Differential Geometry 1 (M13) Exercise Sheet 7

Prof. Thomas Walpuski

Try to solve the following problems by yourself before the tutorial on 2020-01-06.

Problem 1. $GL(\mathbf{R}^k)$ acts on

$$\operatorname{Hom}_{\hookrightarrow}(\mathbf{R}^k, \mathbf{R}^n) \coloneqq \{T \in \operatorname{Hom}(\mathbf{R}^k, \mathbf{R}^n) : T \text{ is injective}\}.$$

by right-multiplication. The Grassmannian of k-planes in \mathbb{R}^n is

$$\operatorname{Gr}_k(\mathbf{R}^n) \coloneqq \operatorname{Hom}_{\hookrightarrow}(\mathbf{R}^k, \mathbf{R}^n)/\operatorname{GL}(\mathbf{R}^k).$$

(Since im *T* depends only on $[T] \in Gr_k(\mathbb{R}^n)$ and every *k*-dimensional subspace is of this form, $Gr_k(\mathbb{R}^n)$ parametrizes *k*-dimensional subspaces of \mathbb{R}^n .)

- **1.** Construct a smooth structure \mathscr{A} of $\operatorname{Gr}_k(\mathbb{R}^n)$. *Hint:* Every injective $T \in \operatorname{Hom}(\mathbb{R}^k, \mathbb{R}^n)$ has an invertible $k \times k$ -matrix. The action of $\operatorname{GL}(\mathbb{R}^k)$ can be used to transform this matrix to 1 (in a unique way). The remaining data of T is a $k \times (n k)$ -matrix. Use this to construct the chart.
- 2. Prove that \mathscr{A} has the following universal property:
 - (a) The map

$$\pi \colon \operatorname{Hom}_{\hookrightarrow}(\mathbf{R}^k, \mathbf{R}^n) \to \operatorname{Gr}_k(\mathbf{R}^n)$$

is smooth.

(b) Let X be a smooth manifold. A $f: \operatorname{Gr}_k(\mathbb{R}^n) \to X$ a map is smooth if and only if the composition $f \circ \pi: \operatorname{Hom}_{\hookrightarrow}(\mathbb{R}^k, \mathbb{R}^n) \to X$ is smooth. \diamond

Problem 2. For every $[T] \in Gr_k(\mathbb{R}^n)$ construct an isomorphism

$$T_{[T]}\operatorname{Gr}_k(\mathbf{R}^n) \cong \operatorname{Hom}(\operatorname{im} T, \mathbf{R}^n/\operatorname{im} T).$$

Problem 3. Construct a diffeomorphism

$$\phi: \operatorname{Gr}_k(\mathbf{R}^n) \to \operatorname{Gr}_{n-k}(\mathbf{R}^n)$$

Hint: Construct ϕ so that if $[S] = \phi[T]$, then im $S = (\operatorname{im} T)^{\perp}$.

 \diamond

Problem 4. Identify $\Lambda^k \mathbf{R}^n = \mathbf{R}^{\binom{n}{k}}$ and set $\mathbf{P}(\Lambda^k \mathbf{R}^n) \coloneqq \mathbf{P}(\mathbf{R}^{\binom{n}{k}-1})$. The Plücker embedding ι : $\operatorname{Gr}_k(\mathbf{R}^n) \to \mathbf{P}(\Lambda^k \mathbf{R}^n)$ is defined by

(1.1)
$$\iota([T]) \coloneqq \mathbf{R}^{\times} \cdot (v_1 \wedge \ldots \wedge v_k).$$

Here v_1, \ldots, v_k are the columns of *T*.

- 1. Convince yourself that *i* is well-defined.
- 2. Prove that *ι* is smooth. *Hint:* Use the universal property.
- 3. Prove that *i* is an embedding.

Problem 5. Prove that the subset

$$\gamma_k \coloneqq \{([T], v) \in \operatorname{Gr}_k(\mathbf{R}^n) \times \mathbf{R}^n : v \in \operatorname{im} T\}$$

is a submanifold.

Problem 6. Prove that

$$X := \{ [z_1 : z_2 : z_3 : z_4] \in \mathbb{C}P^3 : z_1^4 + z_2^4 + z_3^4 + z_4^4 = 0 \}$$

is a submanifold of $\mathbb{C}P^3$.

Problem 7. Let *X* be a smooth manifolds without boundary. Let $\phi \in \text{Diff}(X)$ be an involution; that is: $\phi \circ \phi = \text{id}_X$. Prove that the fixed-point set

$$X^{\phi} \coloneqq \{x \in X : \phi(x) = x\}$$

is a submanifold of *X*.

Problem 8. Let *X*, *Y* be compact smooth manifolds with dim X = m and dim $Y \ge 2m + 1$. Let $f: X \to Y$ be a smooth map. Prove that are $n \in \mathbb{N}_0$ and a smooth map $F: B_1^n(0) \times X \to Y$ such that for almost every every $t \in B_1^n(0)$ the map $f_t := F(t, \cdot): X \to Y$ is an injective immersion. \diamond

Problem 9. Let *X* be a smooth manifold. Let $C \subset X \times \mathbb{R}^n$ be an open subset such that for every $x \in X$ the slice $C_x := \{v \in \mathbb{R}^n : (x, v) \in C\}$ is non-empty and convex (that is: $tv + (1 - t)w \in C_x$ for every $v, w \in C_x$ and $t \in [0, 1]$). Prove that there is a smooth map $f: X \to \mathbb{R}^n$ such that

$$graph(f) = \{(x, f(x)) : x \in X\} \subset C.$$

Hint: Use a partition of unity.

 \diamond

 \diamond

 \diamond

 \diamond

 \diamond