Uhlenbeck's Removable Singularity Theorem Ref - Freed - Uhlenbeck Appendix D Donaldson - Kronheimer Thm 4.4.12

$$
\frac{m_{m}}{\text{On a bundle } E} \longrightarrow M \setminus \{x \} \text{ with a self-dual connection}
$$
\n
$$
\text{On a bundle } E \longrightarrow M \setminus \{x \} \text{ with } \int_{M} |F_{D}|^{2} < \infty. \text{ Then } \int_{M} \text{ for } \infty
$$

some
$$
s \in G
$$
, $S^*(E)$ extends to a smooth bundle
\n $\overline{E} \rightarrow M$ and D extends to a smooth ASD connection
\n \overline{D} on \overline{E} .

We'll prove

Thm (RSM) Let D be an anti self-dual instanton in 15^{4} -209 w/ $1F_0$ ² $\leq \infty$, $D = d + A$ and $A \in L_{1,loc}^2(B^4 - \{0\})$. Then 24 D is gauge equivalent to a connection 'D ashich extends smoothly across the singularity to ^a smooth connection

We first deform the metric conformally so it is approx

 $cylindrical.$ (Similar idea-Taubes' Thm $+$ Collar πm). If δ is the flat metric i.e β^4 and if π is the distance from the origin, then consider the conformal metric $\frac{8}{31^2}$ on $B^4 - \{o\}$. In polar coordinates $r, \theta^1, \theta^2, \theta^3,$ $(B^4-\{o\}, \frac{\delta}{\sigma^2})$ is a cylinder with $\frac{1}{2} = \frac{dr^2}{r^2} + d\theta^2$ metric on S

 $\Delta \text{ubs-thute} \quad \text{at} = e^{-L} \quad \text{so that} \quad \text{we have the standard deviation of the system.}$ product metric on the cylinder $\widetilde{\mathcal{S}} = d\tau^2 + d\theta^2$.

Now, y g is an arbitrary metric on B⁷, then we obtain ^a metric which is approx 5 Use geodesic polar word to get $|\tilde{g} - \tilde{s}| = O(e^{-2t})$

and so all derivatives of g vanish exponentially fast as $\tau \rightarrow \infty$.

$$
\Psi \in \exists \tau_{i}(e_{1}) \text{ s.t}
$$
\n
$$
\begin{vmatrix}\n\omega_{g}^{\pi}(t_{1}\theta) < \epsilon & \omega_{g}^{\pi}(t_{2}\theta) \\
\omega_{g}^{\pi}(t_{1}\theta) < \epsilon &
$$

Standard results for compact monifolds cany ouer to My. Prop 1 Let f = C2 (My). i) If $f, df \in L^1(M_y)$ then $\int_{M_y} Af = 0$. $\|f\|_{L^{4}} \leq C \|f\|_{L^{2}}$ $\ddot{\mathfrak{h}}$

Use ut-off functions in the noual proof.

Prop2	Suppose	u(t _i θ) is a non-negative function on the region	$T_{1} \leq T \leq T_{n} \leq C M_{y}$	\therefore	$\text{Maximum, principle}$
î) $\Delta u + \gamma'^{2} u \leq 0$	ii) $u(T_{u}, \theta) \leq a_{1}$	iii) $u(T_{v}, \theta) \leq a_{n}$	Thus		
iii) $u(T_{v}, \theta) \leq a_{n}$	Thus				
iv) $u(T_{v}, \theta) \leq a_{n}$	Thus				
iv) $u(T_{v}, \theta) \leq a_{n}$	Thus				
iv) $u(T_{v}, \theta) \leq a_{n}$	Thus				
iv) $u(T_{v}, \theta) \leq a_{n}$	Thus				
iv) $u(T_{v}, \theta) \leq a_{n}$	Thus				
iv) $u(T_{v}, \theta) \leq a_{n}$	Thus				
iv) $u(T_{v}, \theta) \leq a_{n}$	Thus				
iv) $u(T_{v}, \theta) \leq a_{n}$	Thus				
iv) $u(T_{v}, \theta) \leq a_{n}$	Thus				
iv) $u(T_{v}, \theta) \leq a_{n}$	Thus				
iv) $u(T_{v}, \theta) \leq a_{n}$	Thus				
iv) $u(T_{v}, \theta) \leq a_{n}$	Thus				
iv) $u(T_{v}, \theta) \leq a_{$					

