ±
and𝑊 ±

have a complex anti-linear complex structure 𝐽 .

3. If 𝑛 = 6 mod 8, then there is a real structure on𝑊 and 𝑆 = Re𝑊 . This real structure does

not respect the splitting𝑊 =𝑊 + ⊕𝑊 −
. Cliord multiplication is real with respect to this

real structure.

4. If 𝑛 = 8 mod 8, then there is a real structure on𝑊 ±
and 𝑆± = Re𝑊 ±

. Cliord multiplication

is real with respect to this real structure.

�

12 Dirac operators on symmetric spaces

12.1 A brief review of symmetric spaces

Suppose 𝐺 is a compact Lie group and 𝐾 is a closed subgroup. Set

𝑀 ≔ 𝐺/𝐾.

Tautologically, 𝜋 : 𝐺 → 𝑀 is a principal 𝐾–bundle. 𝑀 can be made into a Riemannian manifold

via the following construction. A Riemannian manifold obtained by this construction is called a

symmetric space.

Denition 12.1. Let𝐺 be a Lie group. Set 𝐿𝑔ℎ ≔ 𝑔ℎ and 𝑅𝑔ℎ ≔ ℎ𝑔. The Maurer–Cartan form of𝐺

is the unique dierential form 𝜇𝐺 ∈ Ω1(𝐺, 𝔤) such that

𝜇𝐺 (d𝐿𝑔 (𝜉)) = 𝜉 .

Exercise 12.2. The Maurer–Cartan form satises

𝑅∗𝑔𝜇 = Ad(𝑔−1)𝜇.
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Proposition 12.3. Set
𝔨 ≔ Lie(𝐾) and 𝔤 ≔ Lie(𝐺) .

Let 𝔪 be a complement of 𝔨 ⊂ 𝔤 such that for all 𝑘 ∈ 𝐾

Ad(𝑘)𝔪 ⊂ 𝔪

and [𝔪,𝔪] ⊂ 𝔨.

1. The 1–form 𝜃 ∈ Ω1(𝐺, 𝔨) dened by
𝜃 ≔ 𝜋𝔨𝜇𝐺

is a connection 1–form on the principal 𝐾–bundle 𝐺 → 𝑀 .

2. The curvature tensor of 𝜃 is given by

Ω = −1
2

[𝜋𝔪𝜇𝐺 ∧ 𝜋𝔪𝜇𝐺 ] .

3. There is unique 𝐾–equivariant vector bundle isomorpism 𝑇𝑀 � 𝐺 ×𝐾 𝔪 which agrees with
the canonical identication 𝑇[1]𝑀 = 𝔪 at [1] ∈ 𝐺/𝐾 .

4. Suppose 〈·, ·〉 is an Ad(𝐾)–invariant Euclidean inner product on𝔪. By slight abuse of notation
also use 〈·, ·〉 to denote the induced Riemannian metric on 𝑇𝑀 . The connection on 𝑇𝑀 induced
by 𝜃 is the Levi-Civita connection.

Proof. (1) Given 𝜉 ∈ 𝔨 and 𝑔 ∈ 𝐺 , we have

𝜃 (𝑔𝜉) = 𝜋𝔨𝜇𝐺 (d𝐿𝑔𝜉) = 𝜋𝔨(𝜉) = 𝜉 .

Moreover, if 𝑘 ∈ 𝐾 , then

𝑅∗
𝑘
𝜃 = 𝜋𝔨𝑅

∗
𝑘
𝜇𝑔 = 𝜋𝔨 Ad(𝑘)−1𝜇𝑔 = Ad(𝑘)−1𝜋𝔨𝜇𝑔 = Ad(𝑘)−1𝜃 .

This proves that 𝜃 is a connection 1–form.

(2) The curvature of 𝜃 is

Ω = d𝜃 + 1

2

[𝜃 ∧ 𝜃 ]

= 𝜋𝔨d𝜇𝐺 + 1

2

𝜋𝔨 [𝜃 ∧ 𝜃 ] .

Since 𝔪 is Ad(𝐾)–invariant, we have [𝔨,𝔪] ⊂ 𝔪. Since, moreover, [𝔪,𝔪] ⊂ 𝔨, we have

𝜋𝔨 [𝜇𝐺 ∧ 𝜇𝐺 ] = [𝜋𝔨𝜇𝐺 ∧ 𝜋𝔨𝜇𝐺 ] + [𝜋𝔪𝜇𝐺 ∧ 𝜋𝔪𝜇𝐺 ]
= [𝜃 ∧ 𝜃 ] + [𝜋𝔪𝜇𝐺 ∧ 𝜋𝔪𝜇𝐺 ] .
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It follows that

Ω = d𝜃 + 1

2

[𝜃 ∧ 𝜃 ]

= 𝜋𝔨(d𝜇𝐺 + 1

2

[𝜇𝐺 ∧ 𝜇𝐺 ]) −
1

2

[𝜋𝔪𝜇𝐺 ∧ 𝜋𝔪𝜇𝐺 ] .

Since 𝜇𝐺 satises the Maurer–Cartan equation

d𝜇𝐺 + 1

2

[𝜇𝐺 ∧ 𝜇𝐺 ] = 0,

the curvature Ω is given by the asserted formula.

(3) is obvious.

(4) It is clear that the connection induced by 𝜃 is a metric connection. It is an exercise to show

that this connection is also torsion-free and, hence, agrees with the Levi-Civita connection. �

12.2 Homogeneous spin structures

Denition 12.4. Assume the situation of Proposition 12.3. A homogeneous spin structure on

𝑀 = 𝐺/𝐾 is a homomorphism Ad : 𝐾 → Spin(𝔪) such that the following diagram commutes

Spin(𝔪)

𝐾 SO(𝔪) .
Ad

Ãd

Given a homogeneous spin structure,

𝔰 ≔ 𝐺 ×𝐾 Spin(𝑛)

denes a spin structure in the usual sense on𝑀 . If Spin(𝔪) → GL(𝑆) denotes the spinor repre-
sentation, then the spinor bundle of 𝔰 is given by

/𝑆 ≔ 𝐺 ×𝐾 𝑆.

The connection induced by 𝜃 yields the spin connection.

A spinor𝜓 ∈ Γ(/𝑆) can be identied with a 𝐾–equivariant map

𝜓 : 𝐺 → 𝑆 with 𝜓 (𝑔𝑘) = Ãd(𝑘−1)𝜓 (𝑔) .

The Cliord multiplication by 𝑣 ∈ 𝑇𝑥𝑀 � 𝔪 is given simply by the Cliord multiplication of 𝔪

on 𝑆 . The derivative ∇𝜓 ∈ Ω1(𝑀, /𝑆) can be identied with the 𝐾–equivariant 1–form on 𝐺 with

values in 𝑆 dened by

(∇𝜓 ) (𝜉) = (d𝜓 ) (𝜉) + ãd(𝜃 (𝜉))𝜓
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with

ãd = Lie(Ãd) .

Therefore, if (𝑒1, . . . , 𝑒𝑚) is an orthonormal basis for 𝔪, the Dirac operator is given by

/𝐷𝜓 =

𝑚∑︁
𝑖=1

𝛾 (𝑒𝑖)L𝑒𝑖𝜓 .

12.3 The Weitzenböck formula for symmetric spaces

Suppose that 〈·, ·〉, in fact, arises from𝐺–invariant inner product on 𝔤; e.g.,𝐺 is semi-simple and

〈·, ·〉 is the negative of the Killing form.

Denition 12.5. The Casimir operator of 𝐺 is the dierential operator Ω𝐺 : 𝐶∞(𝐺) → 𝐶∞(𝐺)
dened by

Ω𝐺 ≔ −
𝑛∑︁
𝑖=1

L𝑒𝑖L𝑒𝑖

for some orthonormal basis (𝑒1, . . . , 𝑒𝑛) of 𝔤.

Proposition 12.6. We have

/𝐷2

= Ω𝐺 + 1

8

scal.

Sketch of proof. Since [𝑒𝑖 , 𝑒 𝑗 ] ∈ 𝔨 and, for 𝜉 ∈ 𝔨, L𝜉𝜓 = −ãd(𝜉), we have

/𝐷2

𝜓 =

𝑚∑︁
𝑖, 𝑗=1

𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )L𝑒𝑖L𝑒 𝑗𝜓

= −
𝑚∑︁
𝑖=1

L2

𝑒𝑖
𝜓 + 1

2

𝑚∑︁
𝑖, 𝑗=1

𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )L[𝑒𝑖 ,𝑒 𝑗 ]𝜓

= −
𝑚∑︁
𝑖=1

L2

𝑒𝑖
𝜓 − 1

2

𝑚∑︁
𝑖, 𝑗=1

𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )ãd( [𝑒𝑖 , 𝑒 𝑗 ]) .

Let (𝑓1, . . . , 𝑓𝑘 ) be an orthonormal basis of 𝔨. The above formula can then be written as

/𝐷2

= Ω𝐺 +
𝑘∑︁
𝑗=1

ãd(𝑓𝑗 )ãd(𝑓𝑗 ) −
1

2

𝑚∑︁
𝑖, 𝑗=1

𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )ãd( [𝑒𝑖 , 𝑒 𝑗 ])𝜓 .

A computation identies the sum of the last two terms with
1

8
scal. �
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Here is why the above is useful. The scalar curvature scal of a symmetric space is constant.

𝐿2Γ(/𝑆) is acted upon by 𝐺 and can be decomposed into irreducible representations

𝐿2Γ(/𝑆) =
⊕
𝜆∈Λ

𝑉𝜆 .

On an irreducible representation, the Casimir operator acts as a constant 𝑐 (𝜆). Consequently, the
spectrum of /𝐷2

is given by

spec( /𝐷2) =
{
𝑐 (𝜆) + 1

8

scal : 𝜆 ∈ Λ

}
.

This can (in principle) be used to compute the spectrum of /𝐷2

using representation theory.

Example 12.7 (Toy example). Consider the circle 𝑆1 = R/2𝜋Z. It has two spin structures. For one

of them, the spinor bundle is the trivial bundle /𝑆 = C and the Dirac operator is simply /𝐷 = 𝑖𝜕𝑡 .

Consequently,

spec /𝐷 = Z

with eigenspinors given by𝜓𝑘 (𝑡) = 𝑒𝑖𝑘𝑡 .
We can think of 𝑆1 as the symmetric space U(1)/{𝑒}. Since Spin(1) = {±1} and U(1) is

connected, there is a unique homogeneous spin structure on 𝑆1. This is the spin structure considered

above. The irreducible representation of U(1) are parametrized by Z: given 𝑘 ∈ Z, U(1) →
GL(C), 𝑧 ↦→ 𝑧𝑘 is irreducible. Each of these representations appear with multiplicity one in 𝐿2Γ(/𝑆)
(by Fourier theory). The Casimir operator on the representation parametrized by 𝑘 ∈ Z takes

value 𝑘2. Consequently, the above discussion tells us that

spec /𝐷2

= {𝑘2 : 𝑘 ∈ Z}.

Of course, this derivation is the same as direct derivation in the previous paragraph.

Remark 12.8. This method has been used by Sulanke to determine the spectrum of /𝐷 on 𝑆𝑛 =

SO(𝑛 + 1)/SO(𝑛) in her PhD thesis. A simpler way to determine the spectrum of /𝐷 on 𝑆𝑛 was

found by Bär [Bär96]. In fact, Bär’s method also determines an explicit eigenbasis with respect to

/𝐷 .

13 Killing Spinors

Denition 13.1. Let𝑀 be a spin manifold. A Killing spinor is a spinor𝜓 ∈ Γ(/𝑆) satisfying

∇𝑣𝜓 − 𝜇𝛾 (𝑣)𝜓 = 0

for some constant 𝜇 ∈ R and all 𝑣 ∈ 𝑇𝑀 . We call 𝜇 the Killing number of𝜓 .

Proposition 13.2. A Killing spinor with Killing number 𝜇 is an eigenspinor with eigenvalue −𝑛𝜇.
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13.1 Friedrich’s lower bound for the rst eigenvalue of /𝐷
As far as I know, the origin of the study of Killing spinors is the following result.

Theorem 13.3 (Friedrich [Fri80]). Let 𝑀 be a compact spin manifold with non-negative but non-
vanishing scalar curvature. Denote by 𝜆+ and 𝜆− the smallest positive and negative eigenvalues of /𝐷
respectively. With

scal0 ≔ min scal,

we have
(𝜆±)2 > 𝑛

4(𝑛 − 1) scal0.

If equality holds, then 𝑀 admits a non-trivial Killing spinor with Killing number + 𝑛
4(𝑛−1) scal or

− 𝑛
4(𝑛−1) scal.

Remark 13.4. The obvious lower bound on 𝜆± arising from Proposition 9.13 is 𝜆± > 1

4
scal0.

The proof is based on an important trick. The basic idea is that if 𝑓 ∈ 𝐶∞(𝑀,R), then there is

a Weitzenböck formula for /𝐷 + 𝑓 which give sharper bounds that Proposition 9.13. More generally,

one can replace 𝑓 with a suitable endomorphism of /𝑆 .

Denition 13.5. Given 𝑓 ∈ 𝐶∞(𝑀,R), dene the covariant derivative 𝑓 ∇ on /𝑆 by

𝑓 ∇𝑣Φ ≔ ∇Φ − 𝑓 𝛾 (𝑣)Φ.

Remark 13.6. 𝑓 ∇𝑣Φ is a metric covariant derivative.

Proposition 13.7. We have

( /𝐷 + 𝑓 )2 = 𝑓 ∇∗ 𝑓 ∇ + 1

4

scal + (1 − 𝑛) 𝑓 2

Proof. Since
/𝐷 (𝑓 𝜙) = 𝛾 (∇𝑓 ) + 𝑓 /𝐷 (𝜙),

we have

( /𝐷 + 𝑓 )2 = /𝐷2 + 2𝑓 /𝐷 + 𝛾 (∇) 𝑓 + 𝑓 2.

By Proposition 9.13, we have

( /𝐷 + 𝑓 )2 = ∇∗∇ + 2𝑓 /𝐷 + 𝛾 (∇𝑓 ) + 𝑓 2 + 1

4

scal.
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We have

𝑓 ∇∗ 𝑓 ∇ = −
𝑛∑︁
𝑖=1

𝑓 ∇𝑒𝑖 𝑓 ∇𝑒𝑖

= −
𝑛∑︁
𝑖=1

(∇𝑒𝑖 − 𝑓 𝛾 (𝑒𝑖)) (∇𝑒𝑖 − 𝑓 𝛾 (𝑒𝑖))

= −
𝑛∑︁
𝑖=1

(
∇2

𝑒𝑖
− 𝑓 2 − 𝛾𝑒𝑖∇𝑒𝑖 𝑓 − 2𝑓 𝛾𝑒𝑖∇𝑒𝑖

)
= ∇∗∇ + 𝑛𝑓 2 + 𝛾 (∇𝑓 ) + 2𝑓 /𝐷,

which can be rewritten as

∇∗∇ = 𝑓 ∇∗ 𝑓 ∇ − 𝑛𝑓 2 − 𝛾 (∇𝑓 ) − 2𝑓 /𝐷.

This proves the asserted identity. �

Corollary 13.8. If𝜓 is compactly supported, then
ˆ
𝑀

〈( /𝐷 + 𝑓 )2𝜓,𝜓 〉 =
ˆ
𝑀

(
1

4

scal + (1 − 𝑛) 𝑓 2
)
|𝜓 |2 + | 𝑓 ∇𝜓 |2.

Proof of Theorem 13.3. Suppose 𝜆 is an eigenvalue of /𝐷 and 𝜓 is an eigenspinor for 𝜆. Using

Corollary 13.8 with 𝑓 = 𝜇 a constant, we obtain

0 =

ˆ
𝑀

(
1

4

scal + (1 − 𝑛)𝜇2 − (𝜆 + 𝜇)2
)
|𝜓 |2 + | 𝑓 ∇𝜓 |2.

Consequently,

1

4

scal0 6 (𝜆 + 𝜇)2 + (𝑛 − 1)𝜇2.

The minimum of the right-hand side is
𝑛−1
𝑛
𝜆2; it is achieved at 𝜇 = −𝜆/𝑛. This implies the

bound. �

13.2 Killing spinors and Einstein metrics

Proposition 13.9. If𝑀 admits a non-trivial Killing spinor with Killing number 𝜇, then𝑀 is Einstein
with Einstein constant 4(𝑛 − 1) (𝜇/𝑛)2.

Proof. The curvature of 𝑓 ∇ is given by

𝑓 𝐹𝑘ℓ = [∇𝑘 − 𝑓 𝛾𝑘 ,∇ℓ − 𝑓 𝛾ℓ ]
= 𝑅𝑆

𝑘ℓ
− 𝜕𝑘 𝑓 𝛾𝑘𝛾ℓ + 𝜕ℓ 𝑓 𝛾ℓ𝛾𝑘 + 𝑓 2 [𝛾𝑘 , 𝛾ℓ ] .
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Arguing as in the proof of Proposition 10.1 with 𝑓 = −𝜆/𝑛, we have

0 =

𝑛∑︁
ℓ=1

𝛾 (𝑒ℓ ) 𝑓 𝐹 (𝑒𝑘 , 𝑒ℓ )𝜓

=
1

4

𝑛∑︁
𝑖, 𝑗,ℓ=1

𝛾 (𝑒ℓ )𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )〈𝑅(𝑒𝑘 , 𝑒ℓ )𝑒𝑖 , 𝑒 𝑗 〉𝜓 +
𝑛∑︁
ℓ=1

(𝜆/𝑛)2𝛾 (𝑒ℓ ) [𝛾 (𝑒𝑘 ), 𝛾 (𝑒ℓ )]𝜓

= −1
2

𝑛∑︁
𝑖=1

𝛾 (𝑒𝑖)Ric(𝑒𝑘 , 𝑒𝑖)𝜓 + 2(𝑛 − 1) (𝜆/𝑛)2𝛾 (𝑒𝑘 )𝜓

=

(
−1
2

𝜆𝑘 + 2(𝑛 − 1) (𝜆/𝑛)2
)
𝛾 (𝑒𝑘 )𝜓 .

It follows that

Ric = 4(𝑛 − 1) (𝜆/𝑛)2. �

13.3 The spectrum of the Atiyah–Singer operator on 𝑆𝑛

Theorem 13.10. Let 𝑛 > 3. On 𝑆𝑛 , we have

spec( /𝐷) = {±(𝑛/2 + 𝑘) : 𝑘 ∈ N0}.

The multiplicity of 𝜆±,𝑘 = ±(𝑛/2 + 𝑘) is

rk /𝑆 ·
(
𝑘 + 𝑛 − 1

𝑘

)
.

Proof. The following argument goes back to Bär [Bär96].

Proposition 13.11. Let 𝑛 > 3. The spinor bundle /𝑆 of 𝑆𝑛 can be trivialized by Killing spinors with
Killing number +1/2 and also by Killing spinors with Killing number −1/2.

Proof. Consider the covariant derivative ±1/2∇ dened by
±1/2∇𝑣𝜓 = ∇𝑣𝜓 ∓ 1/2𝛾 (𝑣)𝜓 . A computa-

tion shows that the curvature of
±1/2∇ vanishes. Since 𝑆𝑛 is simply-connected, it follows that /𝑆

admits a trivialization by
˜∇±
–parallel spinors. �

Proposition 13.12. We have

( /𝐷 ± 1/2)2 = ±1/2∇∗±1/2∇ + 1

4

(𝑛 − 1)2.

Proof. This is Proposition 13.7. �

76



Pick Killing spinors (𝜓±
1
, . . . ,𝜓±

𝑚) with Killing number ±1/2 forming a basis for /𝑆 point-wise.
Here𝑚 = rk /𝑆 . Let (𝑓𝑘 ) be a complete 𝐿2 orthonormal basis of eigenfunctions for Δ on 𝑆𝑛 . Denote

by 𝜆𝑘 the eigenvalue corresponding to 𝑓𝑘 .

Proposition 13.13. We have

spec(Δ𝑆𝑛 ) = {𝑘 (𝑛 + 𝑘 − 1) : 𝑘 ∈ N0}.

The eigenvalue 𝜆𝑘 = 𝑘 (𝑛 + 𝑘 − 1) has multiplicity

𝑚𝑘 =

(
𝑛 + 𝑘 − 1

𝑘

)
𝑛 + 2𝑘 − 1

𝑛 + 𝑘 − 1

.

Clearly (𝑓𝑖𝜓±
𝑗 ) forms an 𝐿2 orthonormal basis of 𝐿2Γ(/𝑆). Since𝜓±

𝑗 is
±1/2∇–parallel we have,

( /𝐷 ± 1/2)2(𝑓𝑖𝜓±
𝑗 ) =

(
𝜆𝑖 +

1

4

(𝑛 − 1)2
)
𝑓𝑖𝜓

±
𝑗 .

Therefore, (𝑓𝑖𝜓±
𝑗 ) is an eigenbasis for ( /𝐷 ± 1/2)2. Using Proposition 13.13, we can compute the

spectrum of ( /𝐷 ± 1/2)2.

Corollary 13.14. We have

spec

(
( /𝐷 ± 1/2)2

)
=

{
𝑘 (𝑛 + 𝑘 − 1) + (𝑛 − 1)2/4 : 𝑘 ∈ N0

}
.

The eigenvalue 𝜆𝑘 = 𝑘 (𝑛 + 𝑘 − 1) + (𝑛 − 1)2/4 has multiplicity

𝑚(𝜆𝑘 ) =
(
𝑛 + 𝑘 − 1

𝑘

)
𝑛 + 2𝑘 − 1

𝑛 + 𝑘 − 1

· rk /𝑆.

Proposition 13.15. If 𝐴2𝑥 = 𝜆2𝑥 , then 𝑥± = ±𝜆𝑥 +𝐴𝑥 satisfy

𝐴𝑥± = ±𝜆𝑥±.

We have

√︁
𝑘 (𝑛 + 𝑘 − 1) + (𝑛 − 1)2/4 = 𝑘 + 𝑛−1

2
. For 𝜀 = ±1, dene

𝜓 𝜀±
𝑘ℓ

≔ ( /𝐷 ± 1/2) (𝑓𝑘𝜓±
ℓ ) + 𝜀 (𝑘 + (𝑛 − 1)/2) (𝑓𝑘𝜓±

ℓ ) .

A brief computation shows that

𝜓 𝜀±
𝑘ℓ

= 𝜀 (±(1 − 𝑛)/2 + 𝜀 (𝑘 + (𝑛 − 1)/2)) (𝑓𝑘𝜓±
ℓ ) + 𝛾 (∇𝑓𝑘 )𝜓±

ℓ .

Except𝜓++
0,ℓ and𝜓

−−
0,ℓ these spinors are non-vanishing. It follows that

spec( /𝐷 ± 1/2) ⊂ {𝜀 (𝑘 + (𝑛 − 1)/2) : 𝜀 = ±1, 𝑘 ∈ N0}\{±(𝑛 − 1)/2)}.

This implies the claim about spec( /𝐷). For the computation of the multiplicities we refer the reader

to [Bär96, Lemma 5]. �
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14 Dependence of Atiyah–Singer operator on the Riemannian metric

The following goes back to the work of Bourguignon and Gauduchon [BG92]. The conformal

invariance was already noted by Hitchin [Hit74, Section 1.4].

14.1 Comparing spin structures with respect to dierent metrics

Let (𝑀,𝑔) be a Riemannian manifold. Let SO(𝑀,𝑔) denote its orientated frame-bundle. Let 𝔰 be a

spin-structure on𝑀 .

