Compactness Theorem

Recall : Let (X, 9) be a Oriented Riemannian n-manifold and let E->x be a G-bundle over X. -> a= SU(2) unless otherwise stated. -> <., .> natural tensor product metric on Λ^c T^{*}N @ g_c induced by g and the Adg invariant metric - tr(XY) on g \longrightarrow we get $A \longmapsto |F_A|$ invariant under the action of G(E). Yang mills Functional : $JM(A) = \int |F_A|^2$ The Enler Lagrange equations give the following equations. $d_A F_A = 0 = d_A^* F_A$ -> YM > 8tik if kro sp instanton with equality iff F_=0 → YM > - 8112k if k<0 ASD instanton with equality iff fy = 0 where k is C2(E).

if A is self-dual or Anti-Self dual then, A automatically satisfy the Yang mills equation.

Uhlenbeck's Gauge Fixing theorem.
There are constants
$$\mathcal{E}$$
, $M > 0$ s.t. any Connection
 A on the trivial bundle over \overline{B}^+ with
 $\|F_A\|_{L^2} < \mathcal{E}$ is gauge equivalent to a connection
 \widetilde{A} over B^+ with
 $d^*\widetilde{A} = 0$
 $\lim_{|N| \to 1} \widetilde{A}_N = 0$
 $\lim_{|N| \to 1} \widetilde{A$

Removable Singularity theorem :

Let A be a Connection over a punchareb ball $B^{4}(fog which is ASD W.r.f a smooth metric over$ $<math>B^{4}$. If $\int |F(A)|^{2} < \infty$ $B^{4}(fog)$

then \exists connection A' on a bundle E' over $B^{4} \&$ a bundle map $p: E \longrightarrow E'|_{B^{4}|_{S^{2}}}$ with $e^{k}(A') = A$.

A - space of all connections on E
J. gauge group
define
$$\mathfrak{G} = \mathcal{A}/\mathcal{L}_{J}$$

Let $l \neq 2$,
 $\implies W^{l-1/2}$ be the connections which differ
from a smooth connection by a $W^{l-1/2}$ section of
 $T_{X}^{*} \mathfrak{O} \mathfrak{G}_{E}$
 $\implies W^{l,2}$ gauge transformation acts on blum.
Define $\mathfrak{B}(\mathfrak{A}) := \mathcal{A}(\mathfrak{A})/\mathcal{L}_{J}(\mathfrak{A})$
where $\mathcal{A}(\mathfrak{A}) = W^{l-1/2}$ connections on E
 $\mathcal{L}_{J}(\mathfrak{A}) = W^{l-1/2}$ gauge transformation
Define \mathfrak{L}^{2} metric on $\mathcal{A}(\mathfrak{A})$
 $\|\mathcal{A} - \mathfrak{B}\| = \left(\int |\mathcal{A} - \mathcal{B}|^{2} d\mu\right)^{\mathcal{Y}_{L}}$
 $A - \mathfrak{B} \in W^{1/2}(\mathfrak{X}, T_{X}^{*} \mathfrak{S} \mathfrak{I}_{E})$
This L^{2} metric is gauge invariant, so descends
to a distance function on $\mathfrak{B}(\mathfrak{e})$.
 $\mathcal{A}(\mathcal{A}), (\mathfrak{B}) = \inf \{\mathcal{A} - \mathfrak{g}(\mathfrak{B})\|$

<u>kemma</u>: d is a metric on B(R) Proof : we have to show, d([A], (8])=0 => [A]=[B]. Let B2 be a sequence in A, gauge equivalent to B Converging in L² to A. we have to Show A is gauge equivalent to B we have, B= 2, Bu, - dry u, ____ (*) $\Rightarrow d_{u_1} = u_1 B - B_{u_1}$ The up are uniformly bounded since G is Compact & l>2. (*) Shows u, f End (E) has a subsequence that Converge weakly in W12 and strongly in L2 to a limit u and u satisfies the equation. d_Ru = uB - Au If q is any test function on End E we have, 2 dBu, q) = lim (dBux, q) = lim < u2B - Bux, p> $= \langle uB - A u, q \rangle$ as $B_{u} u_{u} \longrightarrow A u$.

