Differential Geometry 1 (M13) Exercise Sheet 2

Prof. Thomas Walpuski

Try to solve the following seven problems by yourself before the tutorial on **2020-11-18**.

Problem 1. Show that the closed disk

$$D \coloneqq \left\{ (x, y) \in \mathbf{R}^2 : x^2 + y^2 \le 1 \right\}$$

 \diamond

 \diamond

 \diamond

can be equipped with a smooth structure.

Problem 2. Let *X* be a smooth manifold. Let $f, g \in C^{\infty}(X)$ and $\lambda \in \mathbb{R}$. Prove that

$$f \cdot g$$
 and $f + \lambda g$

are smooth.

Problem 3. Prove that the Segre embedding $\sigma \colon \mathbb{R}P^2 \to \mathbb{R}P^5$ defined by

(1.1)
$$\sigma([x_0:x_1:x_2]) \coloneqq [x_0^2:x_1^2:x_2^2:x_0x_1:x_0x_2:x_1x_2]$$

is smooth.

Problem 4. Let $m, n \in \mathbb{N}_0$. Let $U \subset \mathbb{R}^m$ and $V \subset \mathbb{R}^n$ non-empty open subsets. Prove that if $f: U \to V$ is bijective, f, and f^{-1} are smooth, then n = m. (Prove this directly: do not use Brouwer's theorem.) \diamond

Problem 5.

- 1. Prove that there is a homeomorphism $f: [0, \infty) \times [0, \infty) \rightarrow [0, \infty) \times \mathbb{R}$.
- 2. Prove that there is no bijection $f: [0, \infty) \times [0, \infty) \to [0, \infty) \times \mathbb{R}$ such that f and f^{-1} are both smooth. \diamond

Problem 6. Define $h: S^2 \to \mathbf{R}$ by

$$h(x_1, x_2, x_3) \coloneqq x_1.$$

This map is smooth. Determine the **critical points** of *h*; that is, those $x \in S^2$ such that the derivative $T_x h$ vanishes.

Problem 7. Let $A \in \text{Sym}(\mathbb{R}^3)$ be a symmetric 3×3 matrix. Define $q: \mathbb{R}P^2 \to \mathbb{R}$ by

$$q([x]) \coloneqq \frac{\langle Ax, x \rangle}{|x|^2}.$$

This map is smooth. Determine its critical points.

 \diamond