Differential Geometry 1 (M13) Exercise Sheet 4

Prof. Thomas Walpuski

Try to solve the following six problems by yourself before the tutorial on 2020-12-02.

Problem 1. Let *X* and *Y* be smooth manifolds. Let $p: X \to Y$ be a local diffeomorphism. Suppose that *X* and *Y* are compact and connected. Prove that *p* is a covering map. \diamond

Problem 2. Let *X* be a smooth manifold. Let *Y* be a submanifold. Prove that there is a unique smooth structure \mathscr{A}_{\subset} on *Y* satisfying the following universal property:

- 1. The inclusion map $\iota: Y \hookrightarrow X$ is smooth.
- 2. If Z is a smooth manifold and $f: Z \to Y$ is a continuous map, then f is smooth with respect to \mathscr{A}_{\subset} if and only $\iota \circ f: Z \to X$ is smooth.

Problem 3 (Constant rank theorem). Let *X* and *Y* be smooth manifolds without boundary. Let $f: X \to Y$ be a smooth map such that the map $X \to N_0$, $x \mapsto \operatorname{rk} T_x f$ is locally constant. Prove that for every $y \in Y$ the level set $f^{-1}(y)$ is a submanifold.

Problem 4. 1. Prove that the special orthogonal group

(1.1)
$$SO(n) := \{A \in GL(\mathbb{R}^n) : A^t A = 1, \det A = 1\}$$

is a submanifold of $\mathbf{R}^{n \times n}$.

2. Prove that the special unitary group

(1.2)
$$SU(n) := \{A \in GL(\mathbb{C}^n) : A^*A = 1, \det A = 1\}$$

is a submanifold of $C^{n \times n}$.

- 3. Prove that SU(2) is diffeomorphic to S^3 .
- 4. Construct a local diffeomorphism $f: SU(2) \rightarrow SO(3)$.

 \diamond

Problem 5. Find an embedding of $\iota: \mathbb{R}P^2 \to \mathbb{R}^4$ and prove that it is an embedding. \diamond

Problem 6. Let *X* be a smooth manifold without boundary. Let $f \in C^{\infty}(X)$. Prove that if $a \in \mathbf{R}$ is a regular value of *f*, then $f^{-1}([a, \infty))$ is a submanifold (of codimension zero).