Differential Geometry 1 (M13) Exercise Sheet 11

Prof. Thomas Walpuski

Try to solve the following problems by yourself before the tutorial on 2021-02-10.

Problem 1. Using Cartan's magic formula compute $\mathscr{L}_v \alpha$ for the following v and α :

1.
$$
v = x\partial_x + y\partial_y
$$
 and $\alpha = xdx + ydy$;

2.
$$
v = y\partial_x - x\partial_y
$$
 and $\alpha = x^2 dx$;

3.
$$
v = \partial_x
$$
 and $\alpha = x dy$;

4. $v = \partial_x$ and $\alpha = ydx$.

Problem 2. Let X be a smooth manifold. Prove that for $\alpha \in \Omega^k(X)$ and $v_1, \ldots, v_{k+1} \in$ $Vect(X)$

$$
(d\alpha)(v_1, ..., v_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i+1} \mathcal{L}_{v_i} [\alpha(v_1, ..., \widehat{v_i}, ..., v_{k+1})]
$$

+
$$
\sum_{i < j=1}^{k+1} (-1)^{i+j} \alpha([v_i, v_j], v_1, ..., \widehat{v_i}, ..., \widehat{v_j}, ..., v_{k+1}).
$$

Problem 3. 1. Let (X, g) be a oriented Riemannian manifold with boundary. For $h, k \in C_c^{\infty}(X)$ and $v \in \text{Vect}(X)$ prove the integration by parts formula

$$
\int_M \left((\mathcal{L}_v k) \cdot h + k \cdot (\mathcal{L}_v h) + k \cdot h \cdot \text{div}(v) \right) \text{vol}_g = \int_{\partial M} k \cdot h \ i(v) \text{vol}_g.
$$

Consider \mathbb{R}^m with a Riemannian metric g.

2. Define the functions g_{ij} by $g_{ij} := g(\partial_{x_i}, \partial_{x_j})$. Show that the volume form is given by

$$
\mathrm{vol}_g \coloneqq \sqrt{\det(g_{ij})} \cdot \mathrm{d} x_1 \wedge \ldots \wedge \mathrm{d} x_n
$$

3. Show that if

$$
v=\sum_{i=1}^m v^i\partial_{x_i},
$$

then

$$
\operatorname{div}(v) = \frac{1}{\sqrt{\det(g_{ij})}} \sum_{k=1}^m \partial_{x_k} \left(\sqrt{\det(g_{ij})} \cdot v^k \right).
$$

Problem 4. Let (X, g) be an compact, connected, oriented Riemannian manifold with boundary. Given $f \in C^{\infty}(X)$, the gradient of f is the vector field $\nabla f = \nabla_q f \in \text{Vect}(X)$ defined by

$$
df(v) = g(\nabla f, v)
$$

and the Laplacian of f is the function $\Delta f \in C^{\infty}(X)$ defined by

$$
\Delta f \coloneqq -\operatorname{div}(\nabla f).
$$

The outward pointing unit normal is the vector field $n \in \Gamma(TX|_{\partial X})$ characterised by the following conditions: (a) $|n|_q = 1$, (b) $n(x) \perp T_x \partial X$, (c) if (e_2, \ldots, e_m) is a positive basis of $T_x \partial X$, then $(-n, e_2, \ldots, e_m)$ is a positive basis of $T_x X$.

1. Prove Green's identities

$$
\int_X h \Delta k \operatorname{vol}_{X,g} = \int_X \langle \nabla h, \nabla k \rangle \operatorname{vol}_{X,g} - \int_{\partial X} h \mathcal{L}_n k \operatorname{vol}_{\partial X,g}
$$

and

$$
\int_X (h\Delta k - k\Delta h) \operatorname{vol}_{X,g} = \int_{\partial X} (k\mathcal{L}_n h - h\mathcal{L}_n k) \operatorname{vol}_{\partial X,g}
$$

with n denoting the outward-pointing unit normal.

- 2. Show that if $\partial X = \emptyset$, then $\Delta h = 0$ implies that h is constant.
- 3. Show that if $\partial X \neq \emptyset$, then $\Delta h = \Delta k = 0$ and $h|_{\partial X} = k|_{\partial X}$ implies that $h = k$.