Proposition 14.1. If 𝑔 is a dierent metric on𝑀 , then there exists a unique section ℎ of 𝑔–self-adjoint
endomorphisms of 𝑇𝑀 such that 𝑔 = 𝑔𝑒2ℎ ; that is,

𝑔(𝑣,𝑤) = 𝑔(𝑒2ℎ𝑣,𝑤) = 𝑔(𝑒ℎ𝑣, 𝑒ℎ𝑤) .

In other words, 𝑒ℎ : (𝑇𝑀,𝑔) → (𝑇𝑀,𝑔) is an isometry. This means it induces an isomorphism of
SO(𝑛)–bundles 𝑏 : SO(𝑀,𝑔) → SO(𝑀,𝑔).

Proof. This is basic linear algebra. �

Proposition 14.2. Let 𝔰 be a spin structure for (𝑀,𝑔). There is a unique spin structure �̃� for (𝑀,𝑔)
such that 𝑒ℎ lifts to an isomorphism of Spin(𝑛)–bundles 𝑒ℎ : �̃� → 𝔰.

We have
𝑒−ℎ (𝛾 (𝑣)Ψ) = 𝛾 (𝑒−ℎ𝑣)𝑒−ℎΨ.

Proof. Let 𝑔𝑡 = 𝑔𝑒2𝑡ℎ . Then we have isomorphism 𝑏𝑡 . These can be lifted to isomorphism of spin

structures 𝑒ℎ : 𝔰 → �̃�. This isometrically identies the spinor bundles with respect to the dierent

metrics and these isomorphism are also compatible with the Cliord multiplication. �

Remark 14.3. It should be pointed out as a warning that the above construction depends on the

choice of path. In particular, it might not behave as onemight expect with respect to concatenations.

Given this, we can compare Dirac operators with respect to dierent metrics.

Denition 14.4. In the situation above, we set

/̃𝐷
𝑔,ℎ

≔ 𝑒ℎ /𝐷𝑔𝑒
2ℎ

𝑒−ℎ .

Having chosen a reference metric 𝑔, the above allows us to view the Dirac operators for other

metrics as an operator on the spinor bundle with respect to 𝑔. This makes it possible to compare

Dirac operator with respect to dierent metrics.
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14.2 Conformal invariance of the Dirac operator

Proposition 14.5. Let 𝑔 be a Riemannian metric and let 𝑓 ∈ 𝐶∞(𝑀). Then

/̃𝐷
𝑔,𝑓

= 𝑒−
𝑛+1
2
𝑓 /𝐷𝑔𝑒

𝑛−1
2
𝑓

Proposition 14.6. Let (𝑒1, . . . , 𝑒𝑛) be a local orthonormal frame with respect to 𝑔 and denote by Γ the
Christoel symbols of ∇𝑔, that is,

∇𝑒𝑖𝑒 𝑗 = 𝜕𝑒𝑖 + Γ𝑘𝑖 𝑗𝑒𝑘 .

Denote by 𝑒𝑖 = 𝑒−𝑓 𝑒𝑖 the corresponding local orthonormal frame with respect to 𝑔 = 𝑔𝑒2𝑓 . The
Christoel symbols Γ̃ of ∇𝑔 are given by

Γ̃𝑘𝑖 𝑗 = Γ𝑘𝑖 𝑗 − 𝛿𝑖𝑘 · 𝜕𝑗 𝑓 + 𝛿𝑖 𝑗 · 𝜕𝑘 𝑓 .

Proof. Exercise. �

Corollary 14.7. In the above situation, the spin connections /∇𝑔 and /∇𝑔 are related by

𝑒−𝑓 /∇𝑔
𝑒𝑖
𝑒 𝑓 = 𝑒−𝑓

(
/∇𝑔𝑒𝑖 +

1

4

(𝜕𝑗 𝑓 ) [𝛾 𝑗 , 𝛾𝑖]
)
.

Proof of Proposition 14.5. We have

𝑒 𝑓 /𝐷𝑔𝑒−𝑓 =
𝑛∑︁
𝑖=1

𝑒 𝑓 𝛾 (𝑒𝑖) /∇𝑔𝑒𝑖𝑒
−𝑓

=

𝑛∑︁
𝑖=1

𝛾 (𝑒𝑖)𝑒 𝑓 /∇𝑔𝑒𝑖𝑒
−𝑓

=

𝑛∑︁
𝑖=1

𝛾 (𝑒𝑖)𝑒−𝑓
(
/∇𝑔𝑒𝑖 +

1

4

(𝜕𝑗 𝑓 ) [𝛾 𝑗 , 𝛾𝑖]
)

= 𝑒−𝑓
(
/𝐷𝑔 + 𝑛 − 1

2

𝛾 (∇𝑓 )
)

= 𝑒−
𝑛+1
2
𝑓 /𝐷𝑔𝑒

𝑛−1
2
𝑓 . �

Corollary 14.8. The dimension of the space of harmonic spinors is a conformal invariant.

14.3 Variation of the spin connections

In order to make use of /̃𝐷 we need to understand how the spin connections with respect to 𝑔 and

𝑔 are related. Denote by /∇𝑔 the connection on the spinor bundle with respect to 𝑔.
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Proposition 14.9. Let
˜/∇
𝑔,ℎ

= 𝑒ℎ /∇𝑔𝑒
2ℎ

𝑒−ℎ = /∇𝑔 + /𝑎ℎ .

We have
/𝑎ℎ (·) = −1

4

∑︁
𝑖, 𝑗

(
𝑔(·, (∇𝑔𝑒 𝑗ℎ)𝑒𝑖) − 𝑔(·, (∇

𝑔
𝑒𝑖ℎ)𝑒 𝑗 )

)
𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 ) +𝑂 (ℎ2)

The proof follows immediately from the following observation regarding the Levi-Civita

connection.

Proposition 14.10. Denote by ∇𝑔 the Levi-Civita connection for 𝑔. Set

˜∇𝑔,ℎ = 𝑒ℎ∇𝑔𝑒−ℎ .

Dene 𝑎ℎ by
˜∇𝑔,ℎ = ∇𝑔 + 𝑎ℎ

Write 𝑎ℎ = 𝑎(ℎ) +𝑂 (ℎ2). We have

𝑔(𝑎ℎ (𝑢)𝑣,𝑤) = 𝑔(𝑢, (∇𝑔𝑣ℎ)𝑤) − 𝑔(𝑢, (∇𝑔𝑤ℎ)𝑣) .

Remark 14.11. If (𝑒𝑖) is a orthonormal basis for 𝑇𝑥𝑀 , then

𝑎ℎ =
∑︁
𝑖, 𝑗

(𝑎ℎ)𝑖𝑗𝑒𝑖𝑒 𝑗

with

(𝑎ℎ)𝑖𝑗 (𝑒𝑘 ) = 〈(𝑎ℎ) (𝑒𝑘 )𝑒 𝑗 , 𝑒𝑖〉 = 𝑔(𝑒𝑘 , (∇𝑔𝑒 𝑗ℎ)𝑒𝑖) − 𝑔(𝑒𝑘 , (∇
𝑔
𝑒𝑖ℎ)𝑒 𝑗 ) .

Proof. This is essentially proved by taking the derivative of the usual formula for the Levi-Civita

connection. The following computation makes this look more complicated than it should be, but

it also derives an explicit formula ∇𝑔 in terms of ∇𝑔 and ℎ. (We highly recommend to skip this

computation.)

Recall that exp(−𝑦)d𝑥 exp(𝑦) = Υ𝑥𝑦 with

Υ𝑥 ≔
𝑒ad𝑥 − id

ad𝑥

.

We have

𝑔(∇𝑔𝑢𝑣,𝑤) = 1

2

(
L𝑢𝑔(𝑣,𝑤) +L𝑣𝑔(𝑤,𝑢) −L𝑤𝑔(𝑢, 𝑣)

+ 𝑔( [𝑢, 𝑣],𝑤) − 𝑔( [𝑣,𝑤], 𝑢) + 𝑔( [𝑤,𝑢], 𝑣)
)

=
1

2

(
L𝑢𝑔(𝑒ℎ𝑣, 𝑒ℎ𝑤) +L𝑣𝑔(𝑒ℎ𝑤, 𝑒ℎ𝑢) −L𝑤𝑔(𝑒ℎ𝑢, 𝑒ℎ𝑣)
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+ 𝑔(𝑒ℎ [𝑢, 𝑣], 𝑒ℎ𝑤) − 𝑔(𝑒ℎ [𝑣,𝑤], 𝑒ℎ𝑢) + 𝑔(𝑒ℎ [𝑤,𝑢], 𝑒ℎ𝑣)
)

=
1

2

(
𝑔((Υ(−ℎ)∇𝑢ℎ)𝑣,𝑤) + 𝑔(𝑣, (Υ(−ℎ)∇𝑢ℎ)𝑤)

+ 𝑔((Υ(−ℎ)∇𝑣ℎ)𝑤,𝑢) + 𝑔(𝑤, (Υ(−ℎ)∇𝑣ℎ)𝑢)

− 𝑔((Υ(−ℎ)∇𝑤ℎ)𝑢, 𝑣) − 𝑔(𝑢, (Υ(−ℎ)∇𝑤ℎ)𝑣)
)

+ 1

2

(
𝑔(𝑒ℎ∇𝑢𝑣, 𝑒ℎ𝑤) + 𝑔(𝑒ℎ𝑣, 𝑒ℎ∇𝑢𝑤)

+ 𝑔(𝑒ℎ∇𝑣𝑤, 𝑒ℎ𝑢) + 𝑔(𝑒ℎ𝑤, 𝑒ℎ∇𝑣𝑢)
− 𝑔(𝑒ℎ∇𝑤𝑢, 𝑒ℎ𝑣) − 𝑔(𝑒ℎ𝑤, 𝑒ℎ∇𝑤𝑣)
+ 𝑔(𝑒ℎ [𝑢, 𝑣], 𝑒ℎ𝑤) − 𝑔(𝑒ℎ [𝑣,𝑤], 𝑒ℎ𝑢) + 𝑔(𝑒ℎ [𝑤,𝑢], 𝑒ℎ𝑣)

)
=
1

2

(
𝑔((Υ(−ℎ)∇𝑢ℎ)𝑣,𝑤) + 𝑔(𝑣, (Υ(−ℎ)∇𝑢ℎ)𝑤)

+ 𝑔((Υ(−ℎ)∇𝑣ℎ)𝑤,𝑢) + 𝑔(𝑤, (Υ(−ℎ)∇𝑣ℎ)𝑢)
− 𝑔((Υ(−ℎ)∇𝑤ℎ)𝑢, 𝑣) − 𝑔(𝑢, (Υ(−ℎ)∇𝑤ℎ)𝑣)

+ 𝑔(∇𝑢𝑣,𝑤)

Note that if 𝑥,𝑦 are self-adjoint, then (Υ(𝑥)𝑦)∗ = Υ(−𝑥)𝑦. Set

Θ(𝑥) ≔ 1

2

(Υ(𝑥) + Υ(−𝑥)) .

Thus 𝑎 dened by ∇𝑔 = ∇𝑔 + 𝑎 is characterized by

𝑔(𝑎(𝑢)𝑣,𝑤) = 𝑔((Θ(ℎ)∇𝑔𝑢ℎ)𝑣,𝑤) + 𝑔((Θ(ℎ)∇𝑔𝑣ℎ)𝑤,𝑢) − 𝑔((Θ(ℎ)∇𝑔𝑤ℎ)𝑢, 𝑣) .

Therefore, 𝑎, dened by

𝑒ℎ∇𝑔𝑒−ℎ = ∇𝑔 + 𝑎

satises

𝑔(𝑎(𝑢)𝑣,𝑤) = +𝑔(−(Υ(−ℎ)∇𝑔ℎ)𝑣,𝑤) + 𝑔((𝑒adℎΘ(ℎ)∇𝑔𝑢ℎ)𝑣,𝑤)
+ 𝑔((𝑒adℎΘ(ℎ)∇𝑔𝑣ℎ)𝑤,𝑢) − 𝑔((𝑒adℎΘ(ℎ)∇𝑔𝑤ℎ)𝑢, 𝑣)
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because

𝑔(𝑒ℎ∇𝑔𝑢𝑒−ℎ𝑣,𝑤) = 𝑔(𝑒ℎ∇𝑔𝑢𝑒−ℎ𝑣,𝑤) + 𝑔(𝑒ℎ𝑎(𝑢)𝑒−ℎ𝑣,𝑤)
= 𝑔(∇𝑔𝑢𝑣,𝑤) + 𝑔(−(Υ(−ℎ)∇𝑔ℎ)𝑣,𝑤)
+ 𝑔(𝑒ℎ (Θ(ℎ)∇𝑔𝑢ℎ)𝑒−ℎ𝑣,𝑤) + 𝑔(𝑒ℎ (Θ(ℎ)∇𝑔𝑣ℎ)𝑒−ℎ𝑤,𝑢)
− 𝑔(𝑒ℎ (Θ(ℎ)∇𝑔𝑤ℎ)𝑒−ℎ𝑢, 𝑣)

= 𝑔(∇𝑔𝑢𝑣,𝑤)
+ 𝑔(−(Υ(−ℎ)∇𝑔ℎ)𝑣,𝑤) + 𝑔((𝑒adℎΘ(ℎ)∇𝑔𝑢ℎ)𝑣,𝑤)
+ 𝑔((𝑒adℎΘ(ℎ)∇𝑔𝑣ℎ)𝑤,𝑢) − 𝑔((𝑒adℎΘ(ℎ)∇𝑔𝑤ℎ)𝑢, 𝑣). �

14.4 Variation of the Dirac operator

Proposition 14.12. Set ˜/𝐷
𝑔,ℎ

= 𝑒ℎ /𝐷𝑔𝑒
2ℎ

𝑒−ℎ . At ℎ = 0, we have

d /𝐷𝑔,ℎ ( ˆℎ) = −
∑︁
𝑖

𝛾 (𝑒𝑖)∇𝑔
ˆℎ𝑒𝑖

+ 1

2

𝛾 (∇∗ℎ + ∇ tr(ℎ)).

Proof. Let (𝑒𝑖) be an orthonormal basis of (𝑇𝑀,𝑔). Then (𝑒𝑖) = (𝑒−ℎ𝑒𝑖) is an orthonormal basis of

(𝑇𝑀,𝑔) and

𝑒ℎ ( /𝐷𝑔 (𝑒−ℎΨ)) =
𝑛∑︁
𝑖=1

𝑒ℎ
(
𝛾 (𝑒𝑖)∇𝑔𝑒𝑖𝑒

−ℎΨ
)

=

𝑛∑︁
𝑖=1

𝛾 (𝑒𝑖)𝑒ℎ∇𝑔𝑒𝑖𝑒
−ℎΨ

=

𝑛∑︁
𝑖=1

𝛾 (𝑒𝑖) ˜∇ℎ𝑒−ℎ𝑒𝑖Ψ

=

𝑛∑︁
𝑖=1

𝛾 (𝑒𝑖)
(
∇𝑔
𝑒−ℎ𝑒𝑖

+ /𝑎ℎ (𝑒−ℎ𝑒𝑖)
)
Ψ. �

Denition 14.13. The stress-energy tensor of𝜓 is

𝑇𝜓 (𝑣,𝑤) ≔ 〈𝛾 (𝑣)∇𝑤𝜓 + 𝛾 (𝑤)∇𝑣𝜓,𝜓 〉

Corollary 14.14. We have

(14.15) 〈𝜓, d /𝐷𝑔,ℎ ( ˆℎ)𝜓 〉 = −1
2

〈𝑇𝜓 (𝑣,𝑤), ˆℎ〉.
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Proof. We have

𝑒ℎ ( /𝐷𝑔𝑒
2ℎ

(𝑒−ℎΨ)) = /𝐷𝑔Ψ
−

∑︁
𝑖

𝛾 (𝑒𝑖)∇𝑔ℎ𝑒𝑖

− 1

4

∑︁
𝑖, 𝑗,𝑘

(
〈𝑒𝑖 , (∇𝑔𝑒𝑘ℎ)𝑒 𝑗 〉 − 〈𝑒𝑖 , (∇𝑔𝑒 𝑗ℎ)𝑒𝑘〉

)
𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )𝛾 (𝑒𝑘 )

+𝑂 (ℎ2) .

At a point where ∇𝑒𝑖𝑒 𝑗 = 0, we need to compute∑︁
𝑖 𝑗𝑘

(∇𝑘ℎ 𝑗𝑖 − ∇𝑗ℎ𝑘𝑖)𝛾𝑖𝛾 𝑗𝛾𝑘 .

We can split this sum into ve contributions depending on the incidence of the indices: 𝑖 = 𝑗 = 𝑘 ,

𝑖 ≠ 𝑗 = 𝑘 , 𝑖 = 𝑗 ≠ 𝑘 , 𝑘 = 𝑖 ≠ 𝑗 , 𝑖 ≠ 𝑗 ≠ 𝑘 . Only the third and the fourth sum contribute and we get∑︁
𝑖 𝑗𝑘

(∇𝑘ℎ 𝑗𝑖 − ∇𝑗ℎ𝑘𝑖)𝛾𝑖𝛾 𝑗𝛾𝑘 = −
∑︁
𝑖≠𝑘

(∇𝑘ℎ𝑖𝑖 − ∇𝑖ℎ𝑘𝑖)𝛾𝑘 +
∑︁
𝑖≠𝑗

(∇𝑖ℎ 𝑗𝑖 − ∇𝑗ℎ𝑖𝑖)𝛾𝑘

= +2
∑︁
𝑖, 𝑗

(∇𝑖ℎ𝑖 𝑗 − ∇𝑗 tr(ℎ))𝛾𝑘

= −2𝛾 (∇∗ℎ + ∇ tr(ℎ)) . �

15 𝐿2 elliptic theory for Dirac operators

Dirac operators naturally are dened as dierential operators acting on smooth sections Γ(𝑆) a
Dirac bundle. The space Γ(𝑆), naturally, is a Fréchet space. Unfortunately, functional analysis for
Fréchet spaces is very delicate. It will be easier for us to work with Hilbert spaces of𝑊 𝑘,2

sections

of 𝑆 .
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15.1 𝑊 𝑘,2 sections

Denition 15.1. Let 𝑀 be a compact, oriented, Riemannian manifold. Let 𝐸 be a Hermitian or

Euclidean vector bundle over 𝑀 . Suppose ∇ is a metric covariant derivative on 𝐸. Let 𝑘 ∈ N0.

Given 𝑠, 𝑡 ∈ Γ(𝐸), dene

〈𝑠, 𝑡〉𝑊 𝑘,2 ≔

𝑘∑︁
𝑗=0

ˆ
𝑀

〈∇𝑘𝑠,∇𝑘𝑡〉𝑇 ∗𝑀⊗𝑘 ⊗𝐸 vol𝑔 and ‖𝑠 ‖𝑊 𝑘,2 ≔
√︁
〈𝑠, 𝑠〉𝑊 𝑘,2 .

We denote by𝑊 𝑘,2Γ(𝐸) the Hilbert space obtained as the completion of Γ(𝐸) with respect to

the norm ‖·‖𝑊 𝑘,2 ; that is,

𝑊 𝑘,2Γ(𝐸) ≔ Γ(𝐸) ‖ · ‖𝑊𝑘,2
.

Instead of𝑊 𝑘,2
we will simply write 𝐿2.

If 𝐸 is Hermitian, then𝑊 𝑘,2Γ(𝐸) is a complex Hilbert space; otherwise, it is a real Hilbert

space.

Remark 15.2. Using measure theory and distribution theory, the space𝑊 𝑘,2Γ(𝐸) can be constructed

directly, without going through the abstract machinery of completion.

Exercise 15.3. The norm ‖·‖𝑊 𝑘,2 does depend on the choice of inner product ℎ and covariant

derivative ∇ on 𝐸. However, since𝑀 is compact, dierent choices lead to comparable norms; that

is, for some constant 𝑐 > 0

𝑐−1‖·‖
𝑊

𝑘,2

∇,ℎ
6 ‖·‖

𝑊
𝑘,2

∇′,ℎ′
6 𝑐 ‖·‖

𝑊
𝑘,2

∇,ℎ
.

Consequently,𝑊 𝑘,2Γ(𝐸), as a topological vector space, is independent of the choice of ∇ and ℎ.

Proposition 15.4. If 𝐷 : Γ(𝐸) → Γ(𝐹 ) is a dierential operator of order ℓ ∈ N0, then it extends
uniquely to a bounded linear operator 𝐷 : 𝑊 𝑘+ℓ,2Γ(𝐸) →𝑊 𝑘,2Γ(𝐹 ) for all 𝑘 ∈ N0.

Proof. Exercise. First proof that this holds for ∇ : Γ(𝐸) → Γ(𝑇 ∗𝑀 ⊗ 𝐸) and 0–th order dierential

operators. �

There are two fundamental theorems about𝑊 𝑘,2
spaces.

Theorem 15.5 (Rellich–Kondrachov). The embedding𝑊 𝑘+1,2Γ(𝐸) →𝑊 𝑘,2Γ(𝐸) is compact.

Proof. It suces to restrict to 𝑘 = 0. We need to prove that if (𝑠𝑖) is a sequence in𝑊 1,2Γ(𝐸) with
‖𝑠𝑖 ‖𝑊 1,2 6 1, then the corresponding sequence in 𝐿2Γ(𝐸) has a convergent subsequence.

Step 1. We can assume that𝑀 = 𝑇𝑛 and 𝐸 = C.
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Using a partition of unity we can write

𝑠𝑖 = 𝑠𝑖,1 + . . . + 𝑠1,𝑚

with 𝑠𝑖, 𝑗 supported in a coordinate chart. It suces to prove convergence of the 𝑠𝑖, 𝑗 for xed 𝑗 .

Such a coordinate chart can be embedded into 𝑇𝑛 . In a coordinate chart 𝐸 is trivial and we can

decompose 𝑠𝑖, 𝑗 into its components (and possibly complexify).

Step 2. Preliminary steps using Fourier analysis.

By Fourier analysis, we can write any 𝑠 ∈𝑊 1,2Γ(𝐸) as

𝑠 (𝑥) =
∑︁
𝛼 ∈Z𝑛

𝑠𝛼𝑒
𝑖 〈𝛼,𝑥 〉

and by Parseval’s Theorem we have

‖𝑠 ‖2
𝑊 1,2 =

∑︁
𝛼 ∈Z𝑛

(
1 + |𝛼 |2

)
|𝑠𝛼 |2.

Denote by 𝑠𝑁 the following truncation of the Fourier series of 𝑠:

𝑠𝑁 (𝑥) ≔
∑︁
𝛼 ∈Z𝑛
|𝛼 |6𝑁

𝑠𝛼𝑒
𝑖 〈𝛼,𝑥 〉 .

According to the above and Parseval’s Theorem, we have𝑠𝑁 2
𝐿2
6 ‖𝑠 ‖𝑊 1,2 and

𝑠 − 𝑠𝑁 2
𝐿2

=
∑︁
𝛼 ∈Z𝑛
|𝛼 |>𝑁

|𝑠𝛼 |2 6
‖𝑠 ‖𝑊 1,2

1 + 𝑁 2
.

Step 3. Completion of the proof.

Since ‖𝑠𝑖 ‖𝑊 1,2 6 1, the above means that, for each 𝑁 ∈ N,𝑠𝑁𝑖 
𝐿2
6 1 and

𝑠𝑖 − 𝑠𝑁𝑖 
𝐿2
6 1/𝑁 .