Tim (Reguluity thm)	There is a constant $e_1 > 0$ s.t. \dot{y}
\n \ddot{A} is any ASD connection on B^H which satisfies the Cauchy theorem on B^H which satisfies the Cauchy theorem.	
\n $\begin{aligned}\n \text{Coulomb gauge condition} & \text{d}^* \ddot{A} = 0 \text{ and } \ \ddot{A}\ _{\mathcal{H}} \leq e_1, \text{ then } \\ \text{for any interior domain } D < B^H \text{ and } l \geq 1, \text{ we have} \\ \ \ddot{A}\ _{\mathcal{L}_L^2(D)} \leq M_{\ell, D} \ \ddot{F}_A\ _{\mathcal{L}_L^2(B^4)} \\ \Rightarrow \ \ddot{A}\ _{\mathcal{L}^k(D)} \leq M_{\kappa, D} \ \ddot{F}_A\ _{\mathcal{L}_L^2(B^4)}.\n \end{aligned}$ \n	\n $\text{In particular, } -2$ \n
\n $\text{max } F_A \leq M \ F_A\ _{\mathcal{L}_L^2(B^4)}.$ \n	\n S \n
\n $\text{max } F_A \leq M \ F_A\ _{\mathcal{L}_L^2(B^4)}.$ \n	\n S \n

The proof will be given later. For now, let's return to the proof of RST. We work in the cylinder $\{ \tau_0 \leq \tau \}$. $\underline{\text{N.B.}}$ If $g \rightarrow \alpha^2 g$ then $|A| \longrightarrow \alpha^{-1} |A|$ $|F| \mapsto \kappa^{-2}|F|$

But the SM equations and the 1-norms remain invariant.

Proof J ^I Ft ⁰⁷¹² ⁰ timorese Let Bolyo be ^a ball over which ylgFlyPoly ^e ^E ^C depends on the geometry ofthe ball but for ⁶ large enough it can befixed as the geometry ofthe cylinderis uniform By in Reg thin oh I ^fCy R ^E MI Ifcpfdy Bolyo y distly^o ^y 2E Choose T sufficiently large so that q IFC40712L ^E and ^T is of uniformsize Hence ^IFLEARE ¹ J IF Pdx ⁰⁰ as ^T ^o I I E Te It 1 HB

We now prove decay estimates for f.
Vemma 4 (Decay estimates)
For any
$$
\gamma
$$
 \times JZ, we can choose $\overline{\tau}$ such that

$$
\frac{1}{|F(T, \theta)|} \le \max_{\theta} |F(\overline{T}, \theta)| e^{\gamma(\overline{T} - T)} - 4
$$

Fact:					
\n F_{0} \n	\n $F_{0} = -9nP$ \n	\n $F_{\lambda} = -9n(k)$ \n			
\n $F_{\alpha} = -9nP$ \n	\n $F_{\lambda} = -9n(k)$ \n				
\n F_{α} \n	\n F_{α} \n	\n F_{α} \n	\n F_{α} \n	\n F_{α} \n	
\n F_{α} \n	\n F_{α} \n	\n F_{α} \n	\n F_{α} \n		
\n F_{α} \n	\n F_{α} \n	\n F_{α} \n			
\n F_{α} \n	\n F_{α} \n	\n F_{α} \n			
\n F_{α} \n	\n F_{α} \n	\n F_{α} \n			
\n F_{α} \n	\n F_{α} \n	\n F_{α} \n			
\n F_{α} \n	\n F_{α} \n	\n F_{α} \n	\n F_{α} \n	\n F_{α} \n	\n F_{α} \n
\n F_{α} \n	\n F_{α} \n	\n F_{α} \n	\n F_{α} \n	\n F_{α} \n	\n F_{α} \n
\n<					

