Compactness Theorem

Recall :

Let
$$
(X, 9)
$$
 be a Oriental Riemannian n-manifold
and let $E \rightarrow X$ be a G-bundla over X.

 $\rightarrow G = SU(2)$ unless of the unit state.

 \rightarrow C-, -> natural tensor product metric on
 $\Lambda^c t^*M \otimes g_{\epsilon}$ induced by g and the
 M_{G} invariant metric $-tr(XX)$ on g

 \rightarrow we get $A \longmapsto |F_A|$ invariant under the
action of $g(e)$.

 $YM(A) = \int_{M} |F_A|$

 $M = \int_{M} F = 0$ and $\int_{M} F = 0$

 \Rightarrow $YM \geq \int_{M} |F_A|$

 \Rightarrow $YM \geq \int_{M} *F_A$

 $\Rightarrow \int_{M} M = 0$ and $\int_{M} *F_A = 0$

 $\Rightarrow \int_{M} M = 0$ and $\int_{M} *F_A = 0$

 $\Rightarrow \int_{M} *F_A = 0$

 \Rightarrow

if A is self-dual or Anti-Self dual then, A automatically satisfy the Yang mills equation.

Uhlenbeck's Gauge Fixing theorem. There are constants E, M>0 S.t any Connection A on the trivial bundle over \overline{B}^4 with Il Fall, 2 < E is gauge equivalent to a connection \widetilde{A} over B^h with $d^* \tilde{A} = 0$ $\lim_{\lambda\to 0}$ $\lambda_{\rm v}$ = δ $|M-1|$ $\|\tilde{A}\|_{\mathcal{L}^{1/2}} \leq M \|\tilde{F}^{\alpha}_{\chi}\|_{\mathcal{L}^{2}}$ Morover, the Constants E, M, the Connection \widetilde{A} is uniquely determined by these properties upto the gauge transformation $\widetilde{A} \longrightarrow u_0 \widetilde{A} u_0^{-1}$ for a constant us.

Removable Singularity theorem:

Let A be a Connection over a punctured ball B⁴({0} which is ASD w.r.f a smooth metric over B^h . If $\int |F(A)|^2 < \infty$ B^{4} } {6 }

Then \exists connection λ^1 on a bundle E^1 over B^4 & a bundle map $p: E \longrightarrow E' |_{B^4 \setminus S_0} q$ with $f^*(A') = A$.

$$
\begin{array}{ll}\n\mathcal{A} - span \quad \text{of all Conactions} & \text{on } E \\
\mathcal{A} - gauge \quad \text{group} \\
\text{defint} & \mathcal{B} = \mathcal{A}/\mathcal{A} \\
\downarrow\n\end{array}
$$
\nLet $h \geq 2$,
\n
$$
\implies h^{k+1,2} \quad \text{be } \quad \text{the } \quad \text{Connechions} \quad \text{which differ} \\
\text{from a } \mathcal{A} \text{ smooth } \quad \text{Connechism by a } h^{k-1,2} \quad \text{Section 0}\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\mathcal{A} & \mathcal{B} & \mathcal{B} \\
\longrightarrow & \mathcal{W}^{k+2} & \text{gauge } \quad \text{transformation } \text{ads} & \text{on } \quad \text{bhm.} \\
\downarrow\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\text{Delta} & \mathcal{B} & \mathcal{B} \\
\longrightarrow & \mathcal{W}^{k+2} & \text{gauge } \quad \text{transformation } \text{ads} & \text{on } E \\
\mathcal{A}(k) & = & \mathcal{W}^{k-1,2} & \text{Connechions } \quad \text{on } E \\
\mathcal{A}(k) & = & \mathcal{W}^{k} & \text{gauge } \quad \text{transformation} \\
\mathcal{D} & \downarrow\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\text{Definition} & \mathcal{L} & \text{metric} & \text{on } \quad \mathcal{A}(k) \\
\parallel A - B & = \left(\int_{1}^{1} (A - B)^{2} d\mu \right)^{y_{L}} \\
A - B & \in & \mathcal{W}^{k-1} & \text{in } \mathcal{W} & \text{in } \mathcal{W} & \text{in } \mathcal{W} & \text{in } \mathcal{W} \\
\downarrow\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\text{This} & \mathcal{L}^{2} & \text{metric} & \text{in } \quad \text{gauge } \quad \text{in } \mathcal{W} & \text{in } \mathcal{W} & \text{in } \mathcal{W} \\
\downarrow\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\text{This}
$$