For each 𝑁 , (𝑠𝑁𝑖 ) has is a bounded sequence in the nite dimensional space of smooth functions

spanned by 𝑒𝑖 〈𝛼,𝑥 〉 with 𝛼 ∈ Z𝑛 satisfying |𝛼 | 6 𝑁 . A diagonal sequence argument nds shows that

after passing to a subsequence, we can assume that 𝑠𝑁𝑖 converges for each 𝑁 . Since

𝑠𝑖 − 𝑠𝑁𝑖 
𝐿2
6

1/𝑁 , it follows that 𝑠𝑖 converges as well. �

Theorem 15.6 (Morrey–Sobolev embedding). If ℓ − 𝑛/2 > 0, then

‖𝑠 ‖𝐶𝑘 . ‖𝑠 ‖𝑊 𝑘+ℓ,2 ;

in particular,𝑊 𝑘+ℓ,2Γ(𝐸) → 𝐶𝑘Γ(𝐸).
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Proof. It suces to prove this for 𝑘 = 0. Since the estimate is local, we can assume that 𝑠 is

supported in a coordinate chart of radius 1 and work on R𝑛 . We need to estimate |𝑠 | (0) in terms of

‖𝑠 ‖𝑊 ℓ,2 .

For 𝑥 ∈ 𝑆𝑛−1, by multiple applications of the fundamental theorem of calculus and rearranging

integrals we have

𝑠 (0) = −
ˆ

1

0

𝜕𝑟𝑠 (𝑟𝑥)d𝑟

= +
ˆ

1

0

ˆ
1

𝑟1

𝜕2𝑟2𝑠 (𝑟2𝑥) d𝑟2d𝑟1

= · · ·

= (−1)ℓ
ˆ

1

0

ˆ
1

𝑟1

· · ·
ˆ

1

𝑟ℓ−1

𝜕ℓ𝑟ℓ 𝑠 (𝑟ℓ𝑥) d𝑟ℓ · · · d𝑟2d𝑟1

= (−1)ℓ
ˆ

1

0

ˆ 𝑟ℓ

0

ˆ 𝑟ℓ−1

0

· · ·
ˆ 𝑟2

0

𝜕ℓ𝑟ℓ 𝑠 (𝑟ℓ𝑥) d𝑟1d𝑟2 · · · d𝑟ℓ

= (−1)ℓ/(ℓ − 1)!
ˆ

1

0

𝑟 ℓ−1𝜕ℓ𝑟𝑠 (𝑟𝑥) d𝑟 .

Therefore, integrating over 𝑆𝑛−1 we obtain

|𝑠 (0) | .
ˆ
𝑆𝑛−1

ˆ
1

0

𝑟 ℓ−1 |𝜕ℓ𝑟𝑠 | (𝑟𝑥) d𝑟d𝑥

=

ˆ
𝐵1

|𝑥 |ℓ−𝑛 |∇ℓ𝑠 | volR𝑛

6

(ˆ
𝐵1

|∇ℓ𝑠 |2
)
1/2

·
(ˆ
𝐵1

|𝑥 |2(ℓ−𝑛)
)
1/2
.

The second factor is integrable provided 2(ℓ − 𝑛) > 𝑛, that is, ℓ > 𝑛/2. �

Remark 15.7. The above argument is due to Nirenberg [Nir59, p. 127]. The inclined reader will

observe that it can be used to prove a considerably more general result.

There also is a Fourier theoretic argument, which the reader can nd in [Roe98, Theorem 5.7].

15.2 Elliptic estimates

Proposition 15.8. Let 𝑘 ∈ N0. There is a constant 𝑐 > 0 such that

‖𝑠 ‖𝑊 𝑘+1,2 6 𝑐
(
‖𝐷𝑠 ‖𝑊 𝑘,2 + ‖𝑠 ‖𝐿2

)
.

Proof. By the Weitzenböck formula 𝐷2 = ∇∗∇ +F. Consequently,

‖𝑠 ‖2
𝑊 1,2 6 〈𝐷2𝑠, 𝑠〉𝐿2 + 𝑐 ‖𝑠 ‖2𝐿2
6 ‖𝐷𝑠‖2

𝐿2
+ 𝑐 ‖𝑠 ‖2

𝐿2
.
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This proves the assertion for 𝑘 = 0.

Exercise 15.9. Prove that [𝐷,∇] is a 0th order dierential operator.

Given this, we have

‖∇𝑠 ‖2
𝑊 1,2 6 ‖𝐷∇𝑠 ‖2

𝐿2
+ 𝑐 ‖𝑠 ‖2

𝐿2

6 ‖𝐷𝑠‖2
𝑊 1,2 + 𝑐 ‖𝑠 ‖2𝐿2 .

This proves the assertion for 𝑘 = 1. The assertion for arbitrary 𝑘 follows by induction. �

Lemma 15.10. Let 𝑋,𝑌, 𝑍 be Banach spaces. Let 𝐷 : 𝑋 → 𝑌 be a bounded linear operator. Let
𝐾 : 𝑋 → 𝑍 be a compact linear operator. If there is a constant 𝑐 > 0 such that

‖𝑥 ‖𝑋 6 𝑐 (‖𝐷𝑥 ‖𝑌 + ‖𝐾𝑥 ‖𝑍 ) ,

then ker𝐷 is nite-dimensional, and im𝐷 is closed.

Corollary 15.11. ker
(
𝐷 : 𝑊 𝑘+1,2Γ(𝑆) →𝑊 𝑘,2Γ(𝑆)

)
is nite-dimensional.

15.3 Elliptic regularity

Exercise 15.12. Let 𝑋,𝑌 be a Hilbert spaces and 𝑋 ∗ = L(𝑋,R) and 𝑌 ∗
their duals. Let 𝐿 : 𝑋 → 𝑌

be a bounded linear operator. Set

‖𝐿‖L (𝑋,𝑌 ) ≔ sup{‖𝐿𝑥 ‖ : ‖𝑥 ‖ = 1}.

Prove that

‖𝐿∗‖L (𝑌 ∗,𝑋 ∗) = ‖𝐿‖L (𝑋,𝑌 ) .

Denition 15.13. Denote by𝑊 −𝑘,2Γ(𝑆) the dual space Hilbert space of𝑊 𝑘,2Γ(𝑆).

Remark 15.14. By Theorem 15.6,

⋃
𝑘∈Z𝑊

𝑘,2Γ(𝑆) is the space of 𝑆–valued distributions. We denote

this space by D′Γ(𝑆) ′.

We can extend 𝐷 to 𝐷 : 𝑊 𝑘+1,2Γ(𝑆) → 𝑊 𝑘,2Γ(𝑆) for all 𝑘 ∈ Z. If 𝑘 > 0, it is clear how to

dene 𝐷 . For 𝑘 > 1 and𝜓 ∈𝑊 −𝑘+1,2Γ(𝑆), we dene 𝐷𝜓 ∈𝑊 −𝑘,2Γ(𝑆) by

〈𝐷𝜓,𝜙〉𝑊 −𝑘,2,𝑊 𝑘,2 ≔ 〈𝜓, 𝐷𝜙〉𝑊 −𝑘+1,2,𝑊 𝑘−1,2 .

For ℓ > 𝑘 > 0,𝑊 ℓ,2Γ(𝑆) ⊂𝑊 𝑘,2Γ(𝑆), we have

𝑊 −𝑘,2Γ(𝑆) = (𝑊 𝑘,2Γ(𝑆))∗ ⊂ (𝑊 ℓ,2Γ(𝑆))∗ =𝑊 −ℓ,2Γ(𝑆) .

Therefore,

𝑊 ℓ,2Γ(𝑆) ⊂𝑊 𝑘,2Γ(𝑆) .
for all ℓ > 𝑘 . All the results proved above extend to 𝑘 ∈ Z, in particular, the elliptic estimates.
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Proposition 15.15. If𝜓 ∈ D′Γ(𝑆) and 𝐷𝜓 ∈𝑊 𝑘,2Γ(𝑆) ⊂𝑊 −∞,2Γ(𝑆), then𝜓 ∈𝑊 𝑘+1,2Γ(𝑆).

There are many ways of proving this result. A popular method is to use dierence quotients,

see [Eva10, Section 6.3]. We will use the a Friedrich’s mollier.

Denition 15.16. A Friedrich’s mollier for 𝑆 is a family (𝐹𝜀)𝜀∈(0,1) of smoothing operators

𝑊 −∞,2Γ(𝑆) → Γ(𝑆) with the following properties for each 𝑘 ∈ Z:

1. There is a constant 𝑐𝑘 > 0 such that, for all 𝑠 ∈ 𝐿2Γ(𝑆),

‖𝐹𝜀𝜙 ‖𝑊 𝑘,2 6 𝑐 ‖𝜙 ‖𝑊 𝑘,2 .

2. For any rst order dierential operator 𝐵 there is a constant 𝑐𝐵 > 0 such that for all 𝑠 ∈ Γ(Σ)
with

‖ [𝐵, 𝐹𝜀]𝜙 ‖𝑊 𝑘,2 6 𝑐 ‖𝜙 ‖𝑊 𝑘,2

3. For any 𝑠 ∈ D′Γ(𝑆) and 𝑡 ∈ Γ(𝑆), we have

〈𝐹𝜀𝜙,𝜓 〉 → 〈𝜙,𝜓 〉.

Exercise 15.17. Suppose 𝑀 = R𝑛 and 𝑆 is trivial. Let 𝜙 ∈ 𝐶∞
𝑐 ( [0,∞), [0, 1]) be a compactly

supported function with

´
𝜙 = 0. For 𝜀 > 0, dene

(𝐹𝜀𝑠) (𝑥) ≔ 𝜀−𝑛
ˆ
R𝑛
𝜙 ((𝑥 − 𝑦)/𝜀)𝑠 (𝑦)d𝑦.

Prove that (𝐹𝜀) is a mollier and use this construction to prove the existence of molliers in

general.

Sketch of proof of Proposition 15.15. We will prove that, for all 𝑘 ∈ Z, if 𝜓 ∈ 𝑊 𝑘,2Γ(𝑆) and 𝐷𝜓 ∈
𝑊 𝑘,2Γ(𝑆), then𝜓 ∈𝑊 𝑘+1,2Γ(𝑆).

The denition of Friedrich’s molliers implies that there is a constant 𝑐 > 0 independent of 𝜀

such that

‖𝐹𝜀𝑠 ‖𝑊 𝑘,2 6 ‖𝑠 ‖𝑊 𝑘,2 and ‖ [𝐹𝜀, 𝐷]𝑠 ‖𝑊 𝑘,2 6 ‖𝑠 ‖𝑊 𝑘,2 .

By elliptic estimates

‖𝐹𝜀𝜓 ‖𝑊 𝑘+1,2 6 𝑐
(
‖𝐷𝐹𝜀𝜓 ‖𝑊 𝑘,2 + ‖𝐹𝜀𝜓 ‖𝑊 𝑘,2

)
= 𝑐

(
‖ [𝐷, 𝐹𝜀]𝜓 ‖𝑊 𝑘,2 + ‖𝐹𝜀𝜓 ‖𝑊 𝑘,2

)
6 𝑐 ‖𝜓 ‖𝑊 𝑘,2 .

It follows that 𝐹𝜀𝜓 converges weakly in𝑊 𝑘+1,2Γ(𝑆). By denition of 𝐹𝜀 , the limit of 𝐹𝜀𝜓 in

D′Γ(𝑆) is𝜓 . Since these limits must agree, we have𝜓 ∈𝑊 𝑘+1,2Γ(𝑆). �

Corollary 15.18. ker
(
𝐷 : 𝑊 𝑘+1,2Γ(𝑆) →𝑊 𝑘,2Γ(𝑆)

)
= ker𝐷 ; in particular, it is independent of 𝑘 .
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16 The index of a Dirac operator

Let𝑀 be a spin (or spin
𝑐
) manifold of even dimension with complex spinor bundle𝑊 =𝑊 + ⊕𝑊 −

.

Let 𝑆 be a complex Dirac bundle. For some Hermitian vector bundle 𝐸 we can write

𝑆 =𝑊 ⊗C 𝐸

and thus

𝑆 = 𝑆+ ⊕ 𝑆− with 𝑆± ≔𝑊 ± ⊗C 𝐸.

We call this the canonical grading on 𝑆 .

The Dirac operator on 𝑆 splits according to this grading as

𝐷 =

(
0 𝐷−

𝐷+
0

)
with

𝐷± = (𝐷∓)∗.

By the preceding discussion ker𝐷+
and coker𝐷+ � ker𝐷−

are both nite dimensional.

Denition 16.1. The index of 𝐷 with respect to the canonical grading is

index(𝐷) = dim ker𝐷+ − dim ker𝐷−.

It is a truly remarkable fact that index(𝐷) can be computed in terms of the topology of the

underlying manifold 𝑀 and in terms of the topology of 𝑆 . The proof of this fact and the index

formula will occupy most of the rest of this course.
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Remark 16.2. Let 𝑉 = 𝑉 + ⊕ 𝑉 −
be a Z2 graded Euclidean (or Hermitian) vector space and let

𝑇 : 𝑉 → 𝑉 be linear map. Writing

𝑇 =

(
𝑇 +
+ 𝑇 −

+
𝑇 +
− 𝑇 −

−

)
.

The super trace of 𝑇 is

str𝑇 = tr𝑇 +
+ − tr𝑇 −

− .

Suppose 𝐴 : 𝑉 → 𝑉 is of degree 1 and self-adjoint, that is

𝐴 =

(
0 𝐴−

𝐴+
0

)
.

with 𝐴± = (𝐴∓)∗. We can compute

index𝐴 = dim ker𝐴+ − dim ker𝐴−

as follows.

Write

𝐴2 =

(
(𝐴+)∗𝐴+

0

0 (𝐴−)∗𝐴−

)
.

Observe that

lim

𝑡→∞
𝑒−𝑡 (𝐴

±)∗𝐴±
= Π±

with Π±
denoting the orthogonal projection to ker𝐴±

. Because of this

index𝐴 = lim

𝑡→∞
str(𝑒−𝑡𝐴2) = str

(
Π+ 0

0 Π−

)
.

We have

𝜕𝑡 str(𝑒−𝑡𝐴
2) = str(𝐴2𝑒−𝑡𝐴

2) = str( [𝐴𝑒− 1

2
𝑡𝐴2

, 𝐴𝑒−
1

2
𝑡𝐴2]𝑠) = 0.

with [·, ·]𝑠 denoting the Z2–graded commutator. Therefore,

index𝐴 = str(𝑒−𝑡𝐴2)

for any 𝑡 . Now, it turns out that in the innite dimensional setting for 𝐴 = 𝐷 the same rea-

son goes through (once one makes sense of 𝑒−𝑡𝐷
2

, the trace, etc.). Moreover, one can compute

lim𝑡→0 str(𝑒−𝑡𝐷
2) as a integral of certain characteristic classes.
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17 Spectral theory of Dirac operators

Theorem 17.1. There is a complete orthonormal basis (𝜙𝑛)𝑛∈N of 𝐿2Γ(𝑆), which consists of smooth
sections of 𝑆 , and sequence of real numbers (𝜆𝑛)𝑛∈N such that

𝐷𝜙𝑛 = 𝜆𝑛𝜙𝑛 and lim

𝑛→∞
|𝜆𝑛 | = +∞.

The above are unique up to renumbering.

Denition 17.2. The set of 𝜆𝑛 is called the spectrum of 𝐷 and is denoted by spec(𝐷).

Remark 17.3. One can prove a similar result directly for 𝐷 , but it turns out we only need the result

for 𝐷2
. Indeed, the proof of the above result is somewhat simpler.

We require following well-known result from Hilbert space theory.

Theorem 17.4 (Spectral theorem for compact self-adjoint operators). Let 𝐻 be a Hilbert space. Let
𝑇 : 𝐻 → 𝐻 be a compact self-adjoint operator. There exists a complete orthonormal basis (𝑥𝑛)𝑛∈N
and a sequence of real numbers (𝜆𝑛)𝑛∈N such that

𝑇𝑥𝑛 = 𝜆𝑛𝑥𝑛 and lim

𝑛→∞
𝜆𝑛 = 0.

The above are unique up to renumbering.

Exercise 17.5. Prove Theorem 17.4.

Proof of Theorem 17.1.

Step 1. 𝐷2 + 𝑐 : 𝑊 1,2 →𝑊 −1,2 is invertible.
It follows from the Weitzenböck formula that, for 𝑐 � 1,

‖𝜙 ‖𝑊 1,2 6 sup

{
〈(𝐷2 + 𝑐)𝜙,𝜓 〉𝐿2 : ‖𝜓 ‖𝑊 1,2 6 1

}
= ‖(𝐷2 + 𝑐)𝜙 ‖𝑊 −1,2 . . ‖𝜙 ‖𝑊 1,2

Therefore, 𝐷2 + 𝑐 has trivial kernel and closed image. It also follows that 𝐷2 + 𝑐 is surjective. The
above shows that the standard inner product on𝑊 1,2

is equivalent to

〈𝐷𝑠, 𝐷𝑡〉𝐿2 + 𝑐 〈𝑠, 𝑡〉𝐿2 .

Consequently, it follows from the Riesz representation theorem, that 𝐷2 + 𝑐 is surjective.

Step 2. Application of the spectral theorem to the resolvent.
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The resolvent 𝑅 : 𝐿2 → 𝐿2 is dened as the composition

𝐿2 →𝑊 −1,2 (𝐷2+𝑐)−1
−−−−−−−→𝑊 1,2 → 𝐿2.

It is compact and self-adjoint. Consequently, Theorem 17.4 yields a complete orthonormal system

(𝜙𝑛) and a null-sequence (𝜇𝑛) of positive real numbers such that

𝑅𝜙𝑛 = 𝜇𝑛𝜙𝑛 .

Step 3. Completion of the proof.

The above can be rewritten as

𝐷2𝜙𝑛 = 𝜆2𝑛𝜙𝑛 with 𝜆2𝑛 = (1/𝜇𝑛 − 𝑐).

Since 𝐷2 = 𝐷∗𝐷 , 𝜆𝑛 > 0. Since 𝜇𝑛 → 0, 𝜆𝑛 → +∞. By elliptic regularity 𝜙𝑛 is smooth.

Recall that: If 𝐴2𝑥 = 𝜆2𝑥 , then 𝑥± = ±𝜆𝑥 +𝐴𝑥 satisfy

𝐴𝑥± = ±𝜆𝑥±.

This means that the eigenspinors for 𝐷2
determine the eigenspinors for 𝐷 . The eigenspaces for

dierent eigenvalues of 𝐷 perpendicular. For the eigenspaces themselves, are spanned by smooth

sections which can be renormalized to be orthonormal by Gram–Schmidt. �

18 Functional Calculus of Dirac Operators

Let 𝐷 be a Dirac operator. For any 𝜙 ∈ 𝐿2Γ(𝑆), write

(18.1) 𝜙 =
∑︁

𝜆∈spec(𝐷)
𝜙𝜆

with 𝜙𝜆 denoting the 𝐿2–orthogonal projection to the 𝜆–eigenspace of 𝐷 . We understand the

right-hand side as a series in 𝐿2Γ(𝑆).

Proposition 18.2. A section 𝜙 ∈ 𝐿2Γ(𝑆) is smooth if and only if

‖𝜙𝜆 ‖𝐿2 = 𝑂 ( |𝜆 |ℓ )

for all ℓ > 0.

Proof. The section 𝜙𝜆 is an eigensection of 𝐷 with eigenvalue 𝜆. Therefore, by elliptic regularity

we have

‖𝜙𝜆 ‖𝑊 𝑘,2 .𝑘 𝜆
𝑘 ‖𝜙𝜆 ‖𝐿2 .
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It follows that the right-hand side of (18.1) converges in𝑊 𝑘,2Γ(𝑆). Since 𝑘 is arbitrary, it follows

that the right-hand side is smooth.

Conversely, if 𝜙 is smooth, then 𝐷𝑘𝜙 ∈ 𝐿2 for all 𝑘 . Therefore,∑︁
𝜆∈spec(𝐷)

𝜆𝑘𝜙𝜆

is 𝐿2 summable for all 𝑘 . Hence, ∑︁
𝜆∈spec(𝐷)

𝜆2𝑘 ‖𝜙𝜆 ‖𝐿2 < ∞.

This implies the asserted decay. �

Proposition 18.3. Set

𝐿∞(R) ≔ {𝑓 : spec(𝐷) → R : 𝑓 is bounded}.

For every 𝑓 ∈ 𝐿∞(R), there is a constant 𝑐 > 0 such that, for all 𝑠 ∈ 𝐿2Γ(𝑆), the series

𝑓 (𝐷)𝜙 =
∑︁

𝜆∈spec(𝐷)
𝑓 (𝜆)𝜙𝜆

converges in 𝐿2 and its value satises

‖ 𝑓 (𝐷)𝜙 ‖ 6 𝑐 ‖𝜙 ‖𝐿2 .

Proposition 18.4 (Bounded Functional Calculus).

1. The map 𝑓 ↦→ 𝑓 (𝐷) is homomorphism 𝐿∞(R) → L(𝐿2Γ(𝑆)) of unital Banach algebras.

2. If 𝑇 ∈ L(𝐿2Γ(𝑆)) commutes with 𝐷 , then it also commutes with 𝑓 (𝐷).

3. If 𝜙 is smooth, then 𝑓 (𝐷)𝜙 is smooth.

4. If 𝑓 has rapid decay, that is, it satises

|𝑓 (𝜆) | = 𝑂 ( |𝜆 |−𝑘 )

for all 𝑘 > 1, then 𝑓 (𝐷)𝜙 is smooth for any 𝜙 ∈ 𝐿2Γ(𝑆).

Proposition 18.5. (1) is a simple computation.
(2) follows from the fact that if 𝑇 commutes with 𝐷 then it must preserve the eigenspaces of 𝐷 .
(3) and (4) are consequences of Proposition 18.2.
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Denition 18.6. Let 𝜋𝑖 : 𝑀 ×𝑀 → 𝑀 denote the projection onto the 𝑖–th factor. Set

𝑆 � 𝑆∗ ≔ 𝜋∗
1
𝑆 ⊗ 𝜋∗

2
𝑆∗.

A smooth kernel is a section 𝑘 ∈ Γ(𝑆 � 𝑆∗). To any smooth kernel we associate the operator

𝐾 ∈ L(𝐿1Γ(𝑆), 𝐿∞Γ(𝑆)) dened by

(𝐾𝜙) (𝑥) ≔
ˆ
𝑀

𝑘 (𝑥,𝑦)𝑠 (𝑦) .

We say that an operator admits a smooth kernel if it is of the form 𝐾 for some smooth kernel 𝑘 .

Exercise 18.7. Proof that for any 𝜙 ∈ 𝐿1Γ(𝑆), 𝐾𝜙 is smooth.

Proposition 18.8. If 𝑓 has rapid decay, then there exists a smooth kernel 𝑘 such that

𝑓 (𝐷) = 𝐾.

Proof. Fix an 𝐿2 orthonormal eigenbasis (𝜙𝑛) of 𝐷 with eigenvalues 𝜆𝑛 . We can write

(𝑓 (𝐷)𝜓 ) (𝑥) =
∑︁
𝑛∈N

𝑓 (𝜆𝑛)𝜙𝑛 (𝑥)〈𝜙𝑛,𝜓 〉𝐿2

=
∑︁
𝑛∈N

𝑓 (𝜆𝑛)𝜙𝑛 (𝑥)
ˆ
𝑀

〈𝜙𝑛 (𝑦),𝜓 (𝑦)〉

=

ˆ
𝑀

∑︁
𝑛∈N

𝑓 (𝜆𝑛)𝜙𝑛 (𝑥)〈𝜙𝑛 (𝑦),𝜓 (𝑦)〉.

