Differential Geometry 1 (M13) Exercise Sheet 8

Prof. Thomas Walpuski

Try to solve the following problems by yourself before the tutorial on 2021-01-13.

Definition. Let $n \in \mathbb{N}$ and $k \in \mathbb{Z}$.

1. Define the equivalence relation ~ on $(C^{n+1} \setminus \{0\}) \times C$ by

$$(x, z) \sim (y, w)$$
 if and only if $x = \lambda y$ and $z = \lambda^k w$ for some $\lambda \in \mathbb{C}^{\times}$.

Set

$$\mathcal{O}_{\mathbf{C}P^n}(k) \coloneqq ((\mathbf{C}^{n+1} \setminus \{0\}) \times \mathbf{C})/\sim .$$

2. Denote by

$$\pi\colon \mathscr{O}_{\mathbf{C}P^n}(k)\to \mathbf{C}P^n$$

the map induced by pr_1 : $(C^{n+1} \setminus \{0\}) \times C \to C^{n+1} \setminus \{0\}$.

3. For every $x \in \mathbb{C}^{n+1} \setminus \{0\}$ the map $\phi_x \colon \mathbb{C} \to \pi^{-1}[x]$ defined

$$\phi_x(z) \coloneqq [x;z]$$

is bijective. Since $\phi_{\lambda x}^{-1} \circ \phi_x(z) = \lambda^k z$, there is a unique structure of a C-vector space on $\pi^{-1}[x]$ such that the maps ϕ_x are isomorphisms.

Problem 1. Prove that $\mathcal{O}_{\mathbb{C}P^n}(k) \xrightarrow{\pi} \mathbb{C}P^n$ is a vector bundle (that is: construct local trivializations).

Problem 2. Let $p \in \mathbb{C}[z_0, ..., z_n]$ be a homogeneous polynomial of degree k. Prove that there is a smooth map $\mathbf{p} \colon \mathbb{C}P^n \to \mathcal{O}_{\mathbb{C}P^n}(k)$ satisfying

(1.1)
$$\mathbf{p}([z_0:\cdots:z_n]) = [z_0:\cdots:z_n;p(z_0:\cdots:z_n)]$$

and $\pi \circ \mathbf{p} = \mathrm{id}_{\mathbb{C}P^n}$.

 \diamond

Problem 3. Prove that the Möbius bundle

$$M \coloneqq \left\{ ([\theta], z) \in S^1 \times \mathbf{C} : \operatorname{Im}(e^{i\theta/2}z) = 0 \right\} \xrightarrow{\operatorname{pr}_1} S^1$$

is not trivial; that is: it is not isomorphic to the trivial bundle $S^1 \times \mathbf{R}$. (Hint: Prove that if M were isomorphiC to $S^1 \times \mathbf{R}$, then it would have a section $s \in \Gamma(M)$ with $s(x) \neq 0$ for every $x \in S^1$. Prove that the latter is impossible.)

Problem 4. Let *X* be a compact smooth manifold. Let $E \xrightarrow{\pi} X$ be a vector bundle of rank *k*.

1. Prove that there are $N \in \mathbb{N}_0$, and an morphism of vector bundles

$$\Lambda: E \to X \times \mathbf{R}^N$$

over X such that for every $x \in X$ the map $\Lambda_x \colon E_x \to \mathbb{R}^N$ is injective. (Hint: contemplate the proof of Whitney's embedding theorem.)

2. Construct a map $f: X \to \operatorname{Gr}_k(\mathbb{R}^N)$ and an isomorphism of vector bundles

$$E \cong f^* \gamma_k(\mathbf{R}^N). \qquad \diamond$$