Differential Geometry 1 (M13) Exercise Sheet 13

Prof. Thomas Walpuski

Try to solve the following problems by yourself before the tutorial on 2021-02-24.

Problem 1. Let *X* and *Y* be closed, oriented, smooth manifolds of dimension *M*. Suppose that *Y* is connected. Let $f: X \to Y$ be a smooth map. For $\mu \in \Omega^m(Y)$ with $\int_Y \mu \neq 0$ define

$$\deg_{\mu} f \coloneqq \frac{\int_{X} f^* \mu}{\int_{Y} \mu}.$$

- 1. Prove that \deg_{μ} does not depend on the choice of μ .
- 2. Prove that $\deg_\mu f$ agrees with the degree as defined in the lecture.
- 3. Let *Z* be a further closed, connected, smooth manifold of dimension *m*. Let $g: Y \rightarrow Z$ be a smooth map. Prove that

$$\deg(g \circ f) = \deg g \cdot \deg f. \qquad \diamond$$

 \diamond

Problem 2. Let $p(z) = \sum_{k=0}^{d} a_k z^k$ be a complex polynomial of degree *d*. Define $f: \mathbb{C}P^1 \to \mathbb{C}P^1$ by

$$f([z:w]) \coloneqq \left[\sum_{k=0}^d a_k z^k w^{d-k} : w^d\right].$$

Prove that deg(f) = d and derive the fundamental theorem of algebra.

Problem 3. Denote by D^m the closed unit-ball in \mathbb{R}^m . Use the degree to prove that there is no smooth map $f: D^m \to S^{m-1}$ with f(x) = x for every $x \in \partial D^m$.