Since 𝑓 is rapidly decaying,

𝑘 (𝑥,𝑦) ≔
∑︁
𝑛∈N

𝑓 (𝜆𝑛)𝜙𝑛 (𝑥)〈𝜙𝑛 (𝑦), ·〉.

converges and denes a smooth kernel. �

19 The heat kernel associated Dirac of operator

Proposition 19.1.

1. Let 𝜙0 ∈ 𝐿2Γ(𝑆). There exists a unique 𝜙 ∈ Γ((0,∞) ×𝑀, 𝑆) such that

(𝜕𝑡 + 𝐷2)𝜙 = 0 and lim

𝑡→0

‖𝜙 (𝑡, ·) − 𝜙0‖𝐿2 = 0.

2. If 𝜙0 ∈ Γ(𝑆), then 𝜙 ∈ Γ(( [0,∞) ×𝑀, 𝑆) and 𝜙 (0, ·) = 𝜙0.

94



Proof. We rst prove uniqueness. If 𝜙 satises (𝜕𝑡 + 𝐷2)𝜙 = 0, then

𝜕𝑡 ‖𝜙𝑡 ‖2𝐿2 = −2〈𝜕𝑡𝜙𝑡 , 𝜙𝑡 〉𝐿2
= −2‖𝐷𝜙𝑡 ‖2𝐿2 6 0.

This implies uniqueness because if 𝜙 and𝜓 satisfy the heat equation with initial condition, then

𝛿 = 𝜙 −𝜓 satises the heat equation with initial condition 0 and thus vanishes.

We establish existence. Dene

𝜙 (𝑡, 𝑥) ≔ (𝑒−𝑡𝐷2

𝜙0) (𝑥).

Here 𝑒−𝑡𝐷
2

is obtained using bounded functional calculus for 𝑓𝑡 (𝜆) = 𝑒−𝑡𝜆
2

. Since bounded

functional calculus is continuous, we have lim𝑡→0‖𝜙 (𝑡, ·) − 𝜙0‖𝐿2 = 0.

For xed 𝑡 > 0, 𝜙 (𝑡, ·) is smooth because 𝑓𝑡 is rapidly decaying. It also depends smoothly on 𝑡 ,

which can be seen as follows. Since 𝑓 ↦→ 𝑓 (𝐷) is a homomorphism of Banach algebras, we can

take the limit of

𝜙𝑡 (𝑥) − 𝜙𝑡+𝜀 (𝑥)
𝜀

=
𝑒−𝑡𝐷

2 − 𝑒−(𝑡+𝜀)𝐷2

𝜀
𝜙0

as 𝜀 = 0 and deduce that

𝜕𝑡𝜙𝑡 = −𝐷2𝑒−𝑡𝐷
2

𝜙0 = −𝐷2𝜙𝑡 .

Repeated applications of this argument show that 𝜕𝑘𝑡 𝜙𝑡 = −𝐷2𝑘𝜙𝑡 . This proves 𝜙 is smooth and

satises the heat equation.

If 𝜙0 is smooth, the above argument also works at 𝑡 = 0. This establishes the second part of

the proposition. �

Proposition 19.2. There exists a unique 𝑘𝑡 ∈ 𝐶1((0,∞),𝐶2Γ(𝑆 � 𝑆∗)) such that for all 𝜙 ∈ Γ(𝑆) the
following holds:

1. Φ(𝑡, 𝑥) ≔ (𝐾𝑡𝜙) (𝑥) satises the heat equation

(𝜕𝑡 + 𝐷2)Φ = 0.

2. For all 𝜙 ∈ Γ(𝑆), lim𝑡→0‖𝐾𝑡𝜙 − 𝜙 ‖𝐿∞ = 0.

In fact, such a 𝑘𝑡 is a smooth.

Denition 19.3. We call 𝑘𝑡 the heat kernel associated of 𝐷 .

Proof. The uniqueness of 𝑘𝑡 follows from the uniqueness of the solution to the heat equation.

From the proof of Proposition 19.1 it is clear that 𝐾𝑡 = 𝑒
−𝑡𝐷2

and 𝑘𝑡 is the kernel associated

with 𝐾𝑡 via Proposition 18.8. The argument used to establish smoothness of 𝜙 in 𝑡 in the proof of

Proposition 19.1 also proves that 𝑘 is smooth in 𝑡 . �
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Proposition 19.4 (Duhamel’s Principle). Let𝜓 ∈ 𝐶0((0,∞),𝐶2Γ(𝑆)).

1. There exists a unique 𝜙 ∈ 𝐶1( [0,∞),𝐶2Γ(𝑆)) satisfying

(𝜕𝑡 + 𝐷2)𝜙 = 𝜓 and 𝜙0 = 0.

2. It is given by

𝜙𝑡 =

ˆ 𝑡

0

𝑒−(𝑡−𝜏)𝐷
2

𝜓𝜏 d𝜏 .

3. For each ℓ > 0, we have
‖𝜙𝑡 ‖𝑊 ℓ,2 .ℓ 𝑡 sup

𝜏 ∈[0,𝑡 ]
‖𝜓𝑡 ‖𝑊 ℓ,2 .

Proof. Uniqueness is a consequence of the uniqueness statement in Proposition 19.1. We have

𝜙0 = 0 and

𝜕𝑡𝜙𝑡 = 𝜓𝜏 +
ˆ 𝑡

0

−𝐷2𝑒−(𝑡−𝜏)𝐷
2

𝜓𝜏 d𝜏

= 𝜓𝜏 − 𝐷2𝜙𝑡 .

This 𝜙𝑡 solves the inhomogenous heat equation.

It remains to prove the estimate. We clearly, have

‖𝜙𝑡 ‖𝑊 ℓ,2 .ℓ 𝑡 sup

𝜏 ∈[0,𝑡 ]

𝑒−(𝑡−𝜏)𝐷2

𝜓𝑡


𝑊 ℓ,2

.

Since 𝑒−𝜎𝐷
2

: 𝐿2Γ(𝑆) → 𝐿2Γ(𝑆) is bounded independent of 𝜎 and by elliptic estimates, we have

‖𝑒−𝜎𝐷2

𝜓 ‖𝑊 ℓ,2 . ‖𝐷ℓ𝑒−𝜎𝐷2

𝜓 ‖𝐿2 + ‖𝑒−𝜎𝐷2

𝜓 ‖𝐿2

= ‖𝑒−𝜎𝐷2

𝐷ℓ𝜓 ‖𝐿2 + ‖𝑒−𝜎𝐷2

𝜓 ‖𝐿2
. ‖𝐷ℓ𝜓 ‖𝐿2 + ‖𝜓 ‖𝐿2
. ‖𝜓 ‖𝑊 ℓ,2 .

This means that Since 𝑒−𝜎𝐷
2

: 𝑊 ℓ,2Γ(𝑆) →𝑊 ℓ,2Γ(𝑆) is bounded independent of 𝜎 . From this the

asserted estimate follows. �

20 Asymptotic Expansion of the Heat Kernel

Denition 20.1. Set
𝑘0𝑡 ≔

1

(4𝜋𝑡)𝑛/2
𝑒−𝑑 ( ·, ·)

2/4𝑡 .
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The proof of the index theorem which will discuss is based on rather carefully understanding

the heat kernel. The heat kernel for the Laplacian Δ on R𝑛 is given by

𝑘R
𝑛

𝑡 (𝑥,𝑦) ≔ 1

(4𝜋𝑡)𝑛/2
𝑒−𝑑R𝑛 (𝑥,𝑦)2/4𝑡

with 𝑑R𝑛 (𝑥,𝑦) = |𝑥 − 𝑦 |.

Knowing this and the Weitzenböck formula Proposition 9.2

𝐷2 = ∇∗∇ +F𝑆

one might guess that 𝑘𝑡 is approximately

𝑘0𝑡 =
1

(4𝜋𝑡)𝑛/2
𝑒−𝑑 ( ·, ·)

2/4𝑡

where 𝑑 denotes the Riemannian distance on𝑀 . It turns out that this is true. In fact, one can do

better and nd a precise asymptotic expansion of 𝑘𝑡 at 𝑡 = 0 with leading term 𝑘0𝑡 .

Denition 20.2. Let 𝑋 be a Banach space. Let 𝑓 : (0,∞) → 𝑋 be a function. If 𝑎𝑖 : (0,∞) → 𝑋

𝑖 ∈ N0 are functions such that for all 𝑛 ∈ N0 there is an𝑚0 =𝑚0(𝑛) such that for all𝑚 > 𝑚0𝑓 (𝑡) − 𝑚∑︁
𝑖=1

𝑎𝑖 (𝑡)
 .𝑛,𝑚 |𝑡 |𝑛 for 𝑡 �𝑛,𝑚 1,

then we say that (𝑎𝑖) are an asymptotic expansion of 𝑓 at 𝑡 = 0 and write

𝑓 (𝑡) ∼
∞∑︁
𝑖=0

𝑎𝑘 (𝑡) as 𝑡 → 0.

Remark 20.3. The denition of asymptotic expansion makes no reference to convergence of the

series

∑∞
𝑖=0 𝑎𝑖 (𝑡). If 𝑓 : R → 𝑋 is a smooth function, then its Taylor expansion at 0 is is an

asymptotic expansion

𝑓 (𝑡) ∼
∞∑︁
𝑖=0

𝑓 (𝑖) (0)
𝑖!

𝑡𝑖 as 𝑡 → 0.

However, the right-hand side converges only if 𝑓 is analytic near zero.

Remark 20.4. Asymptotic expansion are in no way unique!
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Theorem 20.5. Let𝑀 be a compact Riemannian manifold. Let 𝑆 be a Cliord bundle over𝑀 with
Dirac operator 𝐷 . Denote by 𝑘𝑡 the heat kernel of𝑀 .

1. There are Θ𝑖 ∈ Γ(𝑆 � 𝑆∗) such that

𝑘𝑡 ∼
∞∑︁
𝑖=0

𝑡𝑖

(4𝜋𝑡)𝑛/2
𝑒−𝑑 ( ·, ·)

2/4𝑡Θ𝑖 as 𝑡 → 0.

is an asymptotic expansion at 𝑡 = 0 of 𝑘 : (0,∞) → 𝐶𝑟 Γ(𝑆 � 𝑆∗). for all 𝑟 ∈ N0.

2. Θ0(𝑥, 𝑥) = id𝑆 and Θ1(𝑥, 𝑥) = 1

6
scal𝑔 (𝑥) −F𝑆 (𝑥) with F𝑆 as in Proposition 9.2.

3. The section 𝑥 ↦→ Θ𝑗 (𝑥, 𝑥) can be computed in terms of algebraic expressions involving the
metric, connection coecients, and their derivatives.

The proof requires some preparation.

Denition 20.6. Let𝑚 ∈ N0. An approximate heat kernel of order𝑚 is a time-dependent kernel

˜𝑘𝑡 such that

1. Φ(𝑡, 𝑥) ≔ ( ˜𝐾𝑡𝜙) (𝑥) satises the heat equation

(𝜕𝑡 + 𝐷2) ˜𝑘𝑡 = 𝑡𝑚𝑟𝑡

with 𝑟𝑡 ∈ 𝐶0( [0,∞),𝐶𝑚Γ(𝑆 � 𝑆∗)).

2. For all 𝜙 ∈ Γ(𝑆), lim𝑡→0‖ ˜𝐾𝑡𝜙 − 𝜙 ‖𝐿∞ = 0.

Proposition 20.7. Let 𝑘𝑡 be the heat kernel of 𝐷 . Let𝑚 ∈ N0. If ˜𝑘𝑡 is an approximate heat kernel of
𝐷 to order �̃� > 𝑚 + dim𝑀/2, then

𝑘𝑡 − ˜𝑘𝑡 = 𝑡
𝑚𝑒𝑡

with 𝑒𝑡 ∈ 𝐶0( [0,∞),𝐶𝑚Γ(𝑆 � 𝑆∗)).

Proof. Write

(𝜕𝑡 + 𝐷2

𝑥 ) ˜𝑘𝑡 (𝑥,𝑦) = 𝑡�̃�𝑟𝑡 (𝑥,𝑦)
With 𝑟𝑡 ∈ 𝐶0( [0,∞),𝐶�̃�Γ(𝑆 � 𝑆∗)). By Proposition 19.4, there is a unique 𝑞𝑡 such that

(−𝜕𝑡 + 𝐷2

𝑥 )𝑞𝑡 (𝑥,𝑦) = −𝑡�̃�𝑟𝑡 (𝑥,𝑦) and 𝑞0 = 0.

Moreover,

‖𝑞𝑡 ‖𝑊 �̃�,2 . 𝑡�̃�+1.

From the uniqueness of the heat kernel it follows that

𝑘𝑡 − ˜𝑘𝑡 = 𝑞𝑡 .

By Theorem 15.6, the desired estimate on 𝑒𝑡 = 𝑡
−𝑚𝑞𝑡 follows. �
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In light of this proposition, we need to nd Θ𝑖 such that for every𝑚 there exists an 𝑛0 = 𝑛0(𝑚)
such that for 𝑛 > 𝑛0

1

(4𝜋𝑡)𝑛/2
𝑒−𝑑 ( ·, ·)

2/4𝑡
𝑛∑︁
𝑖=0

𝑡𝑖Θ𝑖

is an approximate heat kernel to order𝑚.

Let us rst analyze to what what extend 𝑘0𝑡 fails to be a heat kernel.

Proposition 20.8. Let 𝑦 ∈ 𝑀 . Fix normal coordinates in a neighborhood𝑈 of 𝑦 in𝑀 . Set

𝑔 = det(𝑔𝑖 𝑗 ) .

In𝑈 , we have

∇𝑘0𝑡 (·, 𝑦) = −
𝑘0𝑡 (·, 𝑦)

2𝑡
𝑟 𝜕𝑟 and (𝜕𝑡 + Δ)𝑘0𝑡 (·, 𝑦) =

𝑟𝑘0𝑡 (·, 𝑦)
4𝑔𝑡

𝜕𝑟𝑔.

Proof. We have

∇𝑘0𝑡 = −
𝑘0𝑡

4𝑡
∇𝑑 (·, 𝑦)2 = −

𝑘0𝑡

4𝑡
∇𝑟 2 = −

𝑘0𝑡

2𝑡
𝑟 𝜕𝑟 .

This proves the rst identity.

To prove the second identity, we compute

𝜕𝑡𝑘
0

𝑡 (·, 𝑦) =
(
− 𝑛
2𝑡

+ 𝑟 2

4𝑡2

)
𝑘0𝑡 (·, 𝑦)

and

Δ𝑘0𝑡 (·, 𝑦) = ∇∗∇𝑘0𝑡 (·, 𝑦)

= ∇∗
(
−
𝑘0𝑡 (·, 𝑦)

2𝑡
𝑟 𝜕𝑟

)
= ∇∗

(
−
𝑘0𝑡 (·, 𝑦)

2𝑡
𝑟 𝜕𝑟

)
=
𝑟 𝜕𝑟𝑘

0

𝑡 (·, 𝑦)
2𝑡

−
𝑘0𝑡 (·, 𝑦)

2𝑡
∇∗(𝑟 𝜕𝑟 )

= − 𝑟
2

4𝑡2
𝑘0𝑡 (·, 𝑦) −

𝑘0𝑡 (·, 𝑦)
2𝑡

(
−𝑛 − 𝑟

2𝑔
𝜕𝑟𝑔

)
=

(
− 𝑟

2

4𝑡2
+ 𝑛

2𝑡
+ 𝑟

4𝑔𝑡
𝜕𝑟𝑔

)
𝑘0𝑡 (·, 𝑦) .

Here we used that

∇∗(𝑟 𝜕𝑟 ) = −𝑔−1/2
𝑛∑︁
𝑖=1

𝜕𝑖 (𝑔1/2𝑥𝑖) = −𝑛 − 𝑟

2𝑔
𝜕𝑟𝑔.

�
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Proof of Theorem 20.5. Let𝑈 be a neighborhood of the diagonal {(𝑥, 𝑥) ∈ 𝑀×𝑀 : 𝑥 ∈ 𝑀} ⊂ 𝑀×𝑀
such that if (𝑥,𝑦) ∈ ¯𝑈 , then 𝑑 (𝑥,𝑦) is less than 𝜀 > 0, which itself is less the half injectivity radius.

Let 𝜒 ∈ 𝐶∞(𝑀 ×𝑀, [0, 1]) supported in 𝑈 and with 𝜒 (𝑥, 𝑥) = 1 for all 𝑥 ∈ 𝑀 . We will construct

Θ𝑖 of the form 𝜒Θ̃𝑖 with Θ̃𝑖 dened on𝑈 .

Pick 𝑦 ∈ 𝑀 and choose normal coordinates on 𝐵2𝜀 (𝑦). If Θ̃𝑦 is a section of 𝑆 ⊗ 𝑆∗𝑦 , then by

Proposition 20.8 and Proposition 9.2

(𝜕𝑡 + 𝐷2) (𝑘0𝑡 (·, 𝑦)Θ̃𝑦) = 𝑘𝑡0
(
𝜕𝑡 Θ̃𝑦 + 𝐷2Θ̃𝑦 +

𝑟

4𝑔𝑡
𝜕𝑟𝑔 · Θ̃𝑦 +

1

𝑡
∇𝑟 𝜕𝑟 Θ̃𝑦

)
.

The last term arises from 〈∇𝑘0𝑡 ,∇Θ̃𝑦〉.
We make the ansatz that Θ̃𝑦 is a formal power series in 𝑡 ; that is:

Θ̃𝑦 =

∞∑︁
𝑖=0

𝑡𝑖Θ̃𝑖,𝑦

with Θ̃𝑖,𝑦 smooth and independent of 𝑡 . We set Θ̃−1,𝑦 = 0. The condition that this formal power

series is such that

(𝜕𝑡 + 𝐷2) (𝑘0𝑡 (·, 𝑦)Θ̃𝑦) = 0

is simply that

∇𝑟 𝜕𝑟 Θ̃𝑖,𝑦 +
(
𝑖 + 𝑟

4𝑔
𝜕𝑟𝑔

)
Θ̃𝑖,𝑦 = −𝐷2Θ̃𝑖−1,𝑦

or, equivalently,

∇𝜕𝑟
(
𝑟 𝑖𝑔1/4Θ̃𝑖,𝑦

)
= −𝑟 𝑖−1𝑔1/4𝐷2Θ̃𝑖−1,𝑦 .

Fixing Θ̃0,𝑦 (𝑥) = id𝑆𝑦 , the ODE for Θ̃0,𝑦 has a unique solution. Recursively, we can solve the

ODE’s for Θ̃𝑖,𝑦 for 𝑖 ∈ N0. At each stage Θ̃𝑖,𝑦 is determined uniquely up to constant multiple of a

term which is of order 𝑟−𝑖 near 𝑥 . Since we require Θ̃𝑖,𝑦 to be smooth, this term must vanish. We

dene

Θ𝑖 (𝑥,𝑦) ≔ 𝜒 (𝑥,𝑦)Θ̃𝑖,𝑦 (𝑥) .

We need to see that for each𝑚 ∈ N0 there is an 𝑁0 = 𝑁0(𝑚) such that for 𝑁 > 𝑁0

𝑘𝑁𝑡 ≔ 𝑘0𝑡

𝑁∑︁
𝑖=0

𝑡𝑖Θ𝑖

is a an approximate heat kernel of order𝑚.

Since Θ𝑖 (𝑥, 𝑥) = id𝑆𝑥 and 𝑘0𝑡 (𝑥,𝑦) → 𝛿𝑥,𝑦 as 𝑡 → 0, it follows that 𝑘𝑛𝑡 (𝑥,𝑦) → 𝛿𝑥,𝑦 as 𝑡 → 0.

By construction of 𝑘𝑁𝑡 we have

(𝜕𝑡 + 𝐷2)𝑘𝑁𝑡 (·, 𝑦) = 𝑡𝑁𝑘0𝑡 (·, 𝑦)𝑒𝑁𝑡 (·, 𝑦)
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where 𝑒𝑁𝑡 is smooth. If for 𝑁 > 2𝑚 + 𝑛/2, 𝑡𝑁𝑘0𝑡 = 𝑂 (𝑡𝑚) in 𝐶𝑚 . Thus 𝑘𝑁𝑡 is an approximate heat

kernel of order𝑚. This completes the construction of the asymptotic expansion of 𝑘𝑡 .

The assertion about the computability of Θ𝑖 (𝑥, 𝑥) should be clear from the construction.

By construction Θ0(𝑥, 𝑥) = id𝑆𝑥 . It remains to compute Θ1(𝑥, 𝑥). We have

Θ̃0,𝑦 = 𝑔−1/4

since this solves the ODE and is id𝑆𝑦 at 0. By construction

∇𝜕𝑟
(
𝑟𝑔1/4Θ̃1,𝑦

)
= −𝐷2Θ̃0,𝑦

From this it follows that

Θ̃1,𝑦 (𝑦) = (−𝐷2Θ̃0,𝑦) (𝑦) .

By Proposition 9.2 the right-hand side is

−Δ(𝑔1/4) −F𝑆 (𝑦).

We have

𝑔𝑖 𝑗 = 𝛿𝑖 𝑗 +
1

3

∑︁
𝑘,ℓ

𝑅𝑖𝑘ℓ 𝑗𝑥𝑘𝑥ℓ +𝑂 ( |𝑥 |3)

and consequently

𝑔−1/4 = det(𝑔𝑖 𝑗 )−1/4 = 1 − 1

12

∑︁
𝑖,𝑘,ℓ

𝑅𝑖𝑘ℓ𝑖𝑥𝑘𝑥ℓ +𝑂 ( |𝑥 |3).

Thus

Δ(𝑔−1/4) = − 1

12

∑︁
𝑖,𝑘,ℓ

𝑅𝑖𝑘𝑘𝑖 =
1

6

scal.

�

21 Trace-class operators

Proposition 21.1. Let 𝑋 and 𝑌 be two separable Hilbert spaces. Let (𝑒𝑖) and (𝑓𝑗 ) orthonormal bases
of 𝑋 and 𝑌 , respectively. Given a bounded linear operator 𝐴 : 𝑋 → 𝑌 ,

‖𝐴‖𝐻𝑆 =
∑︁
𝑖, 𝑗

|〈𝐴𝑒𝑖 , 𝑒 𝑗 〉|2 ∈ [0,∞]

is independent of the choice of bases. Moreover,

‖𝐴‖𝐻𝑆 = ‖𝐴∗‖𝐻𝑆 .

101



Proof. We have ∑︁
𝑖

‖𝐴𝑒𝑖 ‖2 =
∑︁
𝑖, 𝑗

|〈𝐴𝑒𝑖 , 𝑓𝑗 〉|2

=
∑︁
𝑖, 𝑗

|〈𝑒𝑖 , 𝐴∗ 𝑓𝑗 〉|2

=
∑︁
𝑗

‖𝐴∗ 𝑓𝑗 ‖2.

The left-hand side manifestly is independent of (𝑓𝑗 ) while the right-hand site is manifestly inde-

pendent of (𝑒𝑖). �

Denition 21.2. If 𝐴 ∈ L(𝑋,𝑌 ) satises ‖𝐴‖𝐻𝑆 < ∞, then 𝐴 is called a Hilbert–Schmidt operator
and ‖𝐴‖𝐻𝑆 is called its Hilbert–Schmidt norm.

Proposition 21.3.

