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1 Homology and Cohomology
First we recall the Poincare duality isomorphism. Later we will use it to define the intersection
form.

Theorem 1.1. Let - be a closed orientable 4-manifold, then we have an isomorphism

%� : � 8(-;Z) �−−−−−→ �2−8(-;Z).

Now we denote by %�−1(G) the Poincare dual of any homology class [G] ∈ �2−8(-;Z).
Next we will show an easy but important fact about the homology and cohomology of simply-

connected four manifolds.

Theorem 1.2. Let - be a simply-connected closed oriented 4-manifold, then�2(-,Z) is a free abelian group.

Proof. This is a simple computation: We have:

�2(-;Z) � �2(-;Z).

Where we use Poincare duality. And also

�1(-;Z) = Ab(�1(-)) = 0.

Thus by the universal coefficient theorem:

�2(-,Z) = Ext1
Z(�1(-;Z),Z) ⊕ Hom(�2(-;Z),Z)

= Hom(�2(-;Z),Z).

Since �2(-;Z) is fin. generated we have that Hom(�2(-;Z),Z) is free. �
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Can we see �2(-;Z) � �2(-;Z) geometrically?

• For 
 ∈ �2(-;Z) choose a complex line bundle ! s.t. 21(!) = 
.

• Take a generic section �

• We have an embedded surface Σ
 = �−1(0)

• [Σ
] = %�(
)

Note: Different construction using Eilenberg-MacLean spaces in appendix of notes.
Next we will define an additional structures on �2(-;Z). Namely we will define the intersection
form or intersection product. Please note that we do not assume the manifold to be smooth for this.
But first we need to quickly recall relevant notions from algebraic topology.

2 Intersection Forms
Recall that for any homology class 0 ∈ �2(-;Z) and cohomology class 1 ∈ �2(-;Z) the cap product
is a bilinear map

⌢: �?(-;Z) × �@(-;Z) → �?−@(-;Z).
Note the important fact that the Poincare isomorphism is given by 
 ↦→ [-] ⌢ 
 for the fundamental
class [-] ∈ �=(-;Z). We also have the Kronecker pairing

〈·, ·〉 : �?(-;�) × �?(-;�) → �.

It descends from the evaluation of a cochain on a chain. The last thing we have is the cup product
which is a bilinear map

⌣: � 8(-;Z) × � 9(-;Z) → � 9+8(-;Z).
Now we have everything we need to make this definition:

Definition 2.1. Let - be a closed oriented topological 4-manifold. Then the bilinear map

& : �2(-;Z) × �2(-;Z) −−−−−→ Z

given by
(
, �) ↦→ 〈
 ⌣ �, [-]〉

is called (cohomology) intersection form of -.

Here we should keep in mind that choosing a fundamental class [-] ∈ �4(-;Z) is the same as
choosing an orientation of -.
This is a very algebraic definition. For a smooth fourmanifoldwe can interpret it in amore geometric
way:

Theorem 2.1. Let - be closed oriented simply-connected smooth 4-manifold. Let 
, � ∈ �2(-;Z) and
[Σ
], [Σ�] ∈ �2(-;Z) be their duals. There are closed 2-forms $
 and $� representing 
, � such that

&(
, �) = 〈
 ⌣ �, [-]〉 = Σ
 · Σ� =

∫
-

$
 ∧ $� .

Since �2(-;Z) is torsion free we can go forth and back between integral and de Rahm
cohomology.
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Proof. First we notice:

&(
, �) = 〈
 ⌣ �, [-]〉 = 〈
, [-] ⌢ �〉
= 〈
, %�(�)〉 = 〈
, [Σ�]〉

Switching to de Rahm cohomology:

〈
, [Σ
]〉 =
∫
Σ�

$


Now we have to show: ∫
Σ�

$
 = Σ
 · Σ�

ChooseΣ
 t Σ�. Then we have a finite number of intersection points. Since $
 vanishes away from
Σ
 it is enough to compute the integral at the intersection points.
Around any intersection point choose U and oriented local coordinates G1 , G2 , G3 , G4 s.t.