This equation
$$u$$
 is an overdetermined elliptic
equation with $W^{l-1,2}$ Coefficients. So by usual
elliptic bootstrapping, $u \in W^{l,2}$.
dearly u is unitary section in End E.

Moduli space :
Let the moduli space of ASD instantons
$$F^{\dagger}(A) = 0$$
 be
denoted $M(R)$, $L > 2$.
Chearly $M(R) \subset B(L)$ of $W^{L-1,2}$ AsD instantons
modulo $W^{L,2}$ gauge transformation.
Proposition :
The natural indusion of $M(R+1) \subset M(R)$ is a
harmonic proposition.

homeomorphism.

Proof :

We know from the gauge fining theorem,

$$\exists E > 0$$
 S.t $\forall W^{L-1/2}$ Connection with $||A-B||_{W^{L-1/2}} \leq E$
 $\exists u \in W^{L/2}$ gauge transformation with
 $d_A^*(u^{-1}(B) - A) = 0$ ($u^{-1}(B)$ Coulomb w.r.t A)
By Symmetry, A is also contomb gauge
relative to $u^{-1}(B)$ in., $d_B^*(u(A) - B) = 0$

By writing,
$$A^{\dagger} = u(A) = B + A$$
;
 $d_{B}^{*} = 0$

Since the smooth Connections are dense, we can Choose B to be smooth. The difference i-form "a" also satisfies

$$d_B^{\dagger}a + (a \wedge a)^{\dagger} = -F_B^{\dagger}$$
 (ASD equation for
 A^{\dagger})
 $F_{A^{\dagger}a}^{\dagger} = F_A^{\dagger} + d_A d^{\dagger} + a \wedge a^{\dagger}$

Thus
$$(d_B^{\dagger} \oplus d_B^{\dagger})$$
 a dies in $W^{1-l_1 2}$ because.
 $F_B \hat{B} \hat{B} \hat{B} m \operatorname{ooth} \mathcal{R} (Q \wedge R)^{\dagger} \in W^{1-l_1 2}$
Recall : $d_B^{\dagger} \oplus d_B^{\dagger} \hat{B} \hat{B}$ elliptic
So by basic elliptic regularity results gives
 $A \in W^{1,2}$.

This shows the natural map is surjective & its charly injective. The Compach fication theorem :

Defr: An ideal ASD Connection over χ of chern class k is a pain $([A], (\chi_1, \dots, \chi_d))$ When $(A] \in M(k-2)$ and (χ_1, \dots, χ_d) is a multiset of unordered l-typle of points in χ . The curvature density of $([k], (\chi_1, \dots, \chi_d))$ is the measure $(F(A))^2 + gn^2 \stackrel{2}{\underset{r=1}{\overset{2}{\sim}} S_{\chi_r}$

Defn: (Weak Convergence) Let A_{α} , $x \in \mathbb{N}$ be a sequence of Connections of chern class k. We say that $[A_{\alpha}]$ of gauge equivalence classes Converge weakly to a limiting ideal ASD Connection ([A], (x_1, ..., x_k)) if

1. The curvature densities Converge as a measure,
ie
$$\forall f \in C(x)$$

 $\int_{X} |F(A_{d}) \int f d m \longrightarrow \int_{X} |F(A)|^{2} f d m + \int_{X} g \pi^{2} \sum_{r=1}^{Q} f(x_{r})$

2. There are bundle maps

$$f_a: P_1|_{X \setminus \{a, \dots, x_{k}\}} \rightarrow P_a \mid_{X \setminus \{a, \dots, x_{k}\}}$$

such that $P_a^*(A_d)$ converges to A , C° on
Compact subsets.
This notion of Convergence endows the set of
all ideal ASP connections of fixed chann
class k with a fopology.
 $IM_k = M_k \cup M_{k-1} \times X \cup M_{k-1} \times S^*(X) \cup \dots$.
The ordinary moduli space M_k is embedded as a
open set into IM_k .
 $\rightarrow \overline{M}_k$ denotes it closure. $M_k \longrightarrow IM_k$.
Theorem:
The sequence \overline{M}_k is Compact.
Frough to Prove that any infinite sequence in M_k
has a weakly Convergent subsequence with a dimit
point is \overline{M}_k .