1. The set of Hilbert–Schmidt operators is a Hilbert spaces with respect to the inner product

〈𝐴, 𝐵〉𝐻𝑆 =
∑︁
𝑖 𝑗

〈𝑓𝑗 , 𝐴𝑒𝑖〉〈𝐵𝑒𝑖 , 𝑓𝑗 〉

2. For 𝐴 ∈ L(𝑋,𝑌 ),
‖𝐴‖L 6 ‖𝐴‖𝐻𝑆 .

3. Hilbert–Schmidt operators are compact.

4. If 𝐴 is Hilbert–Schmidt and 𝐵 is bounded, then 𝐴𝐵 and 𝐵𝐴 (whenever they are dened) are
Hilbert–Schmidt.

Denition 21.4. We say that 𝑇 ∈ L(𝑋 ) is of trace-class if there are Hilbert–Schmidt operators 𝐴

and 𝐵 such that

𝑇 = 𝐴𝐵.

The trace of a trace-class operator is

tr(𝑇 ) = 〈𝐴∗, 𝐵〉𝐻𝑆 =
∑︁
𝑗

〈𝑇𝑒 𝑗 , 𝑒 𝑗 〉.

Proposition 21.5. If 𝑇 is self-adjoint and of trace-class, then tr𝑇 is the sum of the eigenvalues of 𝑇 .

Proposition 21.6. If 𝑇 is of trace-class and 𝐵 is bounded or 𝑇 and 𝐵 are both Hilbert–Schmidt, then
𝐵𝑇 and 𝑇𝐵 are of trace-class and

tr(𝑇𝐵) = tr(𝐵𝑇 ).
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Proposition 21.7. If 𝑘 is a continuous kernel, then 𝐾 is Hilbert–Schmidt and

‖𝐾 ‖2𝐻𝑆 =

ˆ
𝑀×𝑀

|𝑘 |2.

Proof. Let (𝑒𝑖) be an orthonormal basis for 𝐿2Γ(𝐸). Then (𝑒 𝑗 � 𝑒∗𝑖 ) is an orthonormal basis for

𝐿2Γ(𝐸 � 𝐸∗). We have

‖𝐾 ‖2𝐻𝑆 =
∑︁
𝑖, 𝑗

��〈𝐾𝑒𝑖 , 𝑒 𝑗 〉𝐿2 ��2
=

∑︁
𝑖, 𝑗

����ˆ
𝑀×𝑀

〈𝑘 (𝑥,𝑦)𝑒𝑖 (𝑦), 𝑒 𝑗 (𝑥)〉d𝑦d𝑥
����2

=
∑︁
𝑖, 𝑗

����ˆ
𝑀×𝑀

〈𝑘 (𝑥,𝑦), 𝑒 𝑗 (𝑥)𝑒∗𝑖 (𝑦)〉d𝑦d𝑥
����2

=
∑︁
𝑖, 𝑗

����ˆ
𝑀×𝑀

〈𝑘 (𝑥,𝑦), 𝑒 𝑗 (𝑥)𝑒∗𝑖 (𝑦)〉d𝑦d𝑥
����2

= ‖𝑘 (𝑥,𝑦)‖2
𝐿2

=

ˆ
𝑀×𝑀

|𝑘 |2. �

Proposition 21.8. If 𝑘 is a smooth kernel, then 𝐾 is of trace-class and

tr𝐾 =

ˆ
𝑀

tr𝑘 (𝑥, 𝑥)d𝑥 .

Proof. For 𝑁 � 1, (Δ + 1)−𝑁 has a continuous kernel 𝑔 (and therefore is Hilbert–Schmidt). The

operator

𝐻 = (Δ + 1)𝑁𝐾

is a smoothing operator which has some kernel ℎ, which is self-adjoint. In terms of 𝑔 and 𝑘 , we

have

𝑘 (𝑥,𝑦) =
ˆ
𝑀

𝑔(𝑥, 𝑧)ℎ(𝑧,𝑦)d𝑧.

Therefore, 𝐾 is trace-class and

tr𝐾 =

ˆ
𝑀×𝑀

〈𝑔(𝑥, 𝑧), ℎ(𝑧, 𝑥)〉d𝑧d𝑥

=

ˆ
𝑀×𝑀

tr(𝑔(𝑥, 𝑧)ℎ(𝑧, 𝑥))d𝑧d𝑥

=

ˆ
𝑀

tr𝑘 (𝑥, 𝑥)d𝑥 . �
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22 Digression: Weyl’s Law

As an application of the asymptotic expansion of the heat kernel 𝑘𝑡 we prove the following.

Denition 22.1. Denote by 0 6 𝜆1 6 𝜆2 6 · · · the eigenvalues of 𝐷2
. Dene 𝑁 : [0,∞) → N0 by

𝑁 (𝜆) ≔ max{𝑘 ∈ N0 : 𝜆𝑘 6 𝜆}.

Theorem 22.2 (Weyl). We have

𝑁 (𝜆) ∼ rk 𝑆 · vol(𝑀)
(4𝜋)𝑛/2Γ(𝑛/2 + 1)

𝜆𝑛/2 as 𝜆 → ∞.

and

𝜆𝑘 ∼ 4𝜋

(
rk 𝑆 · vol(𝑀)
Γ(𝑛/2 + 1)

)
2/𝑛
𝑘2/𝑛 as 𝑘 → ∞.

Proof. It follows from Theorem 20.5 that

lim

𝑡→0

𝑡𝑛/2
∞∑︁
𝑘=0

𝑒−𝑡𝜆𝑘 =
vol(𝑀)
(4𝜋)𝑛/2

.

This, in fact, applies the asserted statement about 𝑁 (𝜆) by the following result. �

Theorem 22.3 (Karamata). If (𝜆𝑘 ) is an increasing sequence such that

lim

𝑡→0

𝑡𝛼
∞∑︁
𝑘=0

𝑒−𝑡𝜆𝑘 = 𝐴

then
𝑁 (𝜆) ∼ 𝐴𝜆𝛼/Γ(𝛼 + 1) as 𝜆 → ∞.

Proof. For any continuous function 𝑓 on [0, 1], dene

𝜙 𝑓 (𝑡) ≔
∞∑︁
𝑘=0

𝑓 (𝑒−𝑡𝜆𝑘 )𝑒−𝑡𝜆𝑘 .

We have

lim

𝑡→0

𝑡𝛼𝜙 𝑓 (𝑡) =
𝐴

Γ(𝛼)

ˆ ∞

0

𝑓 (𝑒−𝑠)𝑠𝛼−1𝑒−𝑠 d𝑠 .

Since and 𝑓 can be approximated by polynomials and since everything is linear in 𝑓 , it suces to

prove this for 𝑓 (𝑥) = 𝑥𝑚 . The left-hand side is then

lim

𝑡→0

𝑡𝛼
∞∑︁
𝑘=0

𝑒−(𝑚+1)𝑡𝜆𝑘 = lim

𝑡→0

(𝑡/(𝑘 + 1))𝛼
∞∑︁
𝑘=0

𝑒−𝑡𝜆𝑘 = (𝑘 + 1)−𝛼𝐴
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while the right-hand side is

𝐴

Γ(𝛼)

ˆ ∞

0

𝑒−(𝑘+1)𝑠𝑠𝛼−1𝑒−𝑠 d𝑠 = (𝑘 + 1)−𝛼𝐴

(by a computation).

Now for 𝑟 ∈ [0, 1), dene 𝑓𝑟 such that 𝑓𝑟 vanishes on [0, 𝑟/𝑒], is ane on [𝑟/𝑒, 1/𝑒], and
𝑓𝑟 (𝑥) = 1/𝑥 for 𝑥 ∈ [1/𝑒, 1]. We have

𝜙 𝑓𝑟 (1/𝑟𝜆) 6 𝑁 (𝜆) 6 𝜙 𝑓𝑟 (1/𝜆) .

Consequently,

𝐴𝑟𝛼

𝛼Γ(𝛼) 6 lim inf 𝜆−𝛼𝑁 (𝜆) 6 lim sup 𝜆−𝛼𝑁 (𝜆) 6 𝐴𝛼

𝛼Γ(𝛼) .

Taking the limit 𝑟 → 1 proves the result. �

23 Digression: Zeta functions

Proposition 23.1. Let 𝐷 be a Dirac operator and denote by 𝜆1 6 𝜆2 6 · · · the eigenvalues of 𝐷2

counted with multiplicity. Suppose that zero is not an eigenvalue. For Re 𝑠 > 𝑛/2, the series

𝜁𝐷 (𝑠) ≔
∞∑︁
𝑘=1

𝜆−𝑠
𝑘
.

converges. The series extends to a meromorphic function on all of C with poles contained in 𝑛/2 − N0.
The function is holomorphic at 0 and its value is given by

𝜁𝐷 (0) =
1

(4𝜋)𝑛/2

ˆ
𝑀

trΘ𝑛/2.

Denition 23.2. We call 𝜁𝐷 the zeta function of 𝐷 .

It will be useful to recall(?) some some properties of the Mellin transform.

Denition 23.3. Given 𝑓 ∈ 𝐶∞(0,∞), its Mellin transform is dened as

𝑀 (𝑓 ) (𝑠) ≔ Γ(𝑠)−1
ˆ ∞

0

𝑓 (𝑡)𝑡𝑠−1d𝑡 .
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Proposition 23.4. Let 𝑓 ∈ 𝐶∞(0,∞) have an asymptotic expansion of the form

𝑓 ∼
∞∑︁
𝑗=0

𝑎 𝑗𝑡
−𝑛/2+𝑗

and suppose that |𝑓 | (𝑡) . 𝑒−𝑐𝑡 . In this situation, the following hold:

1. 𝑀 (𝑓 ) converges for Re 𝑠 > 𝑛/2.

2. 𝑀 (𝑓 ) has a meromorphic extension to C with poles contained in 𝑛/2 − N0.

3. 𝑀 (𝑓 ) is holomorphic at 0 and

𝑀 (𝑓 ) (0) =
{
𝑎𝑛/2 𝑛 ∈ 2Z
0 𝑛 ∈ 2Z + 1.

Proof. We write

Γ(𝑠)𝑀 (𝑓 ) (𝑠) =
ˆ

1

0

𝑓 (𝑡)𝑡𝑠−1d𝑡 +
ˆ ∞

1

𝑓 (𝑡)𝑡𝑠−1d𝑡 .

Since 𝑓 (𝑡) has exponential decay, the second integral converges and denes a entire function.

Using the asymptotic expansion, the rst integral can be written as

ˆ
1

0

𝑓 (𝑡)𝑡𝑠−1d =

𝑘∑︁
𝑗=0

𝑎 𝑗

ˆ
1

0

𝑡−𝑛/2+𝑗+𝑠−1d𝑡 + 𝑟 (𝑠)

=

𝑘∑︁
𝑗=0

𝑎 𝑗

𝑠 + 𝑗 − 𝑛/2 + 𝑟 (𝑠) .

Here 𝑟 (𝑠) arises as

𝑟 (𝑠) =
ˆ

1

0

𝑂 (𝑡𝑘/2−𝑛/2+𝑠−1)d𝑡 .

It is holomorphic for Re 𝑠 > 𝑛/2 − 𝑘/2. The rst term is meromorphic and has poles contained in

𝑛/2 − N0. This proves the rst two assertions since Γ(𝑠)−1 is entire.
Since Γ(𝑠)−1 = 𝑠 +𝑂 (𝑠2) we have

𝑀 (𝑓 ) (0) =
(
𝑘∑︁
𝑗=0

𝑠𝑎 𝑗

𝑠 + 𝑗 − 𝑛/2 + 𝑠𝑟 (𝑠)
)�����
𝑠=0

=

{
𝑎𝑛/2 𝑛 ∈ 2Z
0 𝑛 ∈ 2Z + 1.

This completes the proof. �
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Proof of Proposition 23.1. By Theorem 22.2,

𝜆𝑘 ∼ 𝑐 (𝑀)𝑘2/𝑛 as 𝜆 → ∞.

Therefore, if Re 𝑠 > 𝑛/2, then
∞∑︁
𝑘=1

��𝜆−𝑠
𝑘

�� .𝑀 1 +
∞∑︁
𝑘=1

𝑘2𝑠/𝑛 < ∞.

Consequently, 𝜁𝐷 is summable provided Re 𝑠 > 𝑛/2.
Denote by Γ(𝑠) the gamma function. Recall that Γ(𝑠) has poles at −N0 ⊂ C and that Γ(𝑠)−1 is

entire (that is: holomorphic on all of C). We have

𝜆−𝑠 = Γ(𝑠)−1
ˆ ∞

0

𝑒−𝑡𝜆𝑡𝑠−1d𝑡

Using this we can write

𝜁𝐷 (𝑠) =
∞∑︁
𝑘=1

Γ(𝑠)−1
ˆ ∞

0

𝑒−𝑡𝜆𝑘 𝑡𝑠−1d𝑡

= Γ(𝑠)−1
ˆ ∞

0

tr(𝑒−𝑡𝐷2)𝑡𝑠−1d𝑡 .

That is, 𝜁𝐷 is theMellin transform of 𝑡 ↦→ tr(𝑒−𝑡𝐷2). The result now follows from Proposition 23.4

and Theorem 20.5. �

Denition 23.5. If 𝐷2
has trivial kernel, we dene its determinant by

det(𝐷2) ≔ 𝑒−𝜁
′
𝐷
(0) .

We have,

𝜁𝐷 (𝑠) =
∞∑︁
𝑘=1

exp(−𝑠 log 𝜆𝑘 );

hence,

𝜁 ′𝐷 (𝑠) =
∞∑︁
𝑘=1

log 𝜆𝑘 exp(−𝑠 log 𝜆𝑘 ) .

Formally, evaluating at 𝑠 = 0, we obtain

𝜁 ′𝐷 (0) "="
∞∑︁
𝑘=1

log 𝜆𝑘 and 𝑒𝜁
′
𝐷
(0)

"="

∞∏
𝑘=1

𝜆𝑘 .

The expressions on the right-hand side actually cannot be dened. The expressions on the left-hand

side are “regularizations” of those on the right-hand side.
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24 From the asymptotic expansion of the heat kernel to the index
theorem

Let 𝑆 be a Z2 graded Dirac bundle, that is 𝑆 = 𝑆+ ⊕ 𝑆− and 𝐷 decomposes as

𝐷 =

(
0 𝐷−

𝐷+
0

)
.

Recall that,

indexZ2
𝐷 = index𝐷+ = dim ker𝐷+ − dim ker𝐷−.

Theorem 24.1 (McKean–Singer). Let Θ𝑖 be as in Theorem 20.5. If 𝑛 is odd, then indexZ2
= 0. If 𝑛 is

even, then

indexZ2
𝐷 =

1

(4𝜋)𝑛/2

ˆ
𝑀

strΘ𝑛/2.

Proof. The limit as 𝑡 → ∞ of 𝑒−𝑡𝐷
2

is the orthogonal projection onto ker𝐷 . Hence,

lim

𝑡→∞
str 𝑒−𝑡𝐷

2

= indexZ2
𝐷.

In fact, denoting by𝑚± the dimension of the 𝑆± component of the eigenspace for 𝜆 ∈ spec(𝐷2),
we have

str 𝑒−𝑡𝐷
2

=
∑︁

𝜆∈spec(𝐷2)
𝑒−𝑡𝜆 (𝑚+(𝜆) −𝑚−(𝜆))

= indexZ2
𝐷 +

∑︁
𝜆∈spec(𝐷2)\{0}

𝑒−𝑡𝜆 (𝑚+(𝜆) −𝑚−(𝜆)) .

If𝜓 ∈ Γ(𝑆±) is an eigenspinor for 𝐷2
with eigenvalue 𝜆 ≠ 0, then

𝐷2𝐷𝜓 = 𝜆𝐷𝜓 .

This gives a map from the 𝜆 eigenspace in Γ(𝑆±) to the one in Γ(𝑆∓). Since 𝜆 ≠ 0, this map is

invertible. It follows that 𝑚+(𝜆) = 𝑚−(𝜆) for 𝜆 ≠ 0. Therefore, the second term in the above

expression vanishes. It follows that str(𝑒−𝑡𝐷2) is independent of 𝑡 and always computes indexZ2
𝐷 .

Using Theorem 20.5, we have

lim

𝑡→0

str 𝑒−𝑡𝐷
2

= lim

𝑡→0

ˆ
𝑀

str𝑘𝑡 (𝑥, 𝑥)d𝑥

= lim

𝑡→0

1

(4𝜋)𝑛/2
d𝑛/2e∑︁
𝑖=0

𝑡𝑖−𝑛/2
ˆ
𝑀

strΘ𝑖 (𝑥, 𝑥)d𝑥 .
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Since the left-hand side is nite, we must haveˆ
𝑀

strΘ𝑖 (𝑥, 𝑥)d𝑥 = 0 for 𝑖 < 𝑛/2.

If 𝑛 is odd, the remaining term is the limit 𝑂 (𝑡1/2) and vanishes. If 𝑛 is even, we have

indexZ2
𝐷 = lim

𝑡→0

str 𝑒−𝑡𝐷
2

=
1

(4𝜋)𝑛/2

ˆ
𝑀

strΘ𝑛/2(𝑥, 𝑥)d𝑥 .

�

The task at hand is now to compute

strΘ𝑛/2(𝑥, 𝑥) .

Results computing this term are called local index theorems. In Theorem 20.5 we computed that

Θ1(𝑥, 𝑥) =
1

6

scal𝑔 (𝑥) −F𝑆 (𝑥) .

Here is an application.

Theorem 24.2 (Gauss–Bonnet). If Σ is a closed Riemann surface, then

𝜒 (Σ) = 1

4𝜋

ˆ
Σ
scal𝑔 .

Proof. Consider the Dirac bundle
𝑆 = Λ•𝑇 ∗Σ

with the Z2 grading given by the parity of the degree; that is:

𝑆+ = Λ0𝑇 ∗Σ ⊕ Λ2𝑇 ∗Σ and 𝑆− = Λ1𝑇 ∗Σ

The Dirac operator is given by

𝐷 = d + d
∗.

The termF𝑆 in the Weitzenböck formula

∇∗∇ = (d + d
∗)2 +F𝑆

vanishes on 0 and 2–forms, and on 1–forms is given by the Ricci curvature Ric𝑔. It follows that

Θ1(𝑥, 𝑥) =
(
1

6
scal𝑔 (𝑥)id𝑆+ 0

0
1

6
scal𝑔 (𝑥)id𝑆− − Ric𝑔 (𝑥).

)
Hence,

strΘ1(𝑥, 𝑥) = tr Ric𝑔 (𝑥) = scal𝑔 (𝑥) .
This implies the result. �
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25 The local index theorem

Theorem 25.1. Let 𝑀 be a spin manifold of even-dimension 2𝑛 and denote by𝑊 =𝑊 + ⊕𝑊 − the
complex spinor bundle. Let 𝐸 be a Hermitian vector bundle with a metric connection ∇𝐸 . Set

𝑆 ≔𝑊 ⊗C 𝐸 and 𝑆± ≔𝑊 ± ⊗ 𝐸.

Denote by 𝐷 the Dirac operator on 𝑆 . We have

indexZ2
𝐷 =

ˆ
𝑀

𝐴(∇𝑇𝑀 )ch(∇𝐸)

with

ˆ𝐴(∇) = det

√︄
𝐹∇/4𝜋𝑖

sinh(𝐹∇/4𝜋𝑖)

and
ch(∇) = tr 𝑒𝑖𝐹∇/2𝜋 .

Here we dene the integral to vanish on the components of ˆ𝐴(∇𝑇𝑀 )ch(∇𝐸) which are not of degree
dim𝑀 .

Remark 25.2. The expression

det

√︄
𝐹∇/4𝜋𝑖

sinh(𝐹∇/4𝜋𝑖)

can be understood as follows. Using det(𝐴) = exp tr log𝐴, we can write

det

√︄
𝐹∇/4𝜋𝑖

sinh(𝐹∇/4𝜋𝑖)
= exp

(
1

2

tr log

𝐹∇/4𝜋𝑖
sinh(𝐹∇/4𝜋𝑖)

)
.

This can be expanded as a power series:

1 − 1

12

tr[(𝐹∇/4𝜋𝑖)2] +
1

5760

tr[(𝐹∇/2𝜋𝑖)4] +
1

4608

[tr(𝐹∇/2𝜋𝑖)2]2 + · · · .

Here for a 2–form 𝜔 with values in End(𝑉 ), 𝜔∧𝑘
is obtained by taking the 𝑘–th wedge power of

the 2–form part of 𝜔 and composing the parts in End(𝑉 ). In terms of the Pontrjagin forms, we

have

ˆ𝐴(∇) = 1 − 𝑝1(∇)
24

+ 7𝑝1(∇)2 − 4𝑝2(∇)
5760

+ · · · .

We will prove the following stronger form:
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Theorem 25.3. In the situation of Theorem 25.1, we have

lim

𝑡→0

str𝑘𝑡 (𝑥, 𝑥)vol =
[
ˆ𝐴(∇𝑇𝑀 )ch(∇𝐸)

]
𝑛
(𝑥) .

The following proof of this result is due to Freed and based on a rescaling argument around

𝑥 . Choose a small ball 𝐵𝑟 (0) ⊂ 𝑇𝑥𝑀 and identify 𝐵𝑟 (0) with exp(𝐵𝑟 (0)) ⊂ 𝑀 . (This means in

particular that we identify 0 with 𝑥 ). Using radial parallel transport, for every 𝑦 ∈ 𝐵𝑟 , identify𝑊𝑦

with𝑊0 and 𝐸𝑦 with 𝐸0. We have

𝑘𝑡 (0, 𝑦) ∈ Hom(𝑊𝑦 ⊗ 𝐸𝑦,𝑊0 ⊗ 𝐸0)
= Hom(𝑊𝑦,𝑊0) ⊗C Hom(𝐸𝑦, 𝐸0)
= End(𝑊0) ⊗ End(𝐸0)
= (Cℓ (𝑇0𝑀) ⊗R C) ⊗ End(𝐸0) .

Proposition 25.4. Let 𝑐 ∈ Cℓ2𝑛 � End(𝑊 ) with𝑊 denoting the irreducible representation of Cℓ2𝑛 .
Write 𝑐 as

𝑐 =
∑︁
𝐼

𝑐𝐼𝑒𝐼 .

with
𝑒𝑖1 ...𝑖𝑘 = 𝑒𝑖1 · · · 𝑒𝑖𝑘

and 𝐼 ranging over all increasing multi-indices. With respect to the splitting𝑊 =𝑊 + ⊕𝑊 − induced
by the complex volume form, we have

str 𝑐 = (−2𝑖)𝑛𝑐1· · ·2𝑛 .

Proof. The complex volume form is

𝜔C = 𝑖𝑛𝑒1 · · · 𝑒2𝑛 .

It acts by +1 on𝑊 +
and −1 on𝑊 −

. Consequently,

str(𝑐) = tr(𝜔C𝑐) =
∑︁
𝐼

𝑐𝑖 tr(𝜔C𝑒𝐼 ) .

If 𝐼 = (1, . . . , 2𝑛), then

tr(𝜔C𝑒𝐼 ) = 𝑖𝑛 tr(𝑒𝐼𝑒𝐼 ) = (−𝑖)𝑛 tr(id𝑊 ) = (−2𝑖)𝑛 .

If 𝐼 ≠ (1, . . . , 2𝑛), then up to a constant 𝜔C𝑒𝐼 = 𝑒𝐼𝑐 with 𝐼𝑐 denoting the complement of 𝐼 in

(1, . . . , 2𝑛). The action of 𝑒𝐼𝑐 on the basis elements of Cℓ2𝑛 has no xed points. Consequently,

trCℓ 2𝑛 𝑒𝐼𝑐 = 0.
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Since Cℓ2𝑛 =𝑊 ⊗𝑊 ∗
, we have

trCℓ 2𝑛 𝑒𝐼𝑐 = dim𝑊 ∗ · tr𝑊 𝑒𝐼𝑐 .