Lemma: d is a metric on $B(x)$ $Proof:$ we have to show, $d(\text{FA})(8)=0 \implies \text{FA} - 18$. Let B_{α} be a sequence in A , gauge equivalent to ^B converging in ^L ' to A . we have to show ^A is gauge equivalent to ^B we have, $B_x = u_y B u_x^{-1} - d_y u_x u_x^{-1}$
 $\Rightarrow du_x = u_y B - Bu_x$ \Rightarrow du, = u_{α} β - B_{α} (\star) The u_x au uniformly bounded since G is Compact & 2>2. (*) shows u , e- End CE) has ^a subsequence that Converge weakly in W^{1,2} and strongly in L^{e to} a limit u and u satisfies the equation. d_bu = ub - A u If ^q is any test function on End ^E we have , $2 d_B u, \varphi$ = $\lim_{m \to \infty} d_B u_{\alpha}$, φ > $m \leq u_{\alpha}$ + B_{α} , φ > $=$ $\langle u \cdot A u, q \rangle$ as $B_{\alpha} u_{\alpha} \longrightarrow A u$.

\nThis equation, we have an over determinant of elliptic equations with
$$
W^{1-1/2}
$$
 Coefficients. So, by would elliptic bootstrap ping, $W \in W^{1,2}$.\n

\n\nclually, W is unitary Section in End E.\n

Moduli space:

\nLet the moduli
$$
Spac
$$
 of Asp is fahbon $F^{\dagger}(A) = 0$ be denoted $M(P)$, $l>2$.

\nClearly $M(l) \subset B(l)$ of $W^{l-1,2}$ As p instantons
modulo $W^{l,2}$ gauge. Transformation.

\nProposition:

\nThe natural inclusion of $M(l+1) \longrightarrow M(l)$ is a function.

homeomorphism .

Proof :

We know from the gauge. Hining theorem,
\n
$$
3250
$$
 8.1 $W^{1/2}$ Conaction with $1A.BB1_{W^{1-1/2}} < \epsilon$
\n $3u \in W^{1/2}$ gauge. transformation with
\n $d^*_{A}(u^-(8) - A) = 0$ ($u^[(8)$ Goulomb w.r.t A)
\nBy Symmetry, A is also countomb gauge.
\n $4^{d}(u(A) - B) = 0$

By writing,
$$
A^1 = u(A) = 8 + a
$$
;
 $d^4 = a^5 = 0$

2ince the smooth Connections are dense, we can choose ^B to be smooth . The difference ^I - form "["] also satisfies

$$
d_{B}^{+}a + (a \wedge a)^{+} = -F_{B}^{+}
$$
 (ASD equa from for
\n $F_{A^{+}d}^{+} = F_{A}^{+} d_{A} d_{+}^{+} a A_{A}^{+}$

Thus
$$
(d_g^* \oplus d_g^*)
$$
 a u^{i_0} in w^{1-i_1} because.

\n F_B is $8m \text{ och } k$ $(0 \wedge a)^+ \in W^{1-i_1}$

\n $Recall : d_B^4 \oplus d_B^+$ is elliptic

\nSo by basic elliptic regularity as a subset gives

\n $a \in W^{k,2}$.