Patching arguements.

In the following by Govergence we mean C⁰⁰ Convergence over Compact sets.

Lemma 1 :

Suppose A_{α} is a Sequence of Connections on a bundle E over a base manifold \mathcal{L} (possibly non Compact) and let $\tilde{\mathcal{L}} \subseteq \mathcal{L}$ be an interior domain. Suppose $\exists \mathcal{U}_{\mathcal{L}} \in \operatorname{Aut} \in \mathcal{L}$ $\tilde{\mathcal{U}}_{\mathcal{L}} \in \operatorname{Aut} \in \operatorname{E}_{\mathcal{L}}$ $S. \in \mathcal{U}_{\alpha}(A_{\alpha})$ (on verges over \mathcal{L} and $\tilde{\mathcal{U}}_{\alpha}(A_{\alpha})$ Converges over $\tilde{\mathcal{L}}$. Then for any Compact set $Kc \tilde{\mathcal{L}}$ we can find a Subsequence $\{\alpha'\}c\{\alpha'\}$ and gauge transformation $\mathcal{U}_{\mathcal{L}} \in \operatorname{Aut} \in$ $st \mathcal{U}_{\mathcal{L}} = \tilde{\mathcal{U}}_{\mathcal{L}}$ in a night of $K \in \operatorname{Aut} E$ $\mathcal{U}_{\mathcal{L}} = \widetilde{\mathcal{U}}_{\mathcal{L}}$ in a night of $K \in \operatorname{Aut} E$ $\mathcal{U}_{\mathcal{L}} = \widetilde{\mathcal{U}}_{\mathcal{L}}$ in a night of $K \in \operatorname{Aut} E$

Proof:

WLOG assume uz's are identity. So over ñ both Az and ñz (Az) are Convergent Sequence of Connections.

→ take a subsequence $\tilde{\mathcal{U}}_{d}$ which converges over $\tilde{\mathcal{X}}$ to $\tilde{\mathcal{U}}$.

-> Fin a precompact about N S.F KENER -> extend is to rearbitrarily to re

$$\overrightarrow{Als} \quad Oven \quad N \quad write
$$\widetilde{u}_{\alpha'} = \exp((\underline{s}_{\alpha'})) \widetilde{u} \qquad \qquad \widetilde{u}_{\alpha'} = \exp((\underline{s}_{\alpha'})) \widetilde{u} \qquad \qquad \widetilde{u}_{\alpha'} = \exp((\underline{s}_{\alpha'})) \widetilde{u} \qquad \qquad \widetilde{u}_{\alpha'} = \operatorname{vol} (\underline{s}_{\alpha'}) \operatorname{vol} (\underline{s$$$$

Lemma 2:

Suppox that l is exhausted by an increasing sequence of precompact open sets.

$$\mathcal{U}_1 \in \mathcal{U}_2 \in \cdots \in \mathcal{L}$$
 $\bigcup_{n \in I} \mathcal{U}_n = \mathcal{L}$

Suppore A_{α} is a sequence of Connections over \mathcal{D} and for each n there is a subsequence $\mathbb{E}^{\lambda}_{\alpha}^{2} \in$ gauge transformation $u_{\alpha}^{1} \in \operatorname{Aut} \mathbb{E}|_{u_{\alpha}}$ set $u_{\alpha}^{1}(\mathcal{A}_{\alpha}^{1})$ Converges over U_{α} . Then \exists is a subsequence \mathfrak{P} a sequence of gauge transformation set the transformed Connection Converge over all \mathcal{D} .