Thus tr𝑊 𝑒𝐼𝑐 vanishes. �

This tells us that we need to extract the top coecient of 𝑘𝑡 (0, 𝑦) in Cℓ (𝑇0𝑀) ⊗R C to compute

str𝑘𝑡 (0, 0). Set
𝑞𝑡 = 𝑘𝑡 (·, 0).

We have an asymptotic expansion

𝑞𝑡 (0) ∼
1

(4𝜋𝑡)𝑛
∞∑︁
𝑗=0

∑︁
𝐼

𝑡 𝑗Θ𝑗,𝐼𝑒𝐼

with Θ𝑗,𝐼 ∈ End(𝑊0).

Proposition 25.5.

1. Θ𝑗,𝐼 = 0 if |𝐼 | > 2 𝑗 .

2. trΘ𝑛,1...2𝑛 = (2𝜋𝑖)𝑛
[
ˆ𝐴(∇𝑇𝑀 )ch(∇𝐸)

]
𝑛
(𝑥).

Proof of Theorem 25.3. Using Proposition 25.4 and Proposition 25.5, we have

lim

𝑡→0

str𝑘𝑡 (𝑥, 𝑥) =
(−2𝑖)𝑛
(4𝜋)𝑛 (2𝜋𝑖)𝑛

[
ˆ𝐴(∇𝑇𝑀 )ch(∇𝐸)

]
𝑛
(𝑥) =

[
ˆ𝐴(∇𝑇𝑀 )ch(∇𝐸)

]
𝑛
(𝑥) . �

The proof of Proposition 25.5 relies on a scaling argument.

Denition 25.6. Given 𝜀 > 0, dene𝑈𝜀 : Cℓ2𝑛 → ΛR𝑛 by

𝑈𝜀 (𝑒𝑖1 · · · 𝑒𝑖𝑘 ) ≔ 𝜀−𝑘𝑒𝑖1 ∧ . . . ∧ 𝑒𝑖𝑘 .

Dene the rescaled heat kernel 𝑞𝜀𝑡 : 𝐵𝑟/𝜀 (0) → ΛR𝑛 ⊗ End(𝐸0) by

𝑞𝜀𝑡 (𝑦) ≔ 𝜀𝑛𝑈𝜀𝑘𝜀2𝑡 (𝜀2𝑦, 0).

The function 𝑞𝜀𝑡 (0) has an asymptotic expansion

(25.7) 𝑞𝜀𝑡 (0) ∼
1

(4𝜋)𝑛
∞∑︁
𝑗=0

∑︁
𝐼

𝜀2𝑗−|𝐼 |𝑡 𝑗−𝑛Θ𝑗,𝐼𝑒𝐼 ,
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Proposition 25.8. Dene𝑀𝜀 : 𝐵𝑟/𝜀 (0) → 𝐵𝑟 (0) by

𝑀𝜀 (𝑦) = 𝜀𝑦.

Set
𝑆𝜀 ≔ 𝑈𝜀𝑀

∗
𝜀 and 𝑃𝜀 ≔ 𝜀2𝑆𝜀𝐷

2𝑆−1𝜀 .

With the above notation we have

(𝜕𝑡 + 𝑃𝜀) 𝑞𝜀𝑡 = 0 and lim

𝑡→0

𝑞𝜀𝑡 = 𝛿0.

Proof. By denition

𝑞𝜀𝑡 = 𝜀
𝑛𝑆𝜀𝑞𝜀2𝑡 .

We have

(𝜕𝑡 + 𝐷2)𝑞𝑡 = 0 and lim

𝑡→0

𝑞𝑡 → 𝛿0.

This implies the proposition directly. �

Proposition 25.9. We have

lim

𝜀→0

𝑃𝜀 = 𝑃0 = −
2𝑛∑︁
𝑘=1

(
𝜕𝑘 −

1

4

2𝑛∑︁
ℓ=1

𝑅𝑘ℓ (0)𝑦ℓ

)
2

+ 𝐹𝐸 (0)

acting on 𝐶∞(R2𝑛,Λ(R2𝑛)∗ ⊗ 𝐸0). Here 𝑅𝑘ℓ is identied with a 2–form and acts by taking wedge
product. 𝐹𝐸 (0) acts by taking the wedge product with the 2–form part and applying the component in
End(𝐸0).

The proof of Proposition 25.9 is a lengthy computation. We will defer it for a while.

Proposition 25.10. The heat kernel for 𝑃0 evaluated at (0, 0) is

(4𝜋𝑡)−𝑛/2 det

√︄(
𝑡𝑅/2

sinh(𝑡𝑅/2)

)
𝑒−𝑡𝐹𝐸 (0) .

Proof. Set

𝑄 ≔ −
2𝑛∑︁
𝑘=1

(
𝜕𝑘 −

1

4

∑︁
ℓ

𝑅𝑘ℓ (0)𝑦ℓ

)
2

and 𝐹 ≔ 𝐹𝐸 (0).

Since 2–forms commute, the operator 𝑄 commutes with 𝐹 .

The heat kernel of 𝑃0 is thus given by

𝑒−𝑡𝑃0 = 𝑒−𝑡𝑄𝑒−𝑡𝐹 .
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The expression 𝑒−𝑡𝐹 can be computed using the power-series expression for exp since 𝐹𝑛+1 = 0,

and thus the series is a nite sum.

If necessary, adjust the coordinates so that 𝑅 = (𝑅𝑘ℓ ) is block-diagonal:

𝑅 =

©«

0 −𝜔1

𝜔1 0

0 𝜔2

−𝜔2 0

. . .

ª®®®®®®¬
Then 𝑄 can be written as

𝑄 ≔

𝑛∑︁
𝑘=1

𝑄𝑘 with 𝑄𝑘 = −
(
𝜕2𝑘−1 +

1

4

𝜔𝑘𝑥2𝑘

)
2

−
(
𝜕2𝑘 −

1

4

𝜔𝑘𝑥2𝑘−1

)
2

These 𝑄𝑘 can be expanded as

𝑄𝑘 = 𝑄0

𝑘
+𝑄1

𝑘

with

𝑄0

𝑘
≔ −(𝜕2

2𝑘−1 + 𝜕
2

2𝑘
) − 1

16

𝜔2

𝑘

(
𝑥2
2𝑘−1 + 𝑥

2

2𝑘

)
and 𝑄1

𝑘
≔

1

2

𝜔𝑘 (𝑥2𝑘−1𝜕2𝑘 − 𝑥2𝑘𝜕2𝑘−1) .

Mehler’s formula, discussed in Section 26, shows that the heat kernel of the operator −𝜕2𝑥 + 𝑎2𝑥2 is
given by

1

√
4𝜋𝑡

(
2𝑎𝑡

sinh 2𝑎𝑡

)
1/2

exp

(
−𝑥

2

4𝑡

2𝑎𝑡

tanh 2𝑎𝑡

)
.

Applying this with 𝑎 = 𝑖
4
𝜔𝑘 exhibits the heat-kernel of 𝑄

0

𝑘
as

(25.11) ℎ𝑘,𝑡 (𝑥) ≔ (4𝜋𝑡)−1
(

𝑖𝑡𝜔𝑘/2
sinh 𝑖𝑡𝜔𝑘/2

)
exp

(
−𝑥2
4𝑡

(
𝑖𝑡𝜔𝑘/2

tanh 𝑖𝑡𝜔𝑘/2

))
.

Since 𝑄1

𝑘
ℎ𝑘,𝑡 = 0.

(𝜕𝑡 +𝑄𝑘 )ℎ𝑘,𝑡 = 0 and lim

𝑡→0

ℎ𝑘,𝑡 = 𝛿0.

Therefore, ∏
ℎ𝑘,𝑡 (0) = (4𝜋𝑡)−𝑛

∏ 𝑖𝑡𝜔𝑘/2
sinh 𝑖𝑡𝜔𝑘/2

.

To rewrite this in terms of 𝑅, observe the following. The power series

(25.12) 𝑓 (𝑥) = 𝑥/2
sinh(𝑥/2)
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involves only even powers of 𝑥 ; hence, there is a power series 𝑔 with

(25.13) 𝑓 (𝑥) = 𝑔(𝑥2) .

Evidently,

(25.14)

(
0 −𝑥
𝑥 0

)
2

=

(
−𝑥2 0

0 −𝑥2
)
.

Therefore,

(25.15) 𝑓

(
0 −𝑥
𝑥 0

)
=

(
𝑔(−𝑥2) 0

0 𝑔(−𝑥2)

)
=

(
𝑓 (𝑖𝑥) 0

0 𝑓 (𝑖𝑥)

)
and

(25.16) det

√︄
𝑓

(
0 −𝑥
𝑥 0

)
=

√︄
det 𝑓

(
0 −𝑥
𝑥 0

)
= 𝑓 (−𝑖𝑥) .

Consequently,

�(25.17) det

√︄
𝑡𝑅/2

sinh(𝑡𝑅/2) =
∏ 𝑖𝑡𝜔𝑘/2

sinh 𝑖𝑡𝜔𝑘/2
.

Proof of Proposition 25.5. Set

𝑞0𝑡 ≔ (4𝜋𝑡)−𝑛/2
√︄
det

(
𝑡𝑅/2

sinh(𝑡𝑅/2)

)
𝑒−𝑡𝐹 .

Using the Taylor expansion of the last two factors, we can write

𝑞0𝑡 = (4𝜋)−𝑛
∑︁
𝑗

𝑃 𝑗 (𝑅/2,−𝐹 )𝑡 𝑗−𝑛

with 𝑃 𝑗 homogeneous of degree 𝑗 .

Since 𝑃𝜀 varies continuously 𝜀, so do the associated heat kernels. The homogeneous asymptotic

expansions of the heat kernel evaluated at (0, 0) are unique and thus also vary continuously.

Consequently,

lim

𝜀→0

(4𝜋)−𝑛
∞∑︁
𝑗=0

∑︁
𝐼

𝜀2𝑗−|𝐼 |𝑡 𝑗−𝑛Θ𝑗,𝐼𝑒𝐼 = (4𝜋)−𝑛
∑︁
𝑗

𝑃 𝑗 (𝑅/2,−𝐹 )𝑡 𝑗−𝑛 .

Hence,

lim

𝜀→0

∑︁
𝐼

𝜀2𝑗−|𝐼 |Θ𝑗,𝐼𝑒𝐼 = 𝑃 𝑗 (𝑅/2,−𝐹 ) .
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It follows that for |𝐼 | > 2 𝑗 , the coecient Θ𝑗,𝐼 must vanish. We also obtain the formula∑︁
|𝐼 |=2𝑗

Θ𝑗,𝐼 = 𝑃 𝑗 (𝑅/2,−𝐹 ) .

Finally, using that 𝑃𝑛 is homogeneous of degree 𝑛, we have

Θ𝑛,1...2𝑛 = 𝑃𝑛 (𝑅/2,−𝐹 )
= (2𝜋𝑖)𝑛𝑃𝑛 (𝑅/4𝜋𝑖, 𝑖𝐹/2𝜋)
= (2𝜋𝑖)𝑛

[
𝐴(∇𝑇𝑀 )ch(∇𝐸)

]
𝑛
(𝑥) . �

Proof of Proposition 25.9. By the Weitzenböck formula

𝑃1 = ∇∗∇ + 1

4

scal𝑔 + 𝐹𝐸

Denote by Γ𝑘𝑖 𝑗 the Christoel symbols, that is,

∇𝜕𝑖 𝜕𝑗 = Γ𝑘𝑖 𝑗 𝜕𝑘 .

Denote by 𝑎 the local connection 1–form of ∇𝐸 . We have

𝑃1 = −𝑔𝑘ℓ (𝑦)
(
𝜕𝑘 +

1

2

Γ 𝑗
𝑘𝑖
(𝑦)𝑒∗𝑖 ∧ 𝑒∗𝑗 + 𝑎(𝑦, 𝑒𝑘 )

) (
𝜕ℓ +

1

2

Γ 𝑗
ℓ𝑖
(𝑦)𝑒∗𝑖 ∧ 𝑒∗𝑗 + 𝑎(𝑦, 𝑒ℓ )

)
+ 𝑔𝑘ℓ (𝑦)Γ𝑚

𝑘ℓ
(𝑦)

(
𝜕𝑚 + 1

2

Γ 𝑗
𝑚𝑖

(𝑦)𝑒∗𝑖 ∧ 𝑒∗𝑗 + 𝑎(𝑦, 𝑒𝑚)
)

+ 1

4

scal𝑔 (𝑦) + 𝐹𝐸 (𝑦) .

The rescaling involved in passing from 𝑃1 to 𝑃𝜀 means scaling 𝑦 to 𝜀𝑦 (and correspondingly for

derivatives and 1–forms), and scaling 𝑒∗𝑖
We have

𝑃𝜀 = 𝜀
2𝑔𝑘ℓ (𝜀𝑦)

(
𝜀−1𝜕𝑘 + 𝜀−2

1

2

Γ 𝑗
𝑘𝑖
(𝜀𝑦)𝑒∗𝑖 ∧ 𝑒∗𝑗 + 𝑎(𝜀𝑦, 𝑒𝑘 )

)
·
(
𝜀−1𝜕ℓ + 𝜀−2

1

2

Γ 𝑗
ℓ𝑖
(𝑦)𝑒∗𝑖 ∧ 𝑒∗𝑗 + 𝑎(𝜀𝑦, 𝑒ℓ )

)
+ 𝜀2𝑔𝑘ℓ (𝑦)Γ𝑚

𝑘ℓ
(𝑦)

(
𝜀−1𝜕𝑚 + 1

2

Γ 𝑗
𝑚𝑖

(𝑦)𝑒∗𝑖 ∧ 𝑒∗𝑗 + 𝑎(𝜀𝑦, 𝑒𝑘 )
)

+ 𝜀
2

4

scal𝑔 (𝜓𝑦) + 𝐹𝐸 (𝑦) .

Using

Γ𝑏
𝑘𝑎

= −1
2

𝑅𝑏
𝑘ℓ𝑎
𝑦ℓ +𝑂

(
|𝑦 |2

)
,
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this becomes

𝑃𝜀 = 𝑔
𝑘ℓ (0)

(
𝜕𝑘 −

1

4

𝑅
𝑗

𝑘𝑚𝑖
𝑦𝑚𝑒

∗
𝑖 ∧ 𝑒∗𝑗

) (
𝜕ℓ −

1

4

𝑅
𝑗

ℓ𝑚𝑖
𝑦𝑚𝑒

∗
𝑖 ∧ 𝑒∗𝑗

)
+ 𝐹𝐸 (𝑦) +𝑂 (𝜀).

Since 𝑔𝑘ℓ (0) = 𝛿𝑘ℓ , this proves the that 𝑃𝜀 has a limit and that the limit has the the asserted

form. �

26 Mehler’s formula

In the proof of the local index theorem we used (25.11). We could verify by hand that this is the

desired heat kernel for the model operator, but it also can be derived from Mehler’s formula. Since

this formula also explains the appearance of the otherwise quite mysterious
ˆ𝐴 genus, let us discuss

it now.

Let 𝐴 be a commutative R–algebra. Let 𝑎 ∈ 𝐴 be a nilpotent element. (Or assume that power

series can be evaluated on 𝐴 for some other reason.) Consider the heat equation

(26.1) 𝜕𝑡 𝑓 − 𝜕2𝑥 𝑓 + 𝑎2𝑥2 𝑓 = 0.

We want to nd a solution 𝑓𝑡 (𝑥) of this equation with initial condition

lim

𝑡→0

𝑓𝑡 = 𝛿0.

We make the ansatz

𝑓𝑡 (𝑥) = 𝛼 (𝑡)𝑒−
1

2
𝑥2𝛽 (𝑡 ) .

Plugging this ansatz into (26.1), we obtain

𝛼 ′/𝛼 − 1

2

𝑥2𝛽 ′ + 𝛽 (𝑡) − 𝑥2𝛽 + 𝑎2𝑥2 = 0

or, equivalently,

log(𝛼) ′ = −𝛽 and 𝛽 ′ = 2(𝑎2 − 𝛽2) .

Recall that

sinh𝑥 =
𝑒𝑥 − 𝑒−𝑥

2

, cosh𝑥 =
𝑒𝑥 + 𝑒−𝑥

2

, and coth𝑥 =
cosh𝑥

sinh𝑥
.

A computation shows that

coth
′ = 1 − coth

2 .

The ODE for 𝛽 is solved by

𝛽 = 𝑎 coth(2𝑎𝑡 +𝐶) = 1

2

𝜕𝑡 log sinh(2𝑎𝑡 +𝐶)

117



Thus

𝛼 (𝑡) = 𝐷/
√︁
sinh(2𝑎𝑡 +𝐶)

Since sinh𝑥 = 𝑥 +𝑂 (𝑥3), the initial condition holds for

𝐶 = 0 and 𝐷 =
√︁
𝑎/2𝜋.

This show that the desired 𝑓𝑡 is given by

(26.2) 𝑓𝑡 (𝑥) =
1

√
4𝜋𝑡

(
2𝑎𝑡

sinh 2𝑎𝑡

)
1/2

exp

(
−𝑥

2

4𝑡

2𝑎𝑡

tanh 2𝑎𝑡

)
.

27 Computation of the ˆ𝐴 genus

27.1 Review of Chern–Weil theory

Let 𝐺 be a Lie group. Let 𝑘 = R or C Let 𝑘 [[𝔤]]𝐺 be the algebra of 𝐺–invariant power series on

the Lie algebra 𝔤. Any 𝑝 ∈ 𝑘 [[𝔤]]𝐺 can be written as

𝑝 (𝑋 ) =
∞∑︁
𝑘=0

𝑝𝑘 (𝑋 ⊗ · · · ⊗ 𝑋︸         ︷︷         ︸
𝑘 times

)

where 𝑝𝑘 : (𝑆𝑘𝔤)𝐺 → 𝑘 is a linear map.

Let 𝑃 be a principal𝐺–bundle over𝑀 Let 𝐹𝐴 ∈ Ω2(𝑀, 𝔤𝑃 ) be the curvature of a connection on

𝑃 . We dene

𝑝 (𝐹𝐴) ≔
∞∑︁
𝑘=0

𝑝𝑘 (𝐹𝐴 ∧ · · · ∧ 𝐹𝐴) ∈ Ω•(𝑀,𝑘).

Here 𝑝𝑘 acts as 𝑆
𝑘𝔤𝑝 → 𝑘 . There are only nitely many summands.

Chern–Weil theory asserts that the cohomology class

[𝑝 (𝐹𝐴)] ∈ 𝐻 •(𝑀,C)

depends only on 𝑃 .

As we will see for computations it is useful to recall that if 𝔱 is a maximal torus and𝑊 is the

Weyl group, then the inclusion

𝑘 [𝔱]𝑊 ⊂ 𝑘 [𝔤]C

is an isomorphism.
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27.2 Chern classes

Example 27.1. The Chern classes arise from

𝑐 (𝑋 ) = det

(
1 + 𝑖𝑋

2𝜋

)
.

for 𝑋 ∈ 𝔤𝔩𝑛 (C). The total Chern class of a complex vector bundle of rank 𝑛 is

𝑐 (𝐸) = 𝑐0(𝐸) + . . . + 𝑐𝑛 (𝐸) = [𝑐 (𝐹𝐴)] .

Example 27.2. The Chern character arises from

𝑐ℎ(𝑋 ) = tr exp

(
𝑖𝑋

2𝜋

)
for 𝑋 ∈ 𝔤𝔩𝑛 (C). The total Chern character of a complex vector bundle is

𝑐ℎ(𝐸) = [𝑐ℎ(𝐹𝐴)] .

For computations it is useful to observe that diagonalizable matricies are dense in 𝔲(𝑛); hence,

C[[𝔲(𝑛)]]𝐺 � C[[𝑥1, . . . , 𝑥𝑛]]𝑆𝑛 .

The Chern classes correspond to

𝑛∏
𝑗=1

(1 + 𝑖𝑥 𝑗/2𝜋) =
𝑛∑︁
𝑘=0

(
𝑖

2𝜋

)𝑘 ∑︁
16 𝑗1< · · ·<𝑖𝑘6𝑘

𝑥 𝑗1 · · · 𝑥 𝑗𝑘 .

The Chern character corresponds to

∞∑︁
𝑘=0

(
𝑖

2𝜋

)𝑘 𝑛∑︁
𝑗=1

𝑥𝑘𝑗

𝑘!
.

From the relation

𝑛∑︁
𝑗=1

𝑥2𝑗

2

=
1

2

(
𝑛∑︁
𝑗=1

𝑥 𝑗

)
2

−
∑︁

16 𝑗1< · · ·<𝑖26𝑛
𝑥 𝑗1𝑥 𝑗2 .

we deduce

𝑐ℎ2 =
1

2

𝑐2
1
− 𝑐2.
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27.3 Pontrjagin classes

Example 27.3. The Pontrjagin class of a real vector bundle is

𝑝 (𝑉 ) = 𝑐0(𝑉 ⊗ C) − 𝑐2(𝑉 ⊗ C) + · · · + (−1)𝑛𝑐2𝑛 (𝑉 ⊗ C) .

There is a maximal torus 𝔱 in 𝔬(2𝑛) generated by block-diagonal matrices with blocks of the

form

𝑌 =

(
0 𝑦

−𝑦 0

)
.

Over C this block can be diagonalized to (
𝑖𝑦 0

0 −𝑖𝑦

)
.

It follows that

𝑐1(𝑋 ) = 0 and 𝑐2(𝑋 ) =
(
𝑖

2𝜋

)
2

(𝑖𝑦) (−𝑖𝑦) = − 𝑦2

4𝜋2
.

With respect to R[𝔬(2𝑛)]O(2𝑛) � R[𝑦1, . . . , 𝑦𝑛]𝑆𝑛 , the Pontrjagin classes correspond to

𝑛∏
𝑗=1

(
1 + 𝑦2𝑗 /4𝜋2

)
=

𝑛∑︁
𝑘=0

(
1

4𝜋2

)𝑘 ∑︁
16 𝑗1< · · ·<𝑖𝑘6𝑛

𝑦2𝑗1 · · ·𝑦
2

𝑗𝑘
.

27.4 Genera

The Chern character is an example of a genus.

Denition 27.4. Let 𝑓 ∈ C[[𝑥]]. The Chern 𝑓 –genus of a complex vector bundle 𝐸 is dened

characteristic class 𝑝 𝑓 (𝐸) associated to

𝑐 𝑓 (𝑋 ) = det

(
𝑓

(
𝑖𝑋

2𝜋

))
.

Proposition 27.5.

1. If 𝐿 is a complex line bundle, then 𝑐 𝑓 (𝐿) = 𝑓 (𝑐1(𝐿)).

2. If 𝑉1 and 𝑉2 are two complex vector bundles, then 𝑐 𝑓 (𝑉1 ⊕ 𝑉2) = 𝑐 𝑓 (𝑉1) ∪ 𝑐 𝑓 (𝑉2).

Denition 27.6. Let 𝑔 ∈ C[[𝑥]] with 𝑔(𝑥) = 1 + · · · . Set 𝑓 (𝑥) ≔
√︁
𝑔(𝑥2). The Pontrjagin 𝑔 genus

of a real vector bundle 𝑉 is

𝑝𝑔 (𝑉 ) = 𝑐 𝑓 (𝑉 ⊗ C).
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Remark 27.7. Suppose 𝐸 is a complex vector bundle. Then 𝐸 ⊗R C � 𝐸 ⊕ 𝐸. Consequently,

𝑝𝑔 (𝐸) = 𝑐 𝑓 (𝐸 ⊕ 𝐸) = 𝑐 𝑓 (𝐸)2.

