Differential Geometry 1 (M13) Exercise Sheet 9

Prof. Thomas Walpuski

Try to solve the following problems by yourself before the tutorial on 2021-01-27.

Definition. A Lie group is a smooth manifold *G* together with a group structure such that the multiplication map $m: G \times G \to G$ and the inversion map inv: $G \to G$ are smooth.

Problem 1. Recall that $SO(n) = \{A \in \mathbb{R}^{n \times n} : A^t A = id, det(A) = 1\}$ is a submanifold of $\mathbb{R}^{n \times n}$. Matrix multiplication makes SO(n) into a group. Prove that SO(n) is a Lie group.

Definition. Let *G* be a Lie group. Let *X* be a smooth manifold. A **smooth action of** *G* **on** *X* is a smooth map $\rho \colon G \times X \to X$ such that

$$\rho(h, \rho(g, x)) = \rho(hg, x)$$
 and $\rho(1, x) = x$

for every $h, g \in G, x \in X$.

It is often convenient to set $\rho_q(x) \coloneqq \rho(g, x)$ -or even: $gx \coloneqq \rho(g, x)$.

Problem 2. Prove that the following are smooth actions of *G* on itself.

1. The left-multiplication $L: G \times G \rightarrow G$ defined by

$$L(g,h) \coloneqq gh$$

2. The right-multiplication with the inverse $R: G \times G \rightarrow G$ defined by

$$R(q,h) \coloneqq hq^{-1}.$$

3. The conjugation $C: G \times G \rightarrow G$ defined by

$$C(g,h) \coloneqq ghg^{-1}.$$

Problem 3. Prove that $R: SO(n + 1) \times S^n \to S^n$ defined by

$$R(A, x) \coloneqq Ax$$

is a smooth action.

Definition. Let $\rho: G \times X \to X$ be a smooth action. A vector field $v \in Vect(X)$ is ρ -invariant if it is ρ_g -related to itself for every $g \in G$; concretely, for every $g \in G$ and $x \in X$

$$v(\rho_q(x)) = T_x \rho_q v(x).$$

The space of ρ -invariant vector fields is denoted by Vect(M) $^{\rho}$.

Definition. Let *G* be a Lie group. The Lie algebra of *G* is

$$\operatorname{Lie}(G) = \mathfrak{g} := \operatorname{Vect}(G)^L.$$

Problem 4. 1. Prove that the map $ev_1 : \mathfrak{g} \to T_1G$ defined by

$$ev_1(\xi) \coloneqq \xi(1)$$

is an isomorphism of vector space. (In particular; $\dim g = \dim G$).

2. Let $\xi, \eta \in \mathfrak{g}$. Prove that the $[\xi, \eta] \in \mathfrak{g} \subset \operatorname{Vect}(G)$.

3. Since $C_g(1) = g1g^{-1} = 1$, $T_gC: T_1G \to T_1G$. Define Ad: $G \to \text{End}(\mathfrak{g})$ by

$$\operatorname{Ad}(g) = \operatorname{Ad}_g \coloneqq \operatorname{ev}_1 \circ T_g C \circ \operatorname{ev}_1^{-1}.$$

Prove that

$$\mathrm{Ad}_{g}[\xi,\eta] = [\mathrm{Ad}_{g}\,\xi,\mathrm{Ad}_{g}\,\eta].$$

4. Define ad: $\mathfrak{g} \to \operatorname{End}(\mathfrak{g})$ by

$$\operatorname{ad}(\xi) = \operatorname{ad}_{\xi} := T_1 \operatorname{Ad} \circ \operatorname{ev}_1^{-1}.$$

Prove that

$$\operatorname{ad}_{\xi}(\eta) = [\xi, \eta]$$

 \diamond