Also note that for a function
$$
\Psi
$$

\n $\langle \nabla^* \nabla \psi, \Psi \rangle = \frac{1}{2} \Delta |\psi|^2 + |\nabla \psi|^2 \ge \frac{1}{2} \Delta |\Psi|^2$
\nWe also have the Kato inequality
\n $|\nabla \Psi| \ge |\nabla |\Psi||$ $\Longrightarrow \langle \nabla^* \nabla \psi, \Psi \rangle \ge |\Psi| \Delta |\Psi|$

$$
-\frac{1}{\pi} \int_{0}^{\pi} |F| \, du = \int_{0}^{\pi} \sqrt{r} \sqrt{r} \, dF
$$
\n
$$
= (2D - D_{1}^{*}F + 2W(F) - \frac{R}{3}F + [P_{1}F, F], F)
$$
\n
$$
|F| \, d\left|F\right| + 2|F|^{2} \leq (e + |F|)|F|
$$
\n
$$
\omega \tau \to \omega, K \to \omega = P |F| \to 0
$$
\n
$$
\Rightarrow \omega e \int_{0}^{\pi} d|F| + \frac{1}{\pi} |F| \leq 0 \qquad \text{for } T \geq \overline{T}.
$$
\n
$$
\frac{1}{\sqrt{2}}
$$
\n
$$
\frac{1}{\pi} \int_{0}^{\pi} \frac{1}{\sqrt{r}} \, d\left|F\right| + \frac{1}{\pi} \int_{0}^{\pi} |F| \leq 0 \qquad \text{for } T \geq \overline{T}.
$$
\n
$$
\frac{1}{\sqrt{2}}
$$
\n
$$
\frac{1}{\pi} \int_{0}^{\pi} \frac{1}{\sqrt{r}} \, d\left|F\right| + \frac{1}{\pi} \int_{0}^{\pi} \left|F\right| \, d\left|F\right| \, d\left|F\right|
$$

We also have the following estimate on A, which we
show (later) using exponential gauges.

lemma 5
$$
\sharp
$$
 \top is sufficiently large, then I a gauge
on $\{T \geq \top \}$ such that
 $|A(T_i \oplus)| \leq c \cdot e^{r(T_i - T)}$ $\qquad \qquad \boxed{5}$

We now transfer back to the ball B^4 . In B^4 , \oplus and become $|A(x)| \le c |x|^{r-1}$ $|F(x)| \leq C|x|^{r-2}$ $\left\{ \begin{array}{c} \lambda = |x| \\ \lambda = |x| \leq e^{-\tau} \end{array} \right\}$ $A \in L_1^2$ and F is bounded in $L^2 \implies$ 3 Coulomb gauge, i.e., A is gauge equivalent to $\widetilde{A} = S^{-1}ds + S^{-1}AS \omega / d^*\widetilde{A} = 0 \text{ and } \widetilde{A} \in L^2(D^4).$ $\int_{0}^{\infty} d^{*} A = 0$ $d^{\mu}d\widetilde{A} + d^{\mu}(\widetilde{A}\wedge\widetilde{A}) + (\widetilde{A}\wedge d\widetilde{A}) + (\widetilde{A}\wedge\widetilde{A})^{\mu}$ can be made into a single elliptic equation $\Delta \widetilde{A}$ + lower order terms = 0 \Rightarrow from the regularity theorem, \exists smooth \widetilde{A} which is the desired extension on \mathbb{B}^4 .