This shows the natural map is Surjective & its clearly injective. a

The Compact fication theorem:

Defo: An ideal Asp Connection over X of chern class k is a pain $(LAJ, (\mathbf{x}_{1},...,\mathbf{x}_{p}))$ When $[A] \in M(k-1)$ and (x_1, \ldots, x_n) is a multiset of unordered 2-typle of points in X. The unvature density of $(1\star1, (n,...,n)$ is the measure $(F(A))^{2} + 8n^{2} \leq \int_{x}^{x} x^{2} dx$

Defn: (Weak Convergence) Let A_{α} , re N be a sequence of Connections of chein class k. We Sey that [A] of gauge equivalence classes converge weakly to a limitize ideal ASD Connection $(\begin{bmatrix} A \end{bmatrix}, (x_1, ..., x_k))$ if

1. The curvature densities converge as a measure, ie \forall $f \in C(y)$ $\int_{X} |f(A_{a})|^{2} f dm \longrightarrow \int_{X} |f(A)|^{2} f dm +$
 $\oint_{X} \mathbb{E} \sum_{r=1}^{Q} f(x_{r})$

2. Then an bundle maps
\n
$$
P_a: P_i |_{X \setminus \{3,...,n\}} \rightarrow P_{\alpha} |_{X \setminus \{3,...,n\}}
$$

\nsuch that $P_{\alpha}^*(\lambda_n)$ converges to A, C^o on
\nCompat subsets.
\n \overrightarrow{C}
\nThis notion of Convergena endow 3 that set of
\nall ideal \overrightarrow{AD} Convergena endow 3 that \overrightarrow{BC} of
\nclass k with a fipolesy.
\n $\overrightarrow{LM}_k = M_k \cup M_{k-1} \times X \cup M_{k-1} \times S^*(X) \cup \cdots$
\n $\overrightarrow{IM}_k = M_k \cup M_{k-1} \times X \cup M_{k-1} \times S^*(X) \cup \cdots$
\n \overrightarrow{OR}_k deno \overrightarrow{IM}_k
\n $\rightarrow \overrightarrow{N}_k$ deno \overrightarrow{IA}_k is \overrightarrow{IM}_k
\n \overrightarrow{IM}_k then \overrightarrow{IM}_k
\n \overrightarrow{Imn}_k denote the \overrightarrow{IN}_k in \overrightarrow{Man}_k is \overrightarrow{IM}_k
\nhas a weakly Convergent Subsequence with a limit
\npoint in \overrightarrow{M}_k .

Patching arguements.

In the following by Gavergence we mean C^{00} convergence over Compact sets . ónvergence over Cónypact set.
<u>emma :</u>
Conce d is a sequence of Connect

Lemma ^l :

Suppose $A_{\bm{a}}$ is a sequence of Connections on a bundle E over a base manifold r (possibly non Compact) bundu k over a base in exercis (1) $\exists u_{\alpha} \in Aut E$ $\alpha u_{\alpha} \in Aut E[\frac{\pi}{2}, \frac{1}{2}].$ $u_{\alpha}(\alpha_{\alpha})$ converges over 1 and $\tilde{u}_x(A_x)$ converges over A . Then for any Compact set Kc \widetilde{n} we can find a subsequence i i i and gauge transformation wa e Aut E st w_ar = \tilde{u}_{α} , in a nbhd of K & the connections $W_{\alpha^1}(A_{\alpha^1})$ Converge over A . $k \in \mathcal{X}$ s \mathcal{I} w_{a'} (A
<u>roof</u>

Proof :

whole assume u_{α} 's are identity. So over the both A and \widetilde{u}_{α} (Ar) are Convergent Sequence of . Connections .

→ take a subsequence \tilde{u}_{α} which converges over I \diamond \vec{u} .