The
ˆ𝐴–genus arises as the Pontrjagin genus of

𝑔(𝑥) =
√
𝑥/2

sinh(
√
𝑥/2)

.

Let us discuss how to understand these genera usingwith respect to the isomorphismR[𝔬(2𝑛)]O(2𝑛) �
R[𝑦1, . . . , 𝑦𝑛]𝑆𝑛 . Consider the block

𝑌 =

(
0 𝑦

−𝑦 0

)
.

Over C, this block is conjugate to (
𝑖𝑦 0

0 −𝑖𝑦

)
.

Thus

𝑝𝑔 (𝑌 ) = det

(
𝑓 (𝑦/2𝜋)

𝑓 (−𝑦/2𝜋)

)
= 𝑓 (𝑦/2𝜋) 𝑓 (−𝑦/2𝜋)
= 𝑔

(
𝑦2/4𝜋2

)
.

Therefore, writing

𝑔(𝑥) =
∞∑︁
𝑘=0

𝑎𝑘𝑥
𝑘

we have

𝑝𝑔 =

𝑛∏
𝑗=1

©«
∞∑︁
𝑘=0

𝑎𝑘

(
𝑦2𝑗

4𝜋2

)𝑘ª®¬ .
27.5 Expressing ˆ𝐴 in terms of Pontrjagin classes

To understand the
ˆ𝐴–genus, recall that

√
𝑥/2

sinh(
√
𝑥/2)

= 1 − 𝑥

24

+ 7𝑥

5760

+ . . . .
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Therefore,

𝐴 =

𝑛∏
𝑗=1

©«1 − 1

24

𝑦2𝑗

4𝜋2
+ 7

5760

(
𝑦2𝑗

4𝜋2

)
2

+ · · ·ª®¬
= 1 − 1

24

1

4𝜋2

𝑛∑︁
𝑗=1

𝑦2𝑗 +
(
1

4𝜋2

)
2

(
7

5670

𝑛∑︁
𝑗=1

𝑦4𝑗 +
1

576

∑︁
16 𝑗1< 𝑗26𝑛

𝑦2𝑗1𝑦
2

𝑗2

)
+ · · · .

To express this in terms of Pontrjagin classes, recall that,

𝑝1 =
1

4𝜋2

𝑛∑︁
𝑗=1

𝑦2𝑗 and 𝑝2 =

(
1

4𝜋2

)
2 ∑︁
16 𝑗1< 𝑗26𝑛

𝑦2𝑗1𝑦
2

𝑗2
.

Therefore, (
1

4𝜋2

)
2 𝑛∑︁
𝑗=1

𝑦4𝑗 = 𝑝
2

1
− 2𝑝2.

It follows that

ˆ𝐴 = 1 − 1

24

𝑝1 +
1

5760

(
7𝑝2

1
− 14𝑝2 + 10𝑝2

)
+ · · ·

= 1 − 1

24

𝑝1 +
7𝑝2

1
− 4𝑝2

5760

+ · · · .

28 Hirzebruch–Riemann–Roch Theorem
Denition 28.1. Let 𝐸 be a complex vector bundle over 𝑀 . The Todd class td(𝐸) of 𝐸 is the

characteristic Chern genus associated with the function

𝑓 (𝑥) = 𝑥

𝑒𝑥 − 1

.

That is, if 𝐹𝐴 is the curvature of some connection on 𝐸, then

td(𝐸) =
[
det

(
𝑖𝐹𝐴/2𝜋

𝑒𝑖𝐹𝐴/2𝜋 − 1

)]
.

Exercise 28.2. Prove that

td = 1 + 𝑐1
2

+
𝑐2
1
+ 𝑐2
12

+ 𝑐1𝑐2
24

+
−𝑐4

1
+ 4𝑐2

1
𝑐2 + 𝑐1𝑐3 + 3𝑐2

2
− 𝑐4

720

+ . . . .
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Theorem 28.3 (Hirzebruch–Riemann–Roch). Let𝑀 be a compact spin Kähler manifold. LetE =

(𝐸, 𝜕𝐸) be a holomorphic vector bundle together with a Hermitian metric ℎ. We have

𝜒 (E) = index

(
𝜕𝐸 + 𝜕∗𝐸 : Ω0,ev(𝑀,E) → Ω0,odd(𝑀,E)

)
=

ˆ
𝑀

td(𝑇𝑀)ch(𝐸).

Remark 28.4. The spin condition can be dropped. This requires to discuss how Theorem 25.1 can

be formulated on non-spin manifold.

Proof. The rst identity is a consequence of Hodge theory. To compute the index we will use

Theorem 25.1 and the discussion in Section 11.

For a spin Kähler manifold has the complex spinor bundle can be written as

𝑊 + = Λ0,ev𝑇 0,1𝑀∗ ⊗ K
−1/2
𝑀

and 𝑊 − = Λ0,odd𝑇 0,1𝑀∗ ⊗ K
−1/2
𝑀

and the Dirac operator is given by

𝐷 =
√
2

(
𝜕 + 𝜕∗

)
.

It follows from Theorem 25.1 that

𝜒 (E ⊗ K
−1/2
𝑀

) =
ˆ
𝑀

ˆ𝐴(𝑀)ch(𝐸).

Consequently,

𝜒 (E) =
ˆ
𝑀

ˆ𝐴(𝑀)ch(𝐾1/2
𝑀

⊗ 𝐸) =
ˆ
𝑀

ˆ𝐴(𝑀)
√︁
ch(𝐾𝑀 )ch(𝐸) .

Recall that

𝑇𝑀 ⊗ C = 𝑇 1,0𝑀 ⊕ 𝑇 0,1𝑀 and K𝑀 = Λ𝑛C𝑇
1,0𝑀∗.

Write 𝑅 for the Riemann curvature tensor on 𝑇𝑀 and 𝑅C for the curvature on the complex vector

bundle 𝑇 1,0𝑀 . We have

√
ch(𝐾𝑀 ) =

√︁
exp(− tr 𝑖𝑅C/2𝜋) = det(𝑒−𝑖𝑅C/4𝜋 )

By Remark 27.7, we have√︄
det

(
𝑖𝑅/2𝜋

𝑒𝑖𝑅/4𝜋 − 𝑒−𝑖𝑅/4𝜋

)
= det

(
𝑖𝑅C/2𝜋

𝑒𝑖𝑅C/4𝜋 − 𝑒−𝑖𝑅C/4𝜋

)
.

Therefore,

ˆ𝐴(𝑀)
√︁
ch(𝐾𝑀 ) =

[
det

(
𝑖𝑅/2𝜋

𝑒𝑖𝑅/4𝜋 − 𝑒−𝑖𝑅/4𝜋

)
det(𝑒−𝑖𝑅/4𝜋 )

]
=

[
det

(
𝑖𝑅/2𝜋

𝑒𝑖𝑅/2𝜋 − 1

)]
= td(𝑀) .

This proves the index formula. �
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Theorem 28.5 (Riemann–Roch). Let Σ be an compact Riemann surface and let L be a holomorphic
vector bundle. We have

𝜒 (L) = degL − 𝑔(Σ) + 1.

Proof. The Todd class of a Riemann surface is

td(Σ) = 1 + 𝑐1(Σ)
2

[Σ]

= 1 + 𝜒 (Σ)
2

[Σ]

= 1 + (1 − 𝑔(Σ)) [Σ]

and

ch(L) = 1 + 𝑐1(L)
= 1 + deg(L) [Σ] .

Consequently,

𝜒 (L) =
ˆ
Σ
td(Σ)ch(Σ)

=

ˆ
Σ
(1 + (1 − 𝑔(Σ)) [Σ]) (1 + deg(L) [Σ])

= deg(L) + 𝑔(Σ) − 1.

�
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29 Hirzebruch Signature Theorem

Proposition 29.1. Let𝑀 be a compact oriented manifold of dimension 2𝑛.

1. The operator 𝜏 : Ω•(𝑀,C) → Ω•(𝑀,C) dened by

𝜏𝜔 ≔ 𝑖𝑑 (𝑑−1)+𝑛 ∗ 𝜔 with deg𝜔 = 𝑑.

is an involution.

2. Denote by Ω±(𝑀,C) the ±1–eigenspace of 𝜏 . With respect to the splitting Ω•(𝑀,C) =

Ω+(𝑀,C) ⊕ Ω−(𝑀,C), the operator d + d
∗
: Ω•(𝑀,C) → Ω•(𝑀,C) is of the form

d + d
∗ =

(
0 𝐷∗

𝐷 0

)
.

Equivalently,
(d + d

∗)𝜏 + 𝜏 (d + d
∗) = 0.

3. We have

index𝐷 =

{
0 if 𝑛 is odd
𝜎 (𝑀) if 𝑛 is even.

Here we denote by 𝜎 (𝑀) the signature of the intersection form 𝑄 on 𝐻 2𝑘 (𝑀,R).

4. If 𝑀 is spin and𝑊 =𝑊 + ⊕𝑊 − denotes the complex spinor bundle, then with respect to the
isomorphism Λ𝑇𝑀 ⊗ C �𝑊 ⊗𝑊 induced by Cliord multiplication we have

Ω±(𝑀,C) � Γ(𝑊 ± ⊗C𝑊 ).

and
𝐷 = /𝐷+

𝑊 .

Denition 29.2. The operator 𝐷 : Ω+(𝑀,C) → Ω−(𝑀,C) is called the signature operator.

Proof of Proposition 29.1. (1) We have

∗ ∗ 𝜔 = (−1)𝑑 (2𝑛−𝑑)𝜔 with deg𝜔 = 𝑑.

Consequently,

𝜏2𝜔 = (−1)𝑑 (2𝑛−𝑑)𝑖𝑑 (𝑑−1)+𝑛𝑖 (2𝑛−𝑑) (2𝑛−𝑑−1)+𝑛𝜔
= 𝑖2𝑑 (2𝑛−𝑑)+𝑑 (𝑑−1)+𝑛+(2𝑛−𝑑) (2𝑛−𝑑−1)+𝑛𝜔.
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We have

2𝑑 (2𝑛 − 𝑑) + 𝑑 (𝑑 − 1) + 𝑛 + (2𝑛 − 𝑑) (2𝑛 − 𝑑 − 1) + 𝑛
= (−2 + 1 + 1)𝑑2 + (4 − 4)𝑑𝑛 + 4𝑛2 + (−1 + 1)𝑑 + (1 − 2 + 1)𝑛 = 4𝑛2.

Therefore, 𝜏2 = id.

(2) We have

d
∗𝜔 = (−1)2𝑛 (𝑑−1)+1 ∗ d ∗ 𝜔 = − ∗ d ∗ 𝜔.

Therefore,

(d + d
∗)𝜏 = 𝑖𝑑 (𝑑−1)+𝑛d ∗ 𝜔 − 𝑖𝑑 (𝑑−1)+𝑛 ∗ d ∗ ∗𝜔

= 𝑖𝑑
2−𝑑+𝑛

d ∗ 𝜔 − (−1)𝑑 (2𝑛−𝑑)𝑖𝑑2−𝑑+𝑛 ∗ d𝜔
= 𝑖𝑑

2−𝑑+𝑛
d ∗ 𝜔 − 𝑖2𝑑 (2𝑛−𝑑)+𝑑2−𝑑+𝑛 ∗ d𝜔

= 𝑖𝑑
2−𝑑+𝑛

d ∗ 𝜔 − 𝑖−𝑑2−𝑑+𝑛 ∗ d𝜔

and

𝜏 (d + d
∗)𝜔 = −𝑖 (𝑑−1) (𝑑−2)+𝑛 ∗ ∗d ∗ 𝜔 + 𝑖 (𝑑+1)𝑑+𝑛 ∗ d𝜔

= −𝑖𝑑2−3𝑑+2+𝑛 (−1) (2𝑛−𝑑+1) (𝑑−1)d ∗ 𝜔 + 𝑖𝑑2+𝑑+𝑛 ∗ d𝜔
= −𝑖𝑑2−3𝑑+2+𝑛+2(2𝑛−𝑑+1) (𝑑−1)d ∗ 𝜔 + 𝑖𝑑2+𝑑+𝑛 ∗ d𝜔
= −𝑖−𝑑2+𝑑+𝑛d ∗ 𝜔 + 𝑖𝑑2+𝑑+𝑛 ∗ d𝜔.

Since

𝑑2 ± 𝑑 = −𝑑2 ∓ 𝑑 + 2(𝑑2 ± 𝑑) and 2| (𝑑2 ± 𝑑),

it follows that

(d + d
∗)𝜏 + 𝜏 (d + d

∗) = 0.

(3) Since

(d + d
∗)2 = Δ,

we have

𝐷∗𝐷 = Δ : Ω+(𝑀,C) → Ω+(𝑀,C) and 𝐷𝐷∗ = Δ : Ω−(𝑀,C) → Ω−(𝑀,C) .

It follows that the kernel of 𝐷 consists of complex harmonic forms 𝛼 satisfying 𝜏𝛼 = 𝛼 and that

the kernel of 𝐷∗
consists of complex harmonic forms 𝛼 satisfying 𝜏𝛼 = −𝛼 . That is:

ker𝐷 = H+(𝑀,C) ≔ H(𝑀,C) ∩ Ω+(𝑀,C) and

ker𝐷∗ = H−(𝑀,C) ≔ H(𝑀,C) ∩ Ω−(𝑀,C).
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The maps Ω0(𝑀,C) ⊕ · · · ⊕ Ω𝑛−1(𝑀,C) ⊕ Ω𝑛±(𝑀,C) → Ω±(𝑀,C) dened by

(𝑓 , . . . , 𝛼, 𝛽) ↦→ (𝑓 ± 𝜏 𝑓 , . . . , 𝛼 ± 𝜏𝛼, 𝛽) .

are isomorphisms. It follows that

H±(𝑀,C) �H0(𝑀,C) ⊕ · · · ⊕H𝑛−1(𝑀,C) ⊕H𝑛
± (𝑀,C) .

Consequently,

index𝐷 = dimH𝑛
+ (𝑀,C) − dimH𝑛

− (𝑀,C).
If 𝑛 is odd and 𝑑 = 𝑛, then

∗𝜏 = 𝑖𝑛 (𝑛−1)+𝑛∗ = 𝑖𝑛2∗
and

𝜏𝛼 = 𝑖𝑛
2 ∗ 𝛼

= −𝑖𝑛2 ∗ 𝛼
= −𝜏𝛼.

Consequently, ·̄ : H𝑛
+ (𝑀,C) → H𝑛

− (𝑀,C) is an (anti-linear) isomorphism. Hence, dimH𝑛
+ (𝑀,C) =

dimH𝑛
− (𝑀,C).

If 𝑛 = 2𝑘 and 𝑑 = 𝑛, then

𝜏 = 𝑖2𝑘 (2𝑘−1)+2𝑘∗ = ∗.
Consequently,H𝑛

± (𝑀,C) consists of (anti-)self-dual harmonic forms. Thus, it follows from Hodge

theory that

index𝐷 = 𝜎 (𝑀) .
(4) Exercise. (Sadly, not fun.) �

Proposition 29.1 (4) allows us to compute 𝜎 (𝑀) using Theorem 25.1 if we can compute ch(𝑊 ).
Let me preempt the answer.

Denition 29.3. The L genus of a real vector bundle 𝑉 is the Pocntrjagin genus associated with

𝐿(𝑦) =
√
𝑦

tanh

√
𝑦

Exercise 29.4. We have

𝐿 =
1

3

𝑝1 +
1

45

(7𝑝2 − 𝑝21) + . . . .

Theorem 29.5 (Hirzebruch). If𝑀 is a compact oriented manifold of dimension 4𝑘 , then

𝜎 (𝑀) =
ˆ
𝑀

𝐿(𝑇𝑀) .
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Remark 29.6. Historically, the Hirzebruch Signature Theorem was discovered before the Atiyah–

Singer Index Theorem.

Sketch of proof of Theorem 29.5. We can assume that𝑀 is spin, because this is true locally and it

suces for the proof of Theorem 25.1.

Exercise 29.7. Prove that

ch(𝑊 ) = 𝑔(𝑇𝑀) with 𝑔(𝑦) = 2 coth(√𝑦/2)

Hint: The formula in Remark 8.10 asserts that if 𝑅ℓ
𝑖 𝑗𝑘

is the Riemann curvature tensor, then the

spin curvature of𝑊 is given by

𝐹𝑊 (𝑒𝑖 , 𝑒 𝑗 ) =
1

4

∑︁
𝑎,𝑏

𝑅𝑏𝑖 𝑗𝑎𝛾 (𝑒𝑎)𝛾 (𝑒𝑏).

In a suitable basis we can assume that for every 𝑖 and 𝑗

(𝑅ℓ
𝑖 𝑗𝑘

) =

©«

0 −𝑦1
𝑦1 0

. . .

0 −𝑦2𝑘
𝑦2𝑘 0

ª®®®®®®¬
.

The corresponding spin curvature is then

𝐹𝑊 (𝑒𝑖 , 𝑒 𝑗 ) =
1

2

𝑘∑︁
𝑎=1

𝑦𝑘 · 𝛾 (𝑒2𝑎−1)𝛾 (𝑒2𝑎) .

From the exercise it follows that

ˆ𝐴(𝑇𝑀)ch(𝑊 )

is equal to the Pontrjagin genus associated with

ˆ𝐴(𝑦)𝑔(𝑦) =
√
𝑦/2

sinh(√𝑦/2) 2 coth(
√
𝑦/2)

=

√
𝑦

tanh(√𝑦/2) .

While this is not exactly 𝐿, it turns out that if 𝑉 has rank 𝑟 , then

𝐿𝑟 (𝑉 ) = ( ˆ𝐴(𝑉 )𝑔(𝑉 ))𝑟 .
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In particular,

ˆ
𝑀

ˆ𝐴(𝑇𝑀)𝑔(𝑇𝑀) =
ˆ
𝑀

( ˆ𝐴(𝑇𝑀)𝑔(𝑇𝑀))4𝑘 =

ˆ
𝑀

𝐿(𝑇𝑀)4𝑘 =

ˆ
𝑀

𝐿(𝑇𝑀) .

�

Remark 29.8. Hirzebruch’s proof of Theorem 28.3 proceeded in a completely dierent way. One

rst proves that the signature is invariant under oriented cobordism. In fact, 𝜎 induces a ring

homomrphism from the oriented cobordism ring ΩSO
to Z. Thom proved that ΩSO ⊗Q is generated

by the complex projective spaces C𝑃𝑛 . Thus it suces to prove Theorem 28.3 for C𝑃𝑛 . Proceeding
in this way requires to gure out the formula for 𝐿 genus that one wants to verify. The original

proof of the Atiyah–Singer Index Theorem, in fact, followed as similar (although much more

involved) line of reasoning. While these approaches are very beautiful, they require a certain

ingenuity in “guessing” what the right index formula might be. One of the key advantages of the

of the heat kernel proof of the index theorem that we discussed in this class is that this approach

automatically reveals the index formula (and one does not have to predict the answer).

Suppose now that𝑀 is a 4–manifold. In this case we have

𝜎 (𝑀) = 1

3

𝑝1(𝑀) .

In particular, 𝑝1(𝑀) is divisible by 3. If𝑀 is spin, then we also have

index( /𝐷 : Γ(𝑊 +) → Γ(𝑊 −)) = − 1

24

𝑝1(𝑀) = −𝜎 (𝑀)
8

.

It follows that 𝜎 (𝑀) is divisible by 8.

Theorem 29.9 (Rokhlin). If𝑀 is a compact spin 4–manifold, then 𝜎 (𝑀) is divisible by 16.

Proof. The original proof of this result requires what I would consider heavy lifting in algebraic

topology.

Since we already have the Atiyah–Singer index theorem we can give the following simpler

proof (due to Atiyah and Singer). Recall that the real spinor representation of Spin(4) is H ⊕ H.
The complex spinor representation is obtained by forgetting the quaternionic structure on H and

identifying it with C2
. From this it follows that the complex spinor bundles𝑊 ±

are obtained from

the real spinor bundles by forgetting the quaternionic structure. That is, as complex vector bundles

/𝑆± =𝑊 ±.

Moreover, we have ( /𝐷 : Γ(/𝑆+) → Γ(/𝑆−)
)
=

( /𝐷 : Γ(𝑊 +) → Γ(𝑊 −)
)
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as complex linear operators. Consequently,

indexC
( /𝐷 : Γ(𝑊 +) → Γ(𝑊 −)

)
= indexC

( /𝐷 : Γ(/𝑆+) → Γ(/𝑆−)
)

=
1

2

indexR
( /𝐷 : Γ(/𝑆+) → Γ(/𝑆−)

)
.

Now, the bundles /𝑆± actually have quaternionic structures and /𝐷 is quaternionic linear. It follows

that indexR
( /𝐷 : Γ(/𝑆+) → Γ(/𝑆−)

)
is divisible by 4. Consequently, indexC

( /𝐷 : Γ(𝑊 +) → Γ(𝑊 −)
)

is divisible by 2. �

Remark 29.10. The same argument shows that if 𝑀 is a compact spin (8𝑘 + 4)–manifold, then

ˆ𝐴4𝑘 (𝑀) is even.

Theorem 29.11 (Freedman). There exists unique a compact simply connected topological 4–manifold
with𝑤2(𝑀) = 0 and intersection form

𝐸8 =

©«

2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1 −1
−1 2 −1

−1 2

−1 2

ª®®®®®®®®®®®®¬
.

Since 𝜎 (𝐸8) = 8, it follows that𝑀 cannot admit a smooth structure.

Rohklin’s theorem also leads to the following invariant of a spin 3–manifold.

Denition 29.12. Let (𝑁, 𝔰) be spin 3–manifold. The Rokhlin invariant of (𝑀, 𝔰) is dened as

𝜇 (𝑁, 𝔰) = 𝜎 (𝑀) mod 16 ∈ Z/16Z.

where𝑀 is any compact spin 4–manifold with 𝜕𝑀 = 𝑁 .

Invariants of this type still play an important role in geometry and topology. One of the recent

applications of this idea is the 𝜈–invariant of 𝐺2–manifold due to Crowley and Nordström [CN12].
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30 Example Index Computations

Example 30.1. Let𝑀 be a closed spin 4–manifold. Denote by /𝐷+
: Γ(𝑊 +) → Γ(𝑊 −) the positive

chirality complex Atiyah–Singer operator. By Theorem 25.1,

index /𝐷+
=

ˆ
𝑀

ˆ𝐴(𝑇𝑀) = − 1

24

ˆ
𝑀

𝑝1(𝑇𝑀) .

By the Theorem 29.5, we have

𝜎 (𝑀) = 1

3

ˆ
𝑀

𝑝1(𝑇𝑀) .

Consequently,

index /𝐷+
= −𝜎 (𝑀)

8

.

1. 𝐻 2(𝑆4,R) = 0. Consequently, 𝜎 (𝑆4) = 0. It follows that

index /𝐷+
= 0.

In fact, we can see this by other means. The standard round metric 𝑔0 on 𝑆
4
has positive

scalar curvature. Therefore, it follows from the Weitzenböck formula that

ker /𝐷𝑔0 = 0.

This means that

ker /𝐷+
𝑔0

= 0 and coker /𝐷+
𝑔0
� ker /𝐷−

𝑔0
= 0.

Since the index is homotopy invariant and the space of metrics is convex and, hence,

contractible, it follows that index /𝐷+
= 0 for every metric.

