Differential Geometry 1 (M13) Exercise Sheet 6

Prof. Thomas Walpuski

Try to solve the following problems by yourself before the tutorial on 2020-12-09.

Throughout this exercise sheet, let $N \in \mathbb{N}_0$ and let $X \subset \mathbb{R}^N$ be a smooth submanifold without boundary.

Problem 1. The **normal bundle** of X in \mathbf{R}^N is the subset

$$NX \coloneqq \{(x, v) \in X \times \mathbf{R}^N : v \perp T_x X\}.$$

Prove that NX is a smooth submanifold of $\mathbf{R}^N \times \mathbf{R}^N$.

Problem 2. Define $\Phi \colon NX \to \mathbb{R}^N$ by

 $\Phi(x,v) \coloneqq x + v.$

An open subset $U \subset \mathbf{R}^N$ is a **tubular neighborhood of** *X* if there is a continuous function $\varepsilon \colon X \to (0, \infty)$ such that the restriction of Φ to

$$V \coloneqq \{(x, v) \in NX : |v| < \varepsilon(x)\}.$$

is a diffeomorphism onto U.

Prove that *X* admits a tubular neighborhood.

Problem 3. Prove that there is an open subset $U \subset \mathbf{R}^N$ with $X \subset U$ and a smooth submersion $r: U \to X$ with $r|_X = id_X$.

Problem 4. Let *Y* be a compact smooth manifold and let $f: Y \to X$ be smooth. Prove that there is an $M \in \mathbb{N}$ and a smooth submersion $F: B_1^M(0) \times Y \to X$ with $F(0, \cdot) = f$.

\$

 \diamond