→ Fin a precompact nbhd N s.t K C N E J \rightarrow extend $\tilde{u}|_{N}$ to Ω arbitrarily to u^*

13 Also, Oven N with

\n
$$
\tilde{u}_{\alpha} = exp(\xi_{\alpha'}) \tilde{u} \qquad \tilde{u} = \tilde{u} \quad \text{on } N
$$
\nfor 3ethons

\n
$$
\xi_{\alpha'} = exp(\xi_{\alpha'}) \tilde{u} \qquad \tilde{u} = \tilde{u} \quad \text{on } N
$$
\n16r 3ethons

\n
$$
\xi_{\alpha'} = exp(\xi_{\alpha'}) \tilde{u} \qquad \text{for all } \xi
$$
\n
$$
\Psi|_{K} = 1
$$
\n17.1

\n17.2

\n2.2

\n3.3

\n3.4

\n4.3

\n5.4

\n7.5

\n7.5

\n8.5

\n18.6

\n19.6

\n10.7

\n11.7

\n11.8

\n12.8

\n13.9

\n14.9

\n15.9

\n16.1

\n17.1

\n18.1

\n19.1

\n10.1

\n11.1

\n12.1

\n13.1

\n14.1

\n15.1

\n16.1

\n17.1

\n18.1

\n19.2

\n10.1

\n11.1

\n12.1

\n13.1

\n14.1

\n15.1

\n16.1

\n17.1

\n18.1

\n19.2

\n10.3

\n11.4

\n12.3

\n13.4

\n14.4

\n15.4

\n16.4

\n17.4

\n18.4

\n19.4

\n10.4

\n11.4

\n12.4

\n13.4

Lemma 2:

Suppox that I is exhausted by an increasing sequence of precompact open sets.

$$
u_1 \in u_2 \in \dots \in \mathcal{I}
$$
 $\bigcup_{n=1}^{\infty} u_n = \mathcal{I}$

Suppone A is a sequence of Connections over re and for each on there is a subsequence $\{x^1\}$ e gauge transformation u_{α} + ϵ Aut $F|_{u_{\alpha}}$ s. ϵ v_{α} (td) Converges over u_n . Then 7 is a subsequence & a sequence of gause transformation s. t the transformed Connection Converge over all r.

k mmg $3:$

suppose 2 is a union of domains r=2, v-lz and A_a is a sequence of connections on a Bundle E over 2. If there are sequences of gauge transformations v_o ϵ dut $\epsilon|_{\Omega}$, ϵ w_o ϵ dut $\epsilon|_{\Omega_2}$ fauge transformations of α α α , α , α , & Az , then 7 ^a subsequence { a' ³ and gauge transformations u_{α} , over a sit u_{α} , $(A_{\alpha}i)$ Converges over <u>l</u>.

$Proof:$

By Lemma 2 , it suffices to consider ^a Compact Subset of h Covered by Precompact sets ر
ا ح e_{R_1} e Ω_2 e_{R_3} e_{R_4} e_{R_5} e_{R_6} e_{R_7} e_{R_8} e_{R_9} e_{R_1} e_{R_2} e_{R_3} e_{R_4} e_{R_5} e_{R_6} e_{R_7} e_{R_8} e_{R_9} e_{R_1} e_{R_2} e_{R_3} e_{R_4} e_{R_5} e_{R_6} $e_{R_$

 $\Omega_1^L \in \Omega_1$ e $\Omega_2^L \in \Omega_2$. It $\Omega_1^L \cap \Omega_2^L$
 \rightarrow choose K Compact $S^L \cap \tilde{\Omega}$ e Ω ر
عد_ا ' $n \times 1 \in K = \Omega_1$ nra El,

After modifying V2 and taking a subsequence, we may assume v_α = ω_α on Ω_1 'n Ω_2 '. Then these sequences glue together to define ^u , over the ν nion $\Omega_l^1 \cup \Omega_{L}^1$. Bae

Coroll ary :

Suppose A, is ^a sequence of connections on ^a bundle E over D s.t H $x \in D$ I open nbhd D of x , a Subsequence {^a ' } & gauge transformations g, defined over $D_{\rm x}$ s.t ∇_{a} '(d.,) converges over $D_{\rm x}$ Then 7 a subsequence $\{ \lambda^n \}$ and gauge transformations red defined over all of the s - t n_{a"} (A_{a"}) converges over all r.