2. C𝑃2 is not spin. One way to see this is to note that 𝜎 (C𝑃2) = 1 and thus not divisible by 8.

3. Consider a smooth quartic 𝑄 in C𝑃3. That is 𝑄 is the zero locus of a generic section

𝑠 ∈ 𝐻 0(OC𝑃3 (4)). Along 𝑄 , we have

0 → T𝑄 → TC𝑃3 |𝑄 → OC𝑃3 (4) → 0

Consequently,

KC𝑃3 |𝑄 = Λ3T∗
C𝑃3 |𝑄 = Λ2T∗

𝑄 ⊗ OC𝑃3 (−4) |𝑄 = K𝑄 ⊗ OC𝑃3 (−4) |𝑄 .

From the Euler sequence

0 → OC𝑃3 → OC𝑃3 (1)⊕4 → TC𝑃3 → 0

it follows that

KC𝑃3 = OC𝑃3 (−4) .

Therefore,

K𝑄 = O𝑄 .

That isK𝑄 is holomorphically trivial. It follows that 𝑄 is spin.

In fact, choosing the spin structure corresponding to

√︁
K𝑄 = O𝑄 , we have

𝑊 + = O𝑄 ⊕ Λ2T∗
𝑄 and 𝑊 − = T∗

𝑄 .

and

index /𝐷+
= ℎ0(O𝑄 ) + ℎ0(K𝑄 ) − ℎ0(T∗

𝑄 ).

We have ℎ0(K𝑄 ) = ℎ0(O𝑄 ). It follows from the Lefschetz hyperplane theorem, that 𝑄 is

connected and that

𝜋1(𝑄) = 𝜋1(C𝑃3) = 0.

Therefore, ℎ0(K𝑄 ) = ℎ0(O𝑄 ) = 1 and ℎ0(T∗
𝑄
) = ℎ1,0(𝑄) = 𝑏1(𝑄) = 0. It follows that

index /𝐷+
= 2;

hence

𝜎 (𝑄) = −16.

One can also show that 𝜒 (𝑄) = 24; hence, 𝑏2(𝑄) = 22. In fact, one can prove (with a serious

amount of work) that

𝐻 2(𝑀,Z) = 𝑈 ⊕3 ⊕ (−𝐸8)⊕2.

Here𝑈 is the hyperbolic quadratic form

𝑈 =

(
0 1

1 0

)
which has signature 0.

It is consequence of a Yau’s solution of the Calabi conjecture that𝑄 caries a Ricci at metric.

It follows from the Weitzenböck formula that any harmonic spinor for such a metric must

be parallel. In this case we have dim ker /𝐷+
= 2 and dim ker /𝐷−

= 0.
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Example 30.2. Let 𝑀 be a closed spin 4–manifold. Let be 𝐸 a Hermitian vector bundle with

a unitary connectio. Denote by /𝐷+
𝐸 : Γ(𝑊 + ⊗ 𝐸) → Γ(𝑊 − ⊗ 𝐸) the positive chirality complex

Atiyah–Singer operator. By Theorem 25.1 and Theorem 29.5 we have

index /𝐷+
=

ˆ
𝑀

ˆ𝐴(𝑇𝑀)ch(𝐸)

= − 1

24

ˆ
𝑀

𝑝1(𝑇𝑀) +
ˆ
𝑀

ch2(𝐸)

= −1
8

𝜎 (𝑀) + 1

2

ˆ
𝑀

𝑐1(𝐸)2 − 2𝑐2(𝐸).

Sadly(?), not every 4–manifold is spin. However, every oriented 4–manifold spin
𝑐
. This

allows us to dene an Atiyah–Singer operator /𝐷+
. The operator now depends on the choice of a

connection on the characteristic line bundle 𝐿 of the chosen spin
𝑐
–structure 𝔴. In dimension 4

the characteristic line bundle is

𝐿 = Λ2𝑊 + = Λ2𝑊 −.

Any two choices of spin
𝑐
–structures and connections on 𝐿 are related by tensoring𝑊 with a

Hermitian line bundle ℓ with connection. This has the following eect on the characteristic line

bundles:

Λ2(𝑊 + ⊗ ℓ) = Λ2𝑊 + ⊗ ℓ2.

Suppose 𝑀 is actually spin. Fix a spin structure 𝔰0. This induces a spin
𝑐
structure 𝔴0 with

trivial characteristic line bundle 𝐿0 = Λ+𝑊 +
0
. Denote by /𝐷+

0
the positive chirality Atiyah–Singer

operator for 𝔰0 or, equivalently, 𝔴0. Let ℓ be a Hermitian line bundle with connection. Denote 𝔴ℓ

the spin
𝑐
structure obtained by twisting 𝔴0 by ℓ . Denote by𝑊ℓ the corresponding complex spinor

bundle and denote by /𝐷+
ℓ the corresponding positive chirality Atiyah–Singer operator. We have

𝑐1(Λ2𝑊 +
ℓ ) = 𝑐1(Λ2𝑊 +

0
⊗ ℓ) = 2𝑐1(ℓ).

From the above discussion it follows that

index /𝐷+
ℓ = −1

8

𝜎 (𝑀) + 1

2

ˆ
𝑀

𝑐1(ℓ)2

= −1
8

𝜎 (𝑀) + 1

8

ˆ
𝑀

𝑐1(Λ2𝑊 +
ℓ )2.

In fact, this index formula is valid even if 𝑀 is just spin
𝑐
. Our proof of the index formula is

easily adapted to establish this. The point is that in the Weitzenböck formula an additional term

arising from the curvature on 𝐿 appears and this yields correction term of ch(𝐿) = 𝑒𝑐1 (𝐿) . That is
the Atiyah–Singer Index Theorem for a spin

𝑐
–manifold is

index /𝐷+
=

ˆ
𝑀

ˆ𝐴(𝑇𝑀)ch(𝐿)

with 𝐿 denoting the characteristic line bundle.

The above index formula plays an important role in Seiberg–Witten theory. It determines the

(virtual) dimension of the moduli spaces in question.
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Example 30.3. Let 𝑀 be closed oriented 4–manifold. Let 𝐺 be semi-simple Lie group. (Take

𝐺 = SU(2) if you want.) Let 𝑃 be principal 𝐺–bundle over 𝑀 and denote by 𝔤𝑃 the associated

adjoint bundle. That is

𝔤𝑃 = 𝑃 ×𝐺 𝔤

with 𝐺 acting on 𝔤 through the adjoint representation. Since 𝐺 is semi-simple, the negative of the

Killing form is a 𝐺–invariant inner product on 𝔤. This makes 𝔤𝑃 into Euclidean vector bundle.

Suppose 𝐴 is a ASD instanton on 𝑃 ; that is: a connection on 𝑃 such that the self-dual part of its

curvature vanishes

𝐹+𝐴 = 0 or, equivalently, ∗ 𝐹𝐴 = −𝐹𝐴 .

The deformation theory of 𝐴 as an ASD instanton is controlled by the Atiyah–Hitchin–Singer
complex:

0 → Ω0(𝑀, 𝔤𝑃 )
d𝐴−−→ Ω1(𝑀, 𝔤𝑃 )

d
+
𝐴−−→ Ω2

+(𝑀, 𝔤𝑃 ) → 0.

The virtual dimension

𝑑 (𝔤𝑃 )

of the moduli space of ASD instantons is thus the Euler characteristic of the cohomology of this

complex. Equivalently it is minus the index of the operator

𝛿𝐴 =

(
d
+
𝐴

d
∗
𝐴

)
: Ω1(𝑀, 𝔤𝑃 ) → Ω0(𝑀, 𝔤𝑃 ) ⊕ Ω2

+(𝑀, 𝔤𝑃 ) .

This operator is the Dirac operator associated to the tensor product of 𝔤𝑃 with the Cliord

module

𝑆+ = 𝑇 ∗𝑀 and 𝑆− = R ⊕ Λ2

+𝑇
∗𝑀

with Cliord muliplication given by

𝛾 (𝑣)𝛼 = 𝛼 (𝑣) + (𝑣∗ ∧ 𝛼)+.

Exercise 30.4. Prove this!

A computation veries that if𝑊 ±
denote the positive and negative chirality complex spin

repesentations

𝑊 + ⊗𝑊 + ⊕𝑊 − ⊗𝑊 + =𝑊 ⊗𝑊 + � (R ⊕ Λ2

+R
4 ⊕ 𝑇𝑀) ⊗ C

= (R ⊕ Λ2

+R
4) ⊗ C ⊕ 𝑇𝑀 ⊗ C.

as graded Cliord modules. In particular, the complexication of 𝛿𝐴 agrees with the negative

chirality Atiyah–Singer operator twisted by𝑊 + ⊗ 𝔤C
𝑃
. By Theorem 25.1, we have

𝑑 (𝔤𝑃 ) = index𝛿𝐴

= index /𝐷−
𝑊 +⊗𝔤C

𝑃

= − index /𝐷+
𝑊 +⊗𝔤C

𝑃

= −
ˆ
𝑀

ˆ𝐴(𝑇𝑀)ch(𝑊 +)ch(𝔤C𝑃 ).

One can evaluate this by working out ch(𝑊 +), but we will proceed in this way. instead, we

observe that 𝑐1(𝔤C𝑃 ) = 0, ch0(𝔤C𝑃 ) = rk𝔤𝑃 = dim𝔤, ch0(𝑊 +) = 𝑟𝑘𝑊 + = 2, and 𝐴0(𝑇𝑀) = 1 imply

that

𝑑 (𝑃) = −
ˆ
𝑀

ˆ𝐴(𝑇𝑀)ch(𝑊 +)ch(𝔤C𝑃 )

= −(dim𝔤) ·
ˆ
𝑀

ˆ𝐴(𝑇𝑀)ch(𝑊 +) − 2

ˆ
𝑀

ch2(𝔤C𝑃 )

= (dim𝔤) · 𝑑 (R) − 2

ˆ
𝑀

𝑝1(𝔤𝑃 )

because 𝑝1(𝑉 ) = −𝑐2(𝑉 ⊗ C) = ch2(𝑉 ⊗ C). We can easily compute 𝑑 (R). It is

𝑑 (R) = 𝑏1 − 𝑏0 − 𝑏2+

=
1

2

(𝑏1 + 𝑏3 − 𝑏0 − 𝑏3 − 𝑏2 − (𝑏2+ − 𝑏2−))

= − 𝜒 (𝑀) + 𝜎 (𝑀)
2

.

Putting all of this together we obtain

𝑑 (𝑃) = −2
ˆ
𝑀

𝑝1(𝔤𝑃 ) − (dim𝔤) 𝜒 (𝑀) + 𝜎 (𝑀)
2

.

If 𝐸 is a Hermitian rank 2–bundle with 𝑐1(𝐸) = 0, then 𝑝1(𝔰𝔲(𝐸)) = −4𝑐2(𝐸). Consequently,

𝑑 (SU(𝐸)) = 8

ˆ
𝑀

𝑐2(𝐸) − 3

𝜒 (𝑀) + 𝜎 (𝑀)
2

.

Let us end this discussion with an important observation. If 𝐴 is an anti-self-dual connection,

then the same is true for the induced connection on 𝔤𝑃 . By Chern–Weil theory, we have

−
ˆ
𝑀

𝑝1(𝔤𝑃 ) = − 1

4𝜋2

ˆ
𝑀

〈𝐹𝐴 ∧ 𝐹𝐴〉

=
1

4𝜋2

ˆ
𝑀

〈𝐹𝐴 ∧ ∗𝐹𝐴〉 + − 1

4𝜋2

ˆ
𝑀

〈𝐹𝐴 ∧ (𝐹𝐴 + ∗𝐹𝐴)〉

=
1

4𝜋2

ˆ
𝑀

|𝐹𝐴 |2 −
1

2𝜋2

ˆ
𝑀

|𝐹+𝐴 |2.

Consequently,

1

4𝜋2

ˆ
𝑀

|𝐹𝐴 |2 = −
ˆ
𝑀

𝑝1(𝔤𝑃 ) +
1

2𝜋2

ˆ
𝑀

|𝐹+𝐴 |2.

This means that ASD instantons achieve a topological lower bound for the Yang–Mills energy

YM(𝐴) = 1

2

‖𝐹𝐴‖2𝐿2 .

Moreover, it means that the topological term in the dimension formula can be intepreted as an

energy. That is we have

𝑑 (𝑃) = 1

4𝜋2
YM(𝐴) − (dim𝔤) 𝜒 (𝑀) + 𝜎 (𝑀)

2

.
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31 The Atiyah–Patodi–Singer index theorem

Denition 31.1. Let (𝑀,𝑔) be a non-compact Riemannian manifold of dimension 𝑛. We say that

(𝑀,𝑔) is asymptotically cylindrical (ACyl) if there exists a compact subset 𝐾 , 𝛿 > 0, a closed

Riemannian manifold (𝑁,𝑔∞), and a dieomorphism 𝜙 : 𝑀\𝐾 → [1,∞) × 𝑁 such that

|∇𝑘 (𝜙∗𝑔 − 𝑔∞) | = 𝑂 (𝑒−𝛿ℓ ) for all 𝑘 ∈ N0

Here ℓ is the coordinate function on [1,∞).

The Atiyah–Singer Index Theorem does not apply to the Dirac operator on an ACyl Riemannian

manifold. The extension of index theorem to this setting is (a special case) of the Atiyah–Patodi–

Singer Index Theorem.

We shall rst address the question when a Atiyah–Singer operator on an ACyl manifold is

Fredholm.

Proposition 31.2. Let 𝑁 be a closed Riemannian manifold. Let 𝐼 ⊂ R be an interval.

1. The product 𝐼 × 𝑁 is spin if and only if 𝑁 is spin.

2. There is a canonical bijection between spin structure on 𝑁 and spin structures on 𝐼 × 𝑁 .

Suppose that 𝑁 is odd dimensional.

3. Fix a spin structure on 𝑁 and equip 𝐼 × 𝑁 with the corresponding spin structure. If𝑊𝑁 denotes
the complex spinor bundle of 𝑁 and𝑊 ±

𝑀
denotes the complex spinor bundles of𝑊 , then there

are isomorphisms
𝑊 ±
𝑀 � 𝜋

∗
𝑁𝑊𝑁 .

4. With respect to the above isomorphism, the complex Atiyah–Singer operator /𝐷+
: Γ(𝑊 +

𝑀
) →

Γ(𝑊 −
𝑀
) is identied with

/𝐷+
𝑊 = 𝜕ℓ + /𝐷𝑁 .

Proof. The proof is left as an exercise. �

The above shows that the Atiayh–Singer operator on a spin ACyl manifold (of even dimension)

is asymptotically translation-invariant. (I will spare you and not give a denition of what

precisely it means to be asymptotically translation-invariant. Surely, you can gure out the

denition yourself.)
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Proposition 31.3. Let𝑀 be an ACyl manifold with asymptotic cross-section 𝑁 . Let 𝐷 : Γ(𝐸) → Γ(𝐹 )
be a rst order elliptic dierential operator which is asymptotic to

𝜕ℓ +𝐴

with 𝐴 denoting a rst order self-adjoint elliptic dierential operator on 𝑁 . The operator
𝐷 : 𝑊 𝑘+1,2Γ(𝐸) →𝑊 𝑘,2Γ(𝐹 ) is Fredholm if and only if 𝐴 is invertible.

Sketch proof. The operator 𝐷 satises the estimate

‖𝑠 ‖𝑊 𝑘+1,2 (𝑀) . ‖𝐷𝑠‖𝑊 𝑘,2 (𝑀) + ‖𝑠 ‖𝐿2 (𝑀) .

This implies that dim ker𝐷 < ∞ and im𝐷 is closed if them embedding𝑊 𝑘+1,2(𝑀) → 𝐿2(𝑀) is
compact. For compact manifold the latter is true, but for non-compact manifolds it fails. If one can

show that, in fact,

‖𝑠 ‖𝑊 𝑘+1,2 (𝑀) . ‖𝐷𝑠 ‖𝑊 𝑘,2 (𝑀) + ‖𝑠 ‖𝐿2 (𝐾)
for 𝐾 some compact subset, then the same argument works again.

Such an estimate basically means that 𝐷 is invertible on the cylindrical end. Since 𝐷 is

asymptotic to 𝜕ℓ +𝐴, this is essentially equivalent to

𝜕ℓ +𝐴 : 𝑊 𝑘+1,2(R ×𝑀) →𝑊 𝑘,2(R ×𝑀)

being invertible.

If 𝐴 is not invertible, that is 𝐴 has a non-trivial kernel then for any 𝑥 ∈ ker𝐴 we can nd a

sequence of cut-o functions 𝜒𝑖 such that

‖(𝜕ℓ +𝐴)𝜒𝑖𝑠 ‖𝑊 𝑘,2 = 𝑂 (1) and ‖𝜒𝑖𝑠 ‖𝑊 𝑘+1,2 → ∞.

This is impossible if𝐴 is invertible. If𝐴 is invertible, however, one can relatively easily write down

a formula for the inverse of 𝜕ℓ +𝐴. We can write any compactly supported section 𝑠 as

𝑠 (ℓ, 𝑥) =
∑︁

𝜆∈spec𝐴
𝑓𝜆 (ℓ)𝑠𝜆 (𝑥)

with 𝑠𝜆 a 𝜆–eigensection for 𝐴. Dene[
(𝜕ℓ +𝐴)−1𝑠

]
(ℓ, 𝑥) =

∑︁
𝜆∈spec𝐴

𝑔𝜆 (ℓ)𝑠𝜆 (𝑥)

with

𝑔𝜆 (ℓ) =
{
𝑒−𝜆ℓ
´ ℓ
−∞ 𝑒

𝜆𝑡 𝑓𝜆 (𝑡)d𝑡 if 𝜆 > 0

−𝑒𝜆ℓ
´ ∞
ℓ
𝑒−𝜆𝑡 𝑓𝜆 (𝑡)d𝑡 if 𝜆 < 0.

This formula inverts 𝜕 + 𝐴. With some work one can show that it induces an inverse of

𝜕ℓ +𝐴 : 𝑊 𝑘+1,2(R ×𝑀) →𝑊 𝑘,2(R ×𝑀). �
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The upshot of the above discussion is that if𝑀 is an ACyl spin manifold, then /𝐷𝑀 is Fredholm

if and only if /𝐷𝑁 is invertible. Thinking about what was involved in the proof of the Atiyah–Singer

index theorem, we see that the formula

lim

𝑡→0

str𝑘𝑡 (𝑥, 𝑥)vol𝑀 = [𝐴(𝑇𝑀)ch(𝐸)]𝑛 (𝑥)

still holds—after all its proof was entirely local. What does not hold, however, is the McKean–Singer

formula Theorem 24.1:

index /𝐷+
≠ lim

𝑡→0

ˆ
𝑀

str𝑘𝑡 (𝑥, 𝑥)vol𝑀 !

Half of the dierence between these two terms is called the 𝜂–invariant. Here is a general
denition

Denition 31.4. Let 𝐴 be a self-adjoint operator The 𝜂–invariant of 𝐴 is the value of

𝜂𝐴 (0)

where 𝜂𝐴 is the analytic continuation of

𝑠 ↦→
∑︁
𝜆≠0

sign 𝜆

|𝜆 |𝑠

dened for Re 𝑠 � 1.

There is some work involved in showing that 𝜂𝐴 (0) is well-dened. Roughly speaking, 𝜂𝐴 (0)
is the dierence of the number of positive eigenvalues and the number of negative eigenvalues.

Of course, this is∞−∞. In any case, 𝜂𝐴 (0) is a regularization of this spectral asymmetry.

Theorem 31.5 (Atiyah–Patodi–Singer). If /𝐷𝑁,𝐸 is invertible, then

index /𝐷+
𝑀,𝐸 =

ˆ
𝑀

ˆ𝐴(𝑇𝑀)ch(𝐸) + 1

2

𝜂 /𝐷𝑁
(0) .

Index

Z2 grading, 25

accidental isomorphisms, 44

ACyl, 135

algebra, 8

Z2 graded, 25

graded, 8

unital, 8

anisotropic, 17

anti-canonical bundle, 65

approximate heat kernel, 98

ASD instanton, 134

associated graded algebra, 23

associated graded vector space, 23
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asymptotic expansion, 97

asymptotically cylindrical, 135

asymptotically translation-invariant, 135

Atiyah–Hitchin–Singer complex, 134

Atiyah–Singer operator, 55

canonical bundle, 65

canonical grading, 89

Casimir operator, 72

characteristic line bundle, 56

Chern 𝑓 –genus, 120

Chern character, 119

Chern classes, 119

Cliord algebra, 19

Cliord bundle

associated with a Riemannian manifold,

47

associated with an Euclidean vector

bundle, 46

Cliord group, 35

Cliord module bundle, 47

Cliord multiplication, 47

Cliord norm, 36

commuting algebra, 28

complex Cliord module bundle, 47

complex Dirac bundle, 49

complex spinor representation, 45

conjugation, 20

contraction, 15

degree, 8, 25

determinant, 107

determinant bundle, 58

Dirac bundle, 49

Dirac operator, 50

exterior algebra, 14

exterior tensor product, 11

eld

Euclidean, 18

ltration

on a vector space, 23

on an algebra, 23

Friedrich’s mollier, 88

genus, 120

graded Cliord module bundle, 48

grading, 8

harmonic, 55

heat kernel, 95

Hilbert–Schmidt norm, 102

Hilbert–Schmidt operator, 102

homogeneous spin structure, 71

ideal

homogeneous, 25

index, 89

isometry, 16

isotropic, 17

Jacobson radical, 27

Killing number, 73

Killing spinor, 73

L genus, 127

light-cone, 39

light-like, 39

Lorentz transformation, 39

Maurer–Cartan, 69

Mellin transform, 105, 107

multi-linear map, 5

alternating, 10

symmetric, 15

negative chirality, 34, 35

negative chirality spinor representation, 43

nullity, 18

orthochronous, 39

orthochronous Lorentz group, 39

orthogonal group, 17
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orthornormal frame bundle, 46

pin group, 37

pinor representation, 43

Pontrjagin 𝑔 genus, 120

Pontrjagin class, 120

positive, 39

positive chirality, 34, 35

positive chirality spinor representation, 43

proper, orthochronous Lorentz group, 39

quadratic form, 15

non-degenerate, 17

quadratic space, 15

quaternion algebra, 22

reection, 17

representation, 27

irreducible, 27

rescaled heat kernel, 112

restricted Lorentz group, 39

Ricci curvature, 60

Rokhlin invariant, 130

scalar curvature, 60

second Stiefel–Whitney class, 52

Seiberg–Witten theory, 133

semisimple, 28

signature, 18

signature operator, 125

smooth kernel, 94

space-like, 39

special Cliord group, 35

special orthogonal group, 17

spectrum, 91

spin group, 37

spin manifold, 52

spin structure

on a oriented Euclidean vector bundle,

52

on a Riemannian manifold, 52

spin
𝑐
manifold, 56

spin
𝑐
structure

on a oriented Euclidean vector bundle,

56

on a Riemannian manifold, 56

spinor, 52

spinor bundle, 52, 56

spinor eld, 52

spinor norm, 36

spinor representation, 43

stress-energy tensor, 82

super algebra, 25

super trace, 90

super vector space, 25

symmetric algebra, 15

symmetric space, 69

symmetric tensor product, 15

tensor algebra, 10

tensor product, 6

Z2 graded, 25

time-like, 39

Todd class, 122

trace, 102

trace-class, 102

transposition, 20

twisted adjoint representation, 35

unit, 20

vector space

Z2 graded, 25

ltered, 23

graded, 8

volume element, 33

complex, 35

zeta function, 105
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