Lemma 3 :

Suppose Ω is a union of domains $\Omega = \Omega_1 \cup \Omega_2$ and A_a is a sequence of Connections on a Bundle E over Ω . If there are sequences of gauge transformations $U_a \in Aut E|_{\Omega_1} = W_a \in Aut E|_{\Omega_2}$ $s \in V_a(A_a)$ and $W_a(A_a)$ Converge over $\Omega_1 \in \Omega_2$ Ω_2 , then $\exists a$ subsequence $\{a'g \ and \ gauge$ transformations U_a' over Ω $S \in U_a'(A_a)$ Converges over Ω .

Proof:

By Lemma 2, it suffices to Consider a Compact Subset of \mathcal{N} Covered by precompact sets $\mathcal{N}_1' \in \mathcal{N}_1 \quad \mathcal{R}_2' \in \mathcal{N}_2 \quad \mathcal{N}_1' \cup \mathcal{N}_2'$

After modifying V_{α} and taking a subsequence, we may assume $v_{\alpha} = w_{\alpha}$ on $-\Sigma_{1} ' n - \Sigma_{2} '$. Then there sequences glue together to define v_{α} over the union $-\Sigma_{1} ' v - \Sigma_{2} '$. Coroll any :

Suppose A_{d} is a sequence of Connections on a bundle E over \mathcal{L} S.t. $\forall x \in \mathcal{L}$ \exists open nbhd D_{x} of x_{d} , a Subsequence $\{z'\}^{2}$ \notin gauge transformations ∇_{d} , defined over D_{x} S.t. ∇_{d} ' (J_{d}, j) (onverges over D_{x}) Then \exists a subsequence $\{z''\}^{2}$ and gaugetransformations ν_{d} " defined over all of $-\mathcal{L}$ s.t. \mathcal{U}_{d} " $(A_{d}$ ") Converges over all \mathcal{L} .

Proof :

Again by lemma 2, we restrict to a precompact subset of D, also around this set is a finite union of nbhds D,... D_m S.t Di's satisfy the hypothesis.

Then by induction, \exists a subsequence \pounds gauge transformations s.t the transformed Connections Converge over $-\Omega_{m-1} := D_1 \cup \dots \cup D_{m-1}$. If by lemma 3 applied to the pair $-\Omega_{m-1}$, D_m gives the result From the ASD equation and Uhlenbecks theorem we get,

Theorem :

Let I be an oriented Riemannian 4 manifold. Suppose A_{d} is a sequence of LSD Connections on F Over I with the property as follows. If XEI I geodesic ball D_{x} sit $Y \ll >> 0$

$$\int_{D_x} (F(A_y))^2 dy \leq \varepsilon^2$$

When E>0 is the Constant from the gauge fining theorem. Then I a subsequence for's & gauge transformation use S.t Use(Asi) Converges over -2.

uhlenbeck's theorem :

For any Sequence of ASD Connections A_{2} over \overline{B}^{4} with $\|F(A_{2})\|_{2} \leq \varepsilon$ I subsequence $\alpha^{1} + \beta^{2}$ gauge equivalent Connections \overline{A}_{2} , which Converge in C^{∞} on the open ball.

Proof of Compactness theorem:
The proof follows from two pieces of general
the only.
It we shall consider the curvature density of an
ASD Connection as a measure.
By Reisz Representation theorem
Thro:
Let x be a Compact hausdorff Apare.
then
$$C(x)^* \simeq \text{Complex measures with total
variation norm $\mathcal{M}(x)$.
 $\Psi: \mathcal{M}(x) \longrightarrow C(x)^*$
 $\mu \longmapsto \Psi(\mu): fl \longrightarrow \int_x fd\mu$
For any sequence of possitive measures on x
with $\int_x dv_x$ boundes then by Banach - Alaoglu
theorem 3 subsequence fails Converging to a
Jimiting measure v in the sense, Ψ + Continueus
on x ,
 $\int_x f dv_x$, $\longrightarrow \int_x fdv$
week & Convergence$$