P_{roof}

Again by lemma ² , we restrict to a psecompaet Again by semina 2, ne
Subset of I , also assume this set is a finite union of nbhds $D_1 \cdot ... \cdot D_m$ S-t D_i 's Satisfy the hypothesis .

Then by induction , 7 a subsequence & gauge transformations S.t the transformed Connections Converge over $\mathcal{D}_{m,d}:=\mathcal{D}_1\cup\ldots\cup\mathcal{D}_{m-1}$ by lemma 3 applied to the pair Sm-ⁱ , Dm gives the result

a,

From the ASD equation and Uhlenbeck, theorem we get, From the ASD equation and Uhlenbecks theory
We get,
Theorem:
Let 2 be an oriented Riemannian 4 manifold.

Theorem:

ker se ... over I with the property as follows. $\forall x \in \Omega$ 7 geodesic ball D_x s. t $\forall x > 0$

$$
\int_{D_{\mathbf{R}}} |F(A_{\mathbf{J}})|^2 d\mu \leq \epsilon^2
$$

where ^E > ^o is the constant from the gauge fining theorem. Then 7 a subsequence $\{ \alpha^i \}$ & gauge transformation u_a . $s + u_a$ (A_a) Converges over -2 .

Uhlenbeck's theorem :

For any sequence of ASD Connections Aa over \overline{B}^4 with $\|f(A_x)\|_{x}\leqslant \epsilon$ \exists subsequence α' denote L B^o with IIt(A_x) I_{n S} & J subsequence & a
gauge equivalent Connections I_n, which Converge in c^{∞} on the open ball.

Proof of Compactness theorem : The proof follows from two pieces of general theory . ^I . we shall Consider the curvature density of an ASD connection as ^a measure . By Reisz Representation theorem Thm : - Compact hausdorff space . Let ^x be ^a then C Cx) & = Complex measures with total variation norm Mlk) . k ^y : Mex) → ccx) ^u 1-3 helm) : fl-s ffdm[×] For any sequence of positive measures on ^X with ^J×dy bounded then by Banach ltlaoglu theorem ³ Subsequence { al} Converging to ^a limiting measure ^v in the sense , t t continuous on ^X , ↳ fdny , → ffdv weak * Convergence x

2. The second piece of through involves interprefry
\nthe curvature density of ABD Connectbon A ao
\na + popological invariant.
\n
$$
\int_{X} |F(A)|^{2} = -\int Tr(F(A)^{2}) = -8\pi^{2} K(E).
$$
\nThe main shell of this in to give a L^{2} bound
\nof the curvature of ABD Connectons.
\n
$$
C
$$

then

$$
T_{w}(\theta) = \frac{1}{8\pi^{2}} \int_{w} T_{v} (dBAB + \frac{\epsilon}{3}BABA\beta) \text{mod } \mathbb{Z}.
$$

This depends on the trivilizalion only up to a integer .

[→] The only fact we will be using is that TWCB) depends Continuously on ^B . mm

Let ^A be ^a sequence of ASD connections on ^E er a sugged of me
with GCE) = k . we will first show that I is a finite set fa,.... ap3 in x s+ after taking a Subsequence $X \setminus \{x_1, \ldots, x_p\}$ satisfies the theorem chook a subsequence $\{x^{12}\}$ So that $\left\{f^{\prime}(A)\right\}^2$ Converge as a measur to v, then we have

$$
\int_{X} d\psi = 8\pi^{2}k
$$
\n
\n30.3 at most $\frac{8\pi^{2}k}{\epsilon^{2}}$ points which has a
\ngeoderic ball of measure > ϵ^{2} .
\n
\n \dot{u} , $\int d\nu > \epsilon^{2}$.
\n
\nWe let then point be $\{u_{1}, \ldots, u_{p}\}$.

