Differential Geometry 1 (M13) Exercise Sheet 10

Prof. Thomas Walpuski

Try to solve the following problems by yourself before the tutorial on 2021-02-03.

Problem 1. Let *G* be a Lie group. Set $\mathfrak{g} := \text{Lie}(G)$

1. Let $\xi \in \mathfrak{g}$. Prove that ξ is complete.

The **exponential map** exp: $\mathfrak{g} \to G$ is defined by

$$\exp(\xi) \coloneqq \mathrm{flow}_{\xi}^{1}(\mathbf{1}).$$

- 2. Prove that there are open neighborhoods U of $0 \in \mathfrak{g}$ and V of $1 \in G$ such that $\exp |_U : U \to V$ is a diffeomorphism.
- 3. Prove that $\exp(k\xi) = \exp(\xi)^k$.
- 4. Prove that if $[\xi, \eta] = 0$, then $\exp(\xi + \eta) = \exp(\xi) \exp(\eta)$.

Problem 2. The matrix exponential EXP: $\mathbf{R}^{n \times n} \to \mathbf{R}^{n \times n}$ is defined by

$$\mathrm{EXP}(A) \coloneqq \sum_{k=0}^{\infty} \frac{1}{k!} A^k.$$

For the Lie group G = SO(n) prove that the exponential map agrees with the matrix exponential.

Problem 3. Let *X* be a smooth manifold. Let $f \in C^{\infty}(X)$. Prove *in detail* that d*f* defines a section of the cotangent bundle T^*X .

Problem 4. Let *X* be a smooth manifold. Let *A*: Vect(*X*) $\rightarrow C^{\infty}(X)$ be a linear map. Suppose that for every $f \in C^{\infty}(X)$, $v \in$ Vect(*X*), and $x \in X$

$$A(fv)_x = f(x) \cdot A(v)_x.$$

Prove that there is an $\alpha \in \Gamma(T^*X)$ such that

$$A(v)_x = \alpha_x(v_x).$$

 \diamond