Differential Geometry 1 (M13) Exercise Sheet 3

Prof. Thomas Walpuski

Try to solve the following five problems by yourself before the tutorial on **2020-11-25**.

Problem 1. In the lecture, we defined two smooth atlases \mathscr{A} and \mathscr{B} on S^n :

1. The charts of \mathscr{A} are the homeomorphisms $\phi_{i,\pm} \colon H_{i,\pm} \to B_1(0) \subset \mathbf{R}^n$ defined by

$$\phi_{i,\pm}(x_1,\ldots,x_{n+1}) \coloneqq (x_1,\ldots,\widehat{x}_i,\ldots,x_{n+1})$$

with

$$H_{i,\pm} := \{ (x_1, \dots, x_{n+1}) \in S^n : \pm x_i > 0 \}.$$

2. The charts of ${\mathcal B}$ are the homeomorphisms

$$\sigma_{\pm}(x) \coloneqq \frac{(x_1,\ldots,x_n)}{1 \mp x_{n+1}}.$$

with

$$U_{\pm} \coloneqq S^n \setminus (0, \ldots, 0, \pm 1).$$

Prove that \mathcal{A} and \mathcal{B} induce the same smooth structure on S^n .

Problem 2. Denote by $\iota: S^n \to \mathbb{R}^{n+1}$ the inclusion. Prove that with respect to the identification $T_x \mathbb{R}^{n+1} = \mathbb{R}^{n+1}$ for every $x \in S^n$

$$\operatorname{im} T_{x}\iota = \left\{ v \in \mathbf{R}^{n+1} : \langle x, v \rangle = 0 \right\}.$$

 \diamond

Problem 3. Let $k \in \mathbb{N}$. Let X be a smooth manifold without boundary of dimension two. Let $f \in \text{Diff}(X)$ be a diffeomorphism of X such that

$$f^k = \underbrace{f \circ \cdots \circ f}_{k \text{ times}} = \mathrm{id}_X$$

Suppose that $x \in X$ is a fixed-point of f; that is: f(x) = x. Prove that there are a $\mu \in \mathbb{C}$ with $\mu^k = 1$ and a chart $\phi: U \to B_1(0) \subset \mathbb{R}^2 = \mathbb{C}$ with $\phi(x) = 0$ such that $\phi(U) = U$

$$\phi \circ f \circ \phi^{-1}(z) = \mu \cdot z. \qquad \diamond$$

Definition. Let *X* and *Y* be smooth manifolds and let $f: X \to Y$ be a smooth math. A point $x \in X$ is said to be a **critical point of** f if $T_x f$ is surjective, otherwise it is said to be **regular**. A point $y \in X$ is said to be a **critical value of** f if it is the image of a critical point. It is a **regular value of** f if it is not a critical value.

Problem 4. Define $f: \mathbb{R}^{n+1} \to \mathbb{R}$ by

$$f(x_1,...,x_{n+1}) \coloneqq |x|^2 = \sum_{i=1}^{n+1} x_i^2$$

Prove that 1 is a regular value of f.

Problem 5. Define $f: \operatorname{End}(\mathbb{R}^n) \to \operatorname{Sym}(\mathbb{R}^n)$ by

$$f(A) \coloneqq AA^t$$

Prove that 1 is a regular value of f.

 \diamond

 \diamond