Then by the theorem \exists $\{ \alpha'' \} \subset \{ \alpha' \}$ & gauge transformations u_{α} " over $x \mid \{x_1, \ldots, x_p\}$ s.f Ud" (Aall) converges over this punctured manifold to an ASD Connection A on ^El_X(gn₁....2,3. clearly , \int $\left(f(A) \right)^2$ $\leq \frac{1}{2}a^2$ Xl Eni . - - Mp3 then by semovable singularity theorem this extends to a Connection on a bundle = over x. E ' -4 ^E if ^p >o as we have ^a strict inequality above if p so. $v=$ The limiting measure v is $(F(A)) + \sum_{x=1}^{\infty} (n_x)^3 x_x$. for some $n_r \geqslant \epsilon^2$. $\frac{n_{x} \geq \epsilon^{2}}{n_{y}}$ we need to show that nr ^E ^Z . This follows from relative chern weil theory. choose disjoint ballo Z_{τ} centered around x_{τ} . To the Commencery on the
 $\frac{1}{4}$ p $\frac{1}{2}$ above it p $\frac{1}{2}$
 $\frac{1}{4}$ above it p $\frac{1}{2}$
 $\frac{1}{2}$ $\tau_{2z}(A) = \lim_{z \to z} \overline{L}_{2z}(A''') \in \mathbb{R}/Z$ After gauge transformation , the connections Converge in C^{ao} on 27,

But we have the Convergence of measures which gives. $n_r = \frac{1}{\lambda \pi^2}$ din $\int_{\frac{1}{2}} Tr(F(A_a)^2) - Tr(F(A)^2)$ using the deform of Tazy in terms of extension over the balls z_r we see $n_r = 0$ mod z .

Ø

2 - regularity theorem.

Let $(M, 1)$ be a Riemannian Manifold. Let $inj_g(p)$ be the injectivity radius at pEM. For a fined $p \in M$, we let $0 < r_p < inj_g(p)$ s.t -> 7 normed rbhd (x',... x") ceritexed at p and \exists $C(p) > 0$ $S - F$ g_{ii} S_{ab} $S_{ia} s$. 1. $9_{ij} - 8_{ij}$ | \leq $c(p)$ |n|² 2. $|\partial_{k} g_{ij}| \leq c(p)$ $|d|$ $\frac{N\circ\overline{L}}{2}$: $g_{ij}(\rho) = \delta_{ij}$ $g_{ij}(\rho) = 0$. Taylor expansion about p gives the required abhd.

Theorem 1:

Let (M,9) be a Riemannian manifold with $n \geq 4$ E be a h-bundh over M, V be a Vang Mills Connection with finit L² anegy. Given PEN, J ε_{0} > 0 & C > 0 S. + U +, 0< P \leq Y_{p} \mathfrak{f}^{\prime} $\mathcal{E} = \frac{1}{p^{n-4}} \int_{B_{f}(p)} \left(F_{g} \right)^{p} dV_{g} \leq \varepsilon_{0}$

then

$$
\lim_{\alpha \to 0} \left(F_{\varphi} \right)^{2} (\alpha) \leq \frac{C \epsilon}{\varphi^{4}}
$$

Lemma 1:

Bochner type estimate Criven pe M $\leq 0 < r < \ln j_9(p)$ $\exists c, c' > 0$ where \rightarrow c depends on ne curvature R on $\overline{B}_r(p)$ C' depends on n 2 G $8.1.$ Δ_{g}^{-} $|F_{g}| \geq -c$ $|F_{g}| - c' |F_{g}|^{3}$ on $\beta_{r}(p)$. $Notation: \qquad \Delta q = -d d : C^{op}(\mu) \longrightarrow C^{op}(\nu)$