2. The second piece of theory involves interpreting
the curvature density of ASD Connection A as
a topological invariant.

$$\int_{X} (F(A))^{2} = -\int Tr(F(A)^{2}) = -gr^{2}k(E).$$
The main hole of this is to give a L^{2} bound
of the curvature of ASD Connections.
Chern - Simon invariant
Chern

then

$$T_{W}(B) = \prod_{\delta \pi^{2}} \int_{W} T_{r} \left(dB \wedge B + \frac{\rho}{3} B \wedge B \wedge B \right) \mod \mathbb{Z}.$$

This depends on the trivilization only up to a integer.

Let A be a sequence of ASD Connections on Ewith $C_{L}(E) = k$. We will first show that $\exists \hat{b} a$ finite set $\{x_1, \ldots, x_p\}$ in x set after taking a Subsequence $X \setminus \{x_1, \ldots, x_p\}$ satisfies the theorem. ehook a subsequence $\{z^1\}$ so that $|F(4)|^2$ Converge as a measure to v, then we have

$$\int_{X} dy = 8\pi^{2}k$$
So $\exists a \text{ tmost} = 8\pi^{2}k$
geodesic ball of measure > ϵ^{2} .
$$i \cdot , \qquad \int_{D_{n}} d\nu > \epsilon^{2}$$
We let then point be $\{\pi_{1}, \dots, \pi_{p}^{2}\}$.

Then by the theorem] {a''3 c Ex'3 & gauge transformations 2x" over XI gri.... 2p g S.t Man (Aan) Converges over this puncture d manifold to an ASD Connection A on El X(S.x. .- x. 3. clearly, $\int (F(4))^2 \leq 8\pi^2 k$ X ({ n ... n py then by removable ringularity theorems this extends to a Connection on a bundle El over X. E' E if p>0 as we have a strict in equality above if p > 0. v = pThe limiting measure v is $(F(A))^2 + \stackrel{p}{\geq} (\nabla f^{\ast} x_r)$. for some nr ≥ E². we need to show that $n_r \in \mathbb{Z}$. This follows from relative chern weil theory. choose digoint ballo Zr contered around xr. $T_{\partial Z_{1}}(A) = \lim_{a \to Z_{1}} T_{\partial Z_{1}}(A^{"}_{a}) \in IR/\mathbb{Z}$ After gauge transformation, the Connections Converge in C²⁰ on 22,

But we have the convergence of measures which gives. $n_r = \frac{1}{4\pi^2} \lim_{Z_1} \int Tr(F(A_{d_1})^2) - Tr(F(A)^2)$ wing the defining T_{22r} in terms of extension over the balls Z_r we see $n_r = 0 \mod \mathbb{Z}$.

Ø

E-regularity theorem.

let (N, s) be a Riemannian Hanifold. Let $inj_{g}(p)$ be the injectivity radius at $p \in M$. For a fixed $p \in M$, we let $o < rp < inj_{g}(p)$ s.t $\rightarrow \exists$ normal nbhd $(ri', \dots ri')$ cantered at p and $\exists c(p) > o$ s.t g_{ij} Satisfies. $i \cdot [g_{ij} - s_{ij}] \leq c(p) |n|^2$ $2 \cdot [\partial_k g_{ij}] \leq c(p) |n|^2$ Note: $g_{ij}(p) = \delta_{ij} \notin \partial_k g_{ij}(p) = o$. Taylor expansion about p gives the required nbhd.

