Differential Geometry 1 (M13) Exercise Sheet 5

Prof. Thomas Walpuski

Try to solve the following problems by yourself before the tutorial on **2020-12-09**.

Problem 1. 1. Prove that

$$\operatorname{St}_{k}^{*}(\mathbf{R}^{n}) \coloneqq \{(v_{1}, \ldots, v_{k}) \in (\mathbf{R}^{n})^{k} : v_{1}, \ldots, v_{k} \text{ are linearly independent}\}$$

is a submanifold of $(\mathbf{R}^n)^k$.

2. Prove that

$$\operatorname{St}_k(\mathbf{R}^n) \coloneqq \{(v_1,\ldots,v_k) \in (\mathbf{R}^n)^k : \langle v_i,v_j \rangle = \delta_{ij}\}.$$

is a submanifold of $(\mathbf{R}^n)^k$.

Hint: Use the regular value theorem.

3. Construct a surjective smooth map $r: \operatorname{St}_k^*(\mathbb{R}^n) \to \operatorname{St}_k(\mathbb{R}^n)$ satisfying $r \circ r = r$. Hint: https://en.wikipedia.org/wiki/Gram-Schmidt_process.

Remark. Observe that $St_n^*(n)$ is $GL(\mathbb{R}^n)$ and $St_n(n)$ is O(n).

*

 \diamond

Problem 2. Denote by $\Delta \subset \mathbb{R}^{n \times n}$ the subspace of diagonal matrices. Define $f : O(n) \times \Delta \rightarrow Sym(\mathbb{R}^n)$ by

(1.1)
$$f(\Phi, \Lambda) \coloneqq \Phi \Lambda \Phi^t.$$

- 1. Determine the set of regular values of f.
- 2. For every $A \in \text{Sym}(\mathbb{R}^n)$ determine $f^{-1}(A)$. For which A is $f^{-1}(A)$ is submanifold.

 \diamond

Problem 3. Let *X* be a manifold without boundary and let $r: X \to X$ be a smooth map satisfying

$$(1.2) r \circ r = r$$

Prove that im $r \subset X$ is a submanifold.

Hint: Find an open neighborhood of r(X) such that $T_x r$ has constant rank for $x \in U$.

 \diamond

Problem 4. Let *X*, *Y* be finite-dimensional real vector spaces. For $r \in \mathbf{N}_0$ set

 $\mathscr{H}_r \coloneqq \{L \in \operatorname{Hom}(X, Y) : \operatorname{rk} L = r\}.$

Prove that \mathcal{H}_r is a submanifold of codimension

$$\operatorname{codim} \mathscr{H}_r = (\dim X - r)(\dim Y - r).$$

Hint: Consider $L \in \mathcal{H}_r$. Decompose $X = X_1 \oplus X_2$ with $X_2 = \ker L$ and $Y = Y_1 \oplus Y_2$ with $Y_1 = \operatorname{im} L$. Decompose $\tilde{L} \in \mathcal{H}_r$ into blocks accordingly. For \tilde{L} close to L, apply row and column operations to simplify \tilde{L} . Use the regular value theorem.

Problem 5. Let $f: X \to Y$ be smooth. The graph of f is the subset

$$f \coloneqq \{(x, f(x) : x \in X\}.$$

Let $Z \subset Y$ be a submanifold. Prove that f is transverse to Z if and only if f is transverse to $X \times Z$.