So we have to prove the following result,
\n
$$
\lim_{h \to 0} (Reguluity Hm)
$$
 There is a constant $\epsilon_1 > 0$ s.t. $\dot{\theta}$
\n $\ddot{\theta}$ is any ASD connection on B^H which satiofies the
\nCoulomb gauge condition $d^*\tilde{A} = 0$ and $||\tilde{A}||_{L^4} \le \epsilon_1$, then
\n $lim_{h \to 0} (lim_{h \to 0} \epsilon_1 - 1) = 0$
\n $lim_{h \to 0} \frac{||\tilde{A}||_{L^2(\mathbb{R}^4)}}{L^2(\mathbb{R}^4)}$
\n $= 1$

"<u>Proof</u> We have A over B' which is a Coulomb gauge and is ASD. Together, they can be written as 8A ¹ ANA ¹ 0

where $\delta = d^* + d^+$ is the elliptic operator from last talk. We can regard B^+ being contained in S⁴ via the stereographic projection) and for DG B', let

$$
\Psi \text{ be a cut-of-}\n\text{function}\n\text{supp}(\varphi) = \mathcal{B}^+\n\quad \text{if} \quad \psi = 1 \text{ on } \mathcal{D}
$$

Let
$$
\alpha = \psi A
$$
, defined over S^4 .

Then

$$
\delta(\alpha) = \delta(\psi A) = \psi \delta(A) + (d\psi \wedge A)^{+}
$$

= $-\psi (A \wedge A)^{+} + (d\psi \wedge A)^{+}$ - Θ
= $-(A \wedge \alpha)^{+} + (d\psi \wedge A)^{+}$

: δ is elliptic and $H^L(S^H)=0$ = D

$$
\|\alpha\|_{L_2^2} \leq \|\delta \alpha\|_{L_1^2} \qquad \qquad \text{or} \qquad
$$

Also, from
$$
\bigoplus
$$

\n
$$
\|\delta \alpha\|_{L^{2}_{1}} \leq \|\Psi A \wedge A\|_{L^{2}_{1}} + \|\mathrm{d}\Psi \wedge A\|_{L^{2}_{1}} \leq C \|\mathbf{A}\|_{L^{2}_{1}}
$$
\n
$$
\leq C \|\mathbf{A}\|_{L^{2}_{1}}
$$

$$
\nabla (\psi A \otimes A) = \{ \nabla (\psi A) \} \otimes A + \psi A \otimes \nabla A
$$

and

 $\forall A \otimes \nabla A = A \otimes \{ \forall \nabla A \} = A \otimes \nabla (\forall A) - A \otimes \nabla \Psi \otimes A$

 \Rightarrow

 $\nabla(\psi A \otimes A) = \nabla(\psi A) \otimes A + A \otimes \nabla(\psi A) - A \otimes \nabla \psi \otimes A$

 \Rightarrow

 $\| \nabla (\psi A \otimes A) \|_{1}^2 \leq \| \nabla (\psi A) \otimes A + A \otimes \nabla (\psi A) - A \otimes \nabla \psi \otimes A \|_{1}^2$

$$
\leq || \nabla(\psi A) \otimes A ||_{L^{2}} + || A \otimes \nabla(\psi A) ||_{L^{2}} + || A \otimes \nabla \psi B \otimes A ||_{L^{2}}
$$
\n
$$
\leq C \Big[|| \nabla(\psi A) ||_{L^{4}} || A ||_{L^{4}} + || A ||_{L^{4}}^{2} \Big]
$$
\n
$$
\leq C \Big[|| \nabla(\psi A) ||_{L^{4}} || A ||_{L^{4}} + || A ||_{L^{4}}^{2} \Big]
$$
\n
$$
\leq C \Big(|| \nabla(\alpha) ||_{L^{4}} || A ||_{L^{4}} + || A ||_{L^{4}}^{2} + || A ||_{L^{2}}^{2} \Big)
$$
\n
$$
\leq C \Big(|| \nabla(\alpha) ||_{L^{4}} || A ||_{L^{2}} + || A ||_{L^{4}}^{2} + || A ||_{L^{2}}^{2} \Big)
$$
\n
$$
\leq C \Big(|| \nabla ||_{L^{2}} || A ||_{L^{2}} + || A ||_{L^{4}}^{2} + || A ||_{L^{2}}^{2} \Big)
$$
\n
$$
\leq C \Big(|| \nabla ||_{L^{2}} || A ||_{L^{2}} + || A ||_{L^{4}}^{2} + || A ||_{L^{2}}^{2} \Big)
$$
\n
$$
\leq C \Big(|| \nabla ||_{L^{2}} + || A ||_{L^{2}}^{2} + || A ||_{L^{2}}^{2} \Big)
$$
\n
$$
\leq C \Big(|| \nabla ||_{L^{2}} \Big) \times C \Big(|| \nabla ||_{L^{2
$$