Theorem 1:

then

$$\sup_{x \in B_{\frac{p}{4}}(p)} (F_{\nabla})^{2}(n) \leq \frac{C_{\varepsilon}}{p^{4}}$$

Lemma 1:

Bochner type estimate Cuiven per \mathcal{E} o < r < trijg(p) \exists c, c' > o where \rightarrow c depends on n \mathcal{E} curvature \mathcal{R}^9 on $\overline{\mathcal{B}}_r(p)$ \rightarrow c' depends on n \mathcal{E} G $\mathcal{S} \cdot \mathcal{E}$. $\Delta_9^- |F_v| \ge -c |F_v|^- - c' |F_v|^3$ on $\mathcal{B}_r(p)$. Notation: $\Delta_9^- = -dd : C^{\infty}(M) \longrightarrow c^{\infty}(M)$

Lemma 2:
Harnack - Mosen inequality
Let
$$p \in M$$
 & $0 < r < inj_{9}(p)$ & $C_{0} > \sigma$ be given.
If $u \in C^{\circ}(\widehat{B_{r}}(p))$, $u \ge \sigma$
 $\int_{9}^{-} u \ge -C_{0} u$ on $B_{r}(p)$

then

$$\sup u \leq C \int u dV_g$$

 $\frac{B_{\underline{r}}(p)}{\int} \int B_{\underline{r}}(p) depends on n, r \in \mathbb{R}^9$.

Theorem: Monotonicity formula

Let $p \in M$, $r_p \notin C(p)$ are as defined before. Then $J = a(n, p, q) \neq O(1) C(p)$ s.t the following holds.

Proof of main theorem :

The stated bounds wordt be affected by the scaling g -> Ag, P -> A^{Y2} p for some Constant A>0. So, we Can Suppose t=1. $\mathcal{E} = \int |F_{\nabla}|^2 dv_g \in \mathcal{E}_0$ B, (P) we have to prove E>0 sufficiently small $\sup |F_{\nabla}|^2(x) \leq C \varepsilon$ ·ιε β. (p) Define a function $f:[0,1] \longrightarrow [0,\infty)$ $r \longmapsto (1-r)^2 \sup |F_v|(n)$ ie Br(P) $i = P \leq r_P < inj_g(P)$

$$r \longmapsto \sup \left\{F_{\theta}\left[ln\right] \text{ is Continuous on } \left[0,1\right]\right\}$$

$$\Rightarrow f \text{ is Continuous } \theta \text{ attains maximum } Say at r_{0} \in \left[0,1\right]$$

$$\bullet \text{ b:= } \sup |F_{0}|(n) \\ x \in B_{r_{0}}(n)$$

$$\bullet x_{0} \in B_{r_{0}}(n) \quad \text{ s.} + |F_{0}|(n) = b$$

$$\bullet \quad \sigma := \frac{1}{2}(1-r_{0}) \\ \text{ s.}, \quad f(r_{0}) = 4\sigma^{2}b \\ \text{ s.}, \quad f(r_{0}) = 4\sigma^{2}b \\ \text{ s.}, \quad f(r_{0}) = 4\sigma^{2}b \\ \text{ clearly } F_{0} = 0 \text{ on } B_{1}(p) \iff f = 0 \iff b = 0 \iff \sigma = 0 \\ \iff r_{0} = 1 \\ \text{ If } f = 0 \text{ then we are done. The descried bound } \\ \text{ follows } f_{0} \text{ any } (>0. \\ \text{ If } f \neq 0 \text{ is } \sigma > 0 \\ \text{ then } Sup \left[F_{0}|(n) \leq Sup \quad (F_{0}|(n) \\ x \in B_{\sigma}(r_{0}) \\ = \frac{1}{(1-(\sigma+r_{0}))^{2}} \\ \leq \frac{1}{(1-(\sigma+r_{0}))^{2}} \\ \text{ for } r_{0} = \sigma > 0 \\ = \frac{1}{\sigma^{2}} f(r_{0}) = 4b \\ \end{cases}$$