U ∩ Σ
 = {G3 = G4 = 0} U ∩ Σ� = {G1 = G2 = 0}
and U ∩ Σ
 is oriented by 3G1 ∧ 3G2. Then

$
 = 5 (G3 , G4)3G3 ∧ 3G4

for a bump function 5 : R2 → R. Then∫
U∩Σ�

5 (G3 , G4)3G3 ∧ 3G4 = ±1

depending on orientation.
By summing over all intersection points we get:∫

Σ�

$
 = Σ
 · Σ� .

For the last equality we have:

〈$, [#]〉 =
∫
#

$

[$1 ∧ $2] = [$1] ⌣ [$2]
Giving us

&(
, �) =
∫
-

$
 ∧ $� .

�

Theorem 2.2. Let - be closed oriented simply-connected 4-manifold. Then &- is unimodular, i.e. 0 →
&(·, 0) and 1 → &(1, ·) are isomorphisms.
Proof. By the universal coefficient theorem

�2(-;Z) → Hom(�2(-;Z))

 ↦→ 〈
, ·〉

is an isomorphism. This suffices, as

&(
, �) = 〈
, %�(�)〉
and & is symmetric. Here using the cohomology intersection form really comes in handy, cutting
the proof by half. �
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This simple example might show how useful our geometric interpretation is when it comes to
concrete computations:

Example 2.1. Consider
- = (2 × (2.

Then
�2(-;Z) = 〈%�−1([{pt} × (2]), %�−1([{pt} × (2])〉.

And
& �

(
0 1
1 0

)
What happens if �2(-;Z) is not free?
Let 
 ∈ �2(-;Z) s.t. = · 
 = 0, then

=&(
, �) = &(= · 
, �) = &(0, �) = 0.

So we can define

&̃ :
(
�2(-;Z)�Ext1

Z(�1(-;Z),Z)

)2

−−−−−→ Z

and use the arguments there. Sometimes this is also given as the definition of the intersection form.
With this definition we also get unimodularity without the assumption of a simply-connected
manifold. Next we look at some invariants of intersection forms:

• Parity:
If &(
, 
) ∈ 2Z∀
 ∈ �2(-;Z)we call & even. Otherwise it is called odd.

• Definiteness:
If &(
, 
) > 0∀
 ∈ �2(-;Z) we call & positive-definite. If &(
, 
) < 0∀
 ∈ �2(-;Z) we call
& negative-definite. Otherwise it is called indefinite.

• Rank:
The second Betti number 12(-) is called the rank of &.

• Signature:
Over R & has 1+2 positive and 1−2 negative eigenvalues. We call

sign& = 1+2 − 1−2

the signature of &.

Theorem 2.3 (Hasse-Minkowski). Let � be a free Z module. If & : � × � → Z is an odd indefinite
bilinear form then

& � ;(1) ⊕ <(−1)
with ; , < ∈ N0. If & : � × � → Z is an even indefinite bilinear form then

& � ;

(
0 1
1 0

)
⊕ <�8

with ; , < ∈ N0.
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�8 =

©­­­­­­­­­­«

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2

ª®®®®®®®®®®¬
What about definite forms?

• No easy classification

• Many exotic forms

• Number of unique even definite forms of some ranks:

Rank 8 16 24
# 1 2 5

These numbers grow rapidly with rank and contain no structure (known to me).

Warning: Any intersection form is diagonalizable over Q but might not be over Z.

Exercise. Show that (
0 1
1 0

)
is not diagonalizable over Z.

3 Homotopy Type
We will now find a direct link between homotopy type and intersection form of four manifolds.

Theorem 3.1 (Milnor (1958)). The oriented homotopy type of a simply-connected closed oriented 4-manifold
is determined by its intersection form.

We need to use an oriented homotopy type here because the intersection form depends on orienta-
tion up to sign.

The proof is not given here in detail but rather only sketched. There is a reference to the full
proof included below.

Proof. Define -′ = - \ �4. Then

�:(-′;Z) =
{
�2(-) : = 2
0 : = 1, 3, 4

.