Exponential gauges

We want to find a gauge in a region sit d^{*}A = O when $\left\| F \right\|_{2^\Theta}$ is sufficiently small.

- I dea is that $\ddot{\psi}$ IFI is small, then we can locally and geometrically choose a gauge w/ 1At small. we did that ^w the Coulomb gauge by using ^a PDE

 \rightarrow For connection on a tangent bundle, we can do this by using geodesic normal coordinates.

 \Rightarrow For an arbitrary bundle, we translate along radial geodesics in the bundle: use geodesic normal coordinates in the total space of the bundle by using fibermetric

Fix $\phi \in M$, $E \rightarrow M$ and construct a local trivialization of E by identifying $E_{exp_{p}(k)}$ with E_{p} via parallel

translation along the radial geodesic $\{ \exp_p(sx) \mid a \leq s \leq t \}$.

- \rightarrow Fixing a frame at \flat , we still have the freedom to rotate by elements of the structure group ^G
- \Rightarrow In geodesic polar coordinates (r, θ) , $\theta \in S^{n-1}$

we have
$$
A_{\pi} = 0
$$
 and
\n
$$
\overline{r}_{r\theta} = \frac{\partial A_{\theta}}{\partial r} - \frac{\partial A_{r}}{\partial \theta} + [A_{r}, A_{\theta}]
$$
\n
$$
= \frac{\partial A_{\theta}}{\partial r}
$$
\n
$$
= \frac{\partial A_{\theta}}{\partial r} \quad \text{for } r_{r\theta} \text{ (}r_{r\theta}) \text{ d}r
$$
\n
$$
= \frac{\partial A_{\theta}}{\partial r} \quad \text{for } r_{r\theta} \text{ (}r_{r\theta}) \text{ d}r
$$
\n
$$
= \frac{\partial A_{\theta}}{\partial r} \quad \text{for } r_{r\theta} \text{ (}r_{r\theta}) \text{ d}r
$$

Lemma Let D be a connection on a bundle over s^n . If $\|F\|_{L^{\infty}(S^{n})}$ is sufficiently small, then \exists a global gauge on S^n for which $D = d + A$ w/ $\|A\|_{L^{\infty}(\mathbb{S}^n)} \leq C\|F\|_{L^{\infty}(\mathbb{S}^n)}$

Proofs construct A andAd extending slightly past ^A A exponentialgauges theequator cutlouis AOandAobothsatisfy j AO

On the intersection,
$$
D = d^0 + A^0 = d^0 + A^0
$$

\n \Rightarrow $S^{-1}d^0S = A^0 - A^0$
\n \therefore A⁰ and A⁰ are exponential gauge \Rightarrow
\n $\frac{\partial s}{\partial \phi} = S(A^0_{\phi} - A^0_{\phi}) = 0$ where ϕ is the polar angle
\n \Rightarrow $S = S(\theta)$ is only function of equatorial variable \Rightarrow
\n \Rightarrow $S = S(\theta)$ is only function of equatorial variable \Rightarrow
\n \Rightarrow $S = S(\theta)$ is only function of equatorial variable \Rightarrow
\n \Rightarrow $S = S(\theta)$ is only function of θ and θ
\n \Rightarrow θ is uniformly.

we can write $D = d + A$ by

 $\overline{}$ $\overline{}$