Lemma 2:
\nHarnack = Mosen inequality
\nLet
$$
p \in M
$$
 & 0 < r < inj₉(p)
\nI. $u \in C^{2}(B_{r}(p))$, $u \ge 0$
\n $\sqrt{9}u \ge -C_{0}u$ on $B_{r}(p)$

then

$$
\begin{array}{llll}\n\text{sup } u & \leq & c \\
\text{B}_{\frac{\tau}{2}}(p) & \text{where} \\
\text{supends } & \text{on } n, \tau < \mathbb{R}^3\n\end{array}
$$

then: Monotonicity formula

let pe*m* , np & c(p) are as defined before. Then \exists a = a(n, p, g) \geq $O($ 1) C(p) s.t the following holds .

$$
\forall \sigma, \phi \; ; \; \sigma \in \mathbb{C} \; \forall \rho
$$
\n
$$
\int_{\mathcal{C}} \rho^{\alpha} \sigma^{\alpha} \int_{\mathcal{C}} \left(F_{\nabla} \right)^{2} dV_{g} \leq \int_{\mathcal{C}} \frac{\rho^{\beta^{2}}}{\beta^{4-n}} \int_{\mathcal{B}_{f}(\rho)} \left[f_{\nabla} \right]^{2} dV_{g}
$$

Proof of main theorem:

The stated bounds won't be affected by the scaling $g \longrightarrow \lambda g$, $f \longrightarrow \lambda^{Y_{\epsilon}} f$ for some Constant $\lambda^{y_{\theta}}$. So, we can suppose f^2). $\epsilon = \int |F_v|^2 dv_g \leq \epsilon$ $B \cdot (P)$ we have to prove E > ⁰ Sufficiently small sup $[F_{\mathcal{A}}]^2(x) \leq C \epsilon$ $TEB_{\perp}(p)$ $Defin$ a function $f: [0,1] \longrightarrow [0,\infty)$
 $r \longmapsto (1-r)^2 \sup f$ $r \longmapsto (1-r)^2 \sup \{F_{\mathcal{V}}|(r)\}$ $26 B_r(P)$ $1 = f \leq r_p < inf_{g}(p)$

x
$$
\rightarrow
$$
 \n $\begin{array}{r}\n\downarrow \\
\downarrow \\
\downarrow\n\end{array}$ \n
\n \Rightarrow $\begin{array}{r}\n\downarrow \\
\downarrow \\
\downarrow\n\end{array}$ \n
\n $\begin{array}{r}\n\downarrow \\
\downarrow \\
\downarrow\n\end{array}$ \n
\n

 $clain: f(\tau_0) \leq |b| \leq |c| \leq \varepsilon_0 \cdot \varepsilon_e(n,p,\eta,0)$ is Small enough. $Proof$: $Supp$ $(x, 3) > 16$ \Rightarrow $\sigma\sqrt{h}$ > 2 $defin \mathcal{Y} := bg$ $B_{\sigma\int_{b}}(x_{\sigma}, \tilde{g}) = B_{\sigma}(x_{\sigma}, g)$ $\delta \varphi$ $\left\{F_{\nabla}\right\}_{\nabla}^{(n)} \leq \delta \varphi$ $\left\{F_{\nabla}\right\}_{n \in \mathbb{Z}}^{n}$ $2 \epsilon \hat{B}_{2}(20, \hat{q})$ $\tau \in B_{\sigma, \int_{R} (n_{0}; \hat{q})}$ = $\frac{1}{b}$ sup $\left(\begin{matrix} F_{\vartheta} \end{matrix}\right)_{g}$ (x) ≤ 4 clearly, V is yang mills w.r.to q too. This f_0 llows by noting $\kappa_{\tilde{q}} = b^{\frac{n}{2}-2} \kappa_{g}$ on 2-forms $R \gamma_{\phi}(\hat{q}^{\circ}) = r_{\hat{p}}(q) \sqrt{b}$

$$
\beta_{2} (\alpha : \beta) \leq \beta_{(\sigma + \tau_{0}) \Gamma_{b}} (P : \beta) \leq \beta_{\tau_{p}(9) \Gamma_{b}} (P : \beta)
$$

