Differential Geometry 1 (M13) Exercise Sheet 11

Prof. Thomas Walpuski

Try to solve the following problems by yourself before the tutorial on 2021-02-10.

Problem 1. Using Cartan's magic formula compute $\mathscr{L}_v \alpha$ for the following v and α :

1.
$$v = x\partial_x + y\partial_y$$
 and $\alpha = xdx + ydy$;

2.
$$v = y\partial_x - x\partial_y$$
 and $\alpha = x^2 dx$;

3.
$$v = \partial_x$$
 and $\alpha = x dy$;

4. $v = \partial_x$ and $\alpha = y dx$.

Problem 2. Let *X* be a smooth manifold. Prove that for $\alpha \in \Omega^k(X)$ and $v_1, \ldots, v_{k+1} \in Vect(X)$

$$(d\alpha)(v_1, \dots, v_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i+1} \mathscr{L}_{v_i} [\alpha(v_1, \dots, \widehat{v_i}, \dots, v_{k+1})] + \sum_{i < j=1}^{k+1} (-1)^{i+j} \alpha([v_i, v_j], v_1, \dots, \widehat{v_i}, \dots, \widehat{v_j}, \dots, v_{k+1}).$$

 \diamond

Problem 3. 1. Let (X, g) be a oriented Riemannian manifold with boundary. For $h, k \in C_c^{\infty}(X)$ and $v \in \text{Vect}(X)$ prove the integration by parts formula

$$\int_{M} \left((\mathscr{L}_{v}k) \cdot h + k \cdot (\mathscr{L}_{v}h) + k \cdot h \cdot \operatorname{div}(v) \right) \operatorname{vol}_{g} = \int_{\partial M} k \cdot h \ i(v) \operatorname{vol}_{g}.$$

Consider \mathbf{R}^m with a Riemannian metric g.

2. Define the functions g_{ij} by $g_{ij} \coloneqq g(\partial_{x_i}, \partial_{x_j})$. Show that the volume form is given by

$$\operatorname{vol}_g \coloneqq \sqrt{\operatorname{det}(g_{ij})} \cdot \operatorname{d} x_1 \wedge \ldots \wedge \operatorname{d} x_n$$

3. Show that if

$$v = \sum_{i=1}^m v^i \partial_{x_i},$$

then

$$\operatorname{div}(v) = \frac{1}{\sqrt{\operatorname{det}(g_{ij})}} \sum_{k=1}^{m} \partial_{x_k} \left(\sqrt{\operatorname{det}(g_{ij})} \cdot v^k \right).$$

Problem 4. Let (X, g) be an compact, connected, oriented Riemannian manifold with boundary. Given $f \in C^{\infty}(X)$, the **gradient** of f is the vector field $\nabla f = \nabla_g f \in \text{Vect}(X)$ defined by

$$\mathrm{d}f(v) = g(\nabla f, v)$$

and the **Laplacian** of *f* is the function $\Delta f \in C^{\infty}(X)$ defined by

$$\Delta f \coloneqq -\operatorname{div}(\nabla f).$$

The **outward pointing unit normal** is the vector field $n \in \Gamma(TX|_{\partial X})$ characterised by the following conditions: (a) $|n|_g = 1$, (b) $n(x) \perp T_x \partial X$, (c) if (e_2, \ldots, e_m) is a positive basis of $T_x \partial X$, then $(-n, e_2, \ldots, e_m)$ is a positive basis of $T_x X$.

1. Prove Green's identities

$$\int_{X} h\Delta k \operatorname{vol}_{X,g} = \int_{X} \langle \nabla h, \nabla k \rangle \operatorname{vol}_{X,g} - \int_{\partial X} h\mathcal{L}_{n}k \operatorname{vol}_{\partial X,g}$$

and

$$\int_{X} (h\Delta k - k\Delta h) \operatorname{vol}_{X,g} = \int_{\partial X} (k\mathscr{L}_n h - h\mathscr{L}_n k) \operatorname{vol}_{\partial X,g}$$

with *n* denoting the outward-pointing unit normal.

- 2. Show that if $\partial X = \emptyset$, then $\Delta h = 0$ implies that *h* is constant.
- 3. Show that if $\partial X \neq \emptyset$, then $\Delta h = \Delta k = 0$ and $h|_{\partial X} = k|_{\partial X}$ implies that h = k.