By Hurewicz’s theorem:
5 : (2 ∨ ... ∨ (2 → -′

represents �2(-) � �2(-′;Z). This induces an isomorphism

�:((2 ∨ ... ∨ (2;Z) � �:(-′;Z)
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for every :.
Thus

- ' ((2 ∨ ... ∨ (2) ∪ℎ 44

with [ℎ] ∈ �3((2 ∨ ... ∨ (2). Left to show: [ℎ] depends only on &. Complete proof can be found in:
[1, p.141ff] Sketch:

• [-] ∈ �4(-;Z) corresponds to [44] ∈ �4(((2 ∨ ... ∨ (2) ∪ℎ 44;Z)

• (2 ∨ · · · ∨ (2 = CP1 ∨ · · · ∨ CP1 ⊂ CP∞ × · · · × CP∞

• Long exact sequence on relative homotopy groups:

�4(×<CP∞) −−−−−→ �4(×<CP∞ ,∨<(2) −−−−−→ �3(∨<(2)

−−−−−→ �3(×<CP∞)

• CP∞ is  (Z, 2) =⇒

�3(∨<(2) � �4(×<CP∞ ,∨<(2) � �4(×<CP∞ ,∨<(2)

• �3(∨<(2) � �4(×<CP∞ ,∨<(2) � �4(×<CP∞ ,∨<(2)

• Oriented manifold: [ℎ] is determined by 
:(ℎ∗([44])) for 
1 , ..., 
; basis of �4(×<CP∞).

• Basis is given by cupping %�−1([(2
8
]). Since

�2(×<CP∞) � �2(∨<(2) � �2(-′;Z) = �2(-;Z)

these classes can be seen in -.

• We are done since 〈%�−1([(2
8
]) ⌣ %�−1([(2

9
]), ℎ∗([44])〉 = 〈$8 , $ 9 , [-]〉 = &($8 , $ 9)

�

Exercise. Fill in the gaps in the proof sketch.

4 The “Big” Structure Theorems
Theorem 4.1 (Freedman). Let & be an quadratic (i.e. unimodular symmetric bilinear) form over Z, then
there exists a topological 4-manifold " s.t. & is (up to isomorphism) the intersection form of ". If & is
even, then " is unique.

Theorem 4.2 (Rohlin). Let - be a simply-connected closed oriented smooth 4-manifold with F2(-) = 0.
Then

sign&- ∈ 16Z.

The original proof by Rohlin is very involved. Simpler proof due to Atiyah and Singer using the
Atiyah-Singer index theorem. Reference: [2, Theorem 29.9] Such a manifold is also called a spin
manifold and it is not by accident that the above proof can be found in lecture notes on “spin
geometry”. The spin condition is actually equivalent to the intersection form being even so that we
get this corollary:

Corollary 4.2.1. Let - be a simply-connected closed oriented smooth 4-manifold with even intersection
form &- . Then

sign&- ∈ 16Z.
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Another exciting result we get directly is the existence of four manifolds without any smooth
structures.

Corollary 4.2.2. There exists a simply-connected closed 4-manifold �8 with intersection form �8 that has no
smooth structure.

Proof. �8 is a negative definite even form with signature -8. The existence is given by Freedman’s
theorem. �

Now we have arrived at the theorem that is the holy grail we are chasing in this seminar:

Theorem 4.3 (Donaldson). Let - be a simply-connected closed smooth 4-manifold. If & is definite, & is
diagonalizable over Z.

Corollary 4.3.1. Let - be a simply-connected closed smooth 4-manifold. If & is positive-definite then

- � #:CP2

as topological manifolds.

5 Whitney Disks and the Failure of the h-Cobordism Principle in
Dimension Four

In this last section I will briefly go over the intuition of why dimension four is so different from
dimension five and up.

Definition 5.1. Let" and # be closed simply-connectedmanifolds and, be a cobordism between
them (i.e. %, = " ∪ #̄). If the inclusions " → , and # → , are homotopy equivalences, then
" and # are called h-cobordant.

Theorem5.1 (Wall). Two simply-connected four-manifoldswith isomorphic intersection formare h-cobordant.

Theorem 5.2 (Smale (1961)). Let " and # be cobordant smooth n-manifolds with = > 4. Then " and #
are diffeomorphic.

Warning: This theorem only holds for = ≥ 5.

Why does the (smooth) h-cobordism principle fail in dimension four?

• Short answer:

The statement
2 + 2 < 4

is optimistic but sadly wrong!

• That is not so helpful, we are looking for a longer answer.