 (\ast)

we have from, lumma 1, $\Delta_{\mathfrak{P}}^{\sim} \left(F_{\mathfrak{P}} \right)^{\sim}_{\mathfrak{P}} \geq -c \left| F_{\mathfrak{P}} \right|^{\sim}_{\mathfrak{P}} - c' \left[F_{\mathfrak{P}} \right]^{\gamma}_{\mathfrak{P}} \text{ on } \mathfrak{P}_{2}(\mathfrak{A}_{\mathfrak{P}}; \mathfrak{P})$ From (*) we have

$$
\Delta_g^{\sim} \left(F_{\sigma}\right)_{\widetilde{g}}^2 \geq -\left(C + 4C^{\dagger}\right) \left[F_{\sigma}\right]_{\widetilde{g}} \quad \text{on} \quad \mathfrak{h}_2(\alpha, \frac{1}{2}, \frac{3}{2})
$$

From lemma 2, we obtain

$$
1 = |F_{\sigma}|_{\widetilde{g}}^{2}(x_{\sigma}) \leq \widetilde{c} \int_{B_{1}(x_{\sigma}; \widetilde{g})} |\overline{F_{\sigma}}|_{\widetilde{g}}^{2} dV_{\sigma}
$$

We know that
$$
\sigma\sqrt{b} > 2
$$

\n
$$
\sigma \leq 1, b>0 \quad \epsilon \quad 1 = P \leq r_{p}
$$
\n
$$
\Rightarrow \quad 0 < \frac{1}{\sqrt{b}} < \frac{1}{b} < r_{p}
$$
\n
$$
\int \left(f_{\gamma} \Big|_{\frac{q}{j}}^{2} dy_{\beta} = \left(\frac{1}{\sqrt{b}} \right)^{4-n} \int \left(f_{\gamma} \Big|_{\frac{q}{j}}^{2} dy_{\beta} \right) dy_{\beta} \right) \left(\frac{c}{j} = b_{j} \right)
$$
\n
$$
\leq \left(\frac{1}{\sqrt{b}} \right)^{4-n} e^{\frac{a}{b}} \int \left(f_{\gamma} \Big|_{\frac{q}{j}}^{2} dy_{\beta} \right) e^{\frac{a}{b}} \geq 1
$$
\nBut r_{α}^{y} from $100n$ for it is $\frac{B_{1}}{\sqrt{b}}(r_{\alpha}; g)$

\nNow apply $100n$ to the $\frac{B_{1}}{2} \left(\frac{1}{2} \right)^{4-n} e^{\frac{a}{4}} \int \left(f_{\gamma} \Big|_{\frac{q}{j}}^{2} dy_{\beta} \right)$

\n
$$
\leq \frac{1}{2} \int \left(\frac{1}{2} \right)^{4-n} e^{\frac{a}{4}} \int \left(f_{\gamma} \Big|_{\frac{q}{j}}^{2} dy_{\beta} \right)
$$
\n
$$
\leq 2^{n} \int e^{\frac{a}{2}} e^{\frac{a}{2}} e^{\frac{a}{2}}
$$
\nSo $100n$ have $1 \leq 2^{n-1} \frac{a}{2} \leq 2$

If
$$
\varepsilon_n
$$
 is chosen Schriently small
\nThis gives a Contrability small
\n S_0 we have $f(r) \le 16$ $tr\in [0, 1]$
\n $ker\left(\frac{r-1}{2}\right)$
\n $ker\left(\frac{r}{2}(q)\right)$
\nApply $Limma \le 1$ again
\n $\Delta_9^-|F_0|^2 \ge -Cc + 4fc'$) $|F_9|$ on $B_{\frac{1}{2}}(e)$
\nApply $Limma \le 2$ again to obtain the
\n $Apply\left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2}\right) = -Cc + 4fc'$) $|F_9|$ on $B_{\frac{1}{2}}(e)$
\nApply $Limma \le 2$ again to obtain the