 $\frac{\text{claim}:}{f(r_0) \leq 16} \quad \text{if} \quad E_0 = E_0(n, p, g, G) \quad \text{in} \\ \text{Small enough.} \\ \frac{\text{Proof:}}{\text{Suppose } f(r_0) > 16} \\ \Rightarrow \sigma \sqrt{b} > 2 \\ \text{clefine } \tilde{g} := bg \\ g_0, \quad (F \neq) g = \frac{1}{b} |F \neq |_g \end{cases}$

$$B_{\sigma, f_{b}}(x_{\bullet}; \tilde{g}) = B_{\sigma}(x_{\bullet}; g)$$

$$\begin{split} & \sup \left(F_{\nabla} \right|_{\mathcal{S}}^{(n)} \leq \sup \left(F_{\nabla} \right)_{\mathcal{S}}^{(n)} \leq \sup \left(F_{\nabla} \right)_{\mathcal{S}}^{(n)} \\ & x \in \mathcal{B}_{\sigma, \Gamma_{b}}^{(n)} \left(n_{\sigma}; \tilde{g} \right) \\ & = \frac{1}{b} \sup \left(F_{\nabla} \right)_{g}^{(n)} \\ & b \quad x \in \mathcal{B}_{c}^{(n_{\sigma}, q)} \end{split}$$

we have from, limma 1, $\Delta \tilde{g} \left(F v \right)_{\tilde{g}}^{2} \geq -C \left(F v \right)_{\tilde{g}}^{2} - C' \left(F v \right)_{\tilde{g}}^{3}$ on $B_{2}(v_{0}; \tilde{g})$ From (*) we have

$$\Delta_{\overline{g}} \left(f_{\overline{v}} \right)_{\overline{g}}^{2} \ge - \left(c + \epsilon c^{1} \right) \left[F_{\overline{v}} \right]_{\overline{g}}^{2}$$
 on $B_{2}(x_{0}; \tilde{g})$

From lemma 2, we obtain

$$1 = |F_{\nabla}|_{\widetilde{g}}^{2}(x_{0}) \leq \widetilde{C} \int (F_{\nabla}|_{\widetilde{g}} dV_{g}) \\ B_{1}(x_{0};\widetilde{g})$$

We know that
$$\sigma \sqrt{b} > 2$$

 $\sigma \leq 1$, $b > 0 \neq 1 = p \leq rp$
 $\Rightarrow 0 < \frac{1}{\sqrt{b}} < \frac{1}{2} < rp$
 $\int_{B_{1}(r_{0}, \tilde{g})} |f_{v}|^{\frac{n}{2}} dv_{g} = \left(\frac{1}{\sqrt{b}}\right)^{\frac{n}{2}-n} \int_{B_{\frac{1}{2}}(r_{0}, g)} |f_{v}|^{\frac{n}{2}} dv_{g} \quad (\tilde{g} = b_{g})$
 $= \left(\frac{1}{\sqrt{b}}\right)^{\frac{n}{2}-n} e^{\frac{n}{b}} \int_{B_{\frac{1}{2}}(r_{0}, g)} e^{\frac{n}{b}} \geq 1$
 $B_{\frac{1}{2}}(r_{0}; g)$
here "a" from montonicity
Now apply monotonicity lumma
 $\leq \left(\frac{1}{2}\right)^{\frac{n}{2}-n} e^{\frac{n}{4}} \int_{B_{\frac{1}{2}}(r_{0}; g)} |f_{v}|^{\frac{1}{2}} dv_{g}$
 $\leq 2^{n+1} e^{\frac{n}{4}} \frac{\xi_{0}}{2}$
So we have $(\leq 2^{n-\frac{n}{4}} e^{\frac{n}{4}} \xi_{0})$

If
$$\varepsilon_{\sigma}$$
 is chosen Sufficiently Small
this gives a Contradiction
So we have $f(r) \le 16$ $\forall r \in [0, 1]$
take $r = \frac{1}{2}$
Sup $|f_{\sigma}|(n) \le 64$
 $n \in B_{\frac{1}{2}}(p)$
Apply Lemma 1 again
 $\Lambda_g = |F_{\nabla}|^2 \ge -(c + 6f c^1) |F_{\nabla}|^2$ on $B_{\frac{1}{2}}(p)$
Apply Lemma 2 again to obtain the
suguined result.