Strategy of the proof in higher dimensions:

• Goal: Show that, � " × [0, 1]

7



Figure 1: Cancelling an index 0 critical point with an index 1 critical point. From [3]

Figure 2: Analogy in dimension three showing (+ and (− intersection transversely and the resulting
flow line. From [3]

• Choose a Morse function 5 : , → [0, 1]with 5 (") = 0 and 5 (#) = 1

• If 5 has no critical values we are done!

• Idea: Modify 5 s.t. all critical values disappear

Removing critical points of index 0, 1, 4, 5 works in dimension four. But: Canceling critical points
of index 3 and 2 does not work (with this method).

• Suppose 5 has two critical points: ? of index 2 and @ of index 3

• Let ? and @ be separated by /1/2 = 5 −1( 12 )

• Fact: ? and @ can be canceled if there is exactly one flow line from ? to @

We define

(+ = {G ∈ /1/2 | G flows to ? as C →∞}
(− = {G ∈ /1/2 | G flows to @ as C → −∞}.

These are embedded spheres. If (− t (+ is a single point we can glue the flow lines and are done.
The algebraic intersection number is 1 because , is h-cobordism. Problem: The geometric inter-
section number might not agree! We need an isotopy to correct this.
Usual procedure:
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Figure 3: Removing intersection points in pairs. From [3]

• Choose intersection points with opposite signs, e.g. G and H

• Find path 
 ⊂ (+ and � ⊂ (− joining them

• , simply-connected =⇒ 
 ∪ � inessential

• There is a disk � ⊂ , with %� = 
 ∪ �

• If the disk lies outside (+ and (− we get an isotopy removing the intersection points

In dimension = ≥ 5:

• � is generically embedded

• � generically does not intersect (+ and (− in any interior points

In dimension four on the other hand both is not true! The intersection formmakes this clear.

With the existence of non-smooth manifolds one the one hand and the failure of the h-cobordism
on the other hand, we see that the topology and geometry of four-manifolds is quite unique.

6 Appendix
6.1 Dual Surfaces via Eilenberg–MacLane Spaces
The concept from algebraic topology we need is that of an Eilenberg–MacLane space.

Definition 6.1. Let = > 0 and� be an abelian group then a space  (�, =) is called Eilenberg-McLane
space if it is a CW-complex and

�:( (�, =)) =
{
� if : = =
0 otherwise
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holds.

Remark. The space  (�, =) is unique up to homotopy.
Now we can make an important connection between the cohomology groups of a manifold (any
CW-complexwillwork actually) and the homotopy classes ofmaps from the space into anEilenberg-
MacLane space. Indeedwewill see that for the correct Eilenberg-McLane space they are isomorphic.
And it is an isomorphism that is concrete enough so we can actually understand it. One important
thing to remember in order to define this is that a continuous map 5 : - → . induces a homomor-
phism 5 ∗ : �•(.;�) → �•(-;�) on cohomology. First we notice the following connection:

�=( (�, =);�) � Ext1
Z(�=−1( (�, =)), �) ⊕ Hom(�=( (�, =)), �) � Hom(�, �).

So we can choose an element in�=( (�, =);�) representing id ∈ Hom(�, �). This element is called
the canonical cohomology class and denoted �= . Now we can see this more powerful connection:

Theorem 6.1. Let - be a topological space and � an abelian group. Then define a map

[- :  (�, :)] −−−−−→ � :(-;�)

by
[F] ↦→ F∗(�:).

This map is well-defined and an isomorphism if - is a CW-complex.

Using this isomorphismwe can find embedded surfaces (
 dual to cohomology class 
 ∈ �2(-;Z).
In the following let - be a smooth closed oriented 4-manifold.

Strategy for 
 ∈ �2(-;Z):

• Observe

�2(-;Z) � [- :  (Z, 2)] � [- : CP∞] � [- : CP2].

• Identify %�−1([CP1]) ∈ �2(CP2;Z) (henceforth just [CP1]) with �2 ∈ �2( (Z, 2);Z).

• Choose generic 5
 t CP1 s.t. [ 5
] = 
 i.e.

5 ∗
([CP1]) = 5 ∗
(�2) = 
.

• Define (
 = 5 −1

 (CP1). This is an embedded surface by transversality.

• With this construction [(
] = %�(
) ∈ �2(-;Z).
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