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Intersection forms and Donaldson’s theorem (review)

Review: 4-manifolds and intersection forms

I always: X closed oriented simply connected 4-manifold
I Hi (X ) trivial for i 6= 2 → focus on H2(X ;Z) ∼= H2(X ;Z)
I H2(X ;Z) corresponds to intersection form

QX : H2(X ;Z)× H2(X ;Z)→ Z, (α, β) 7→ 〈a ∪ b, [X ]〉,

QX is symmetric, Z-bilinear and unimodular

I three basic invariants
I parity: Q is even iff im(Q) ⊂ 2Z, otherwise odd
I rank: rk(Q) = b2(X ) = dimQ H2(X ;Q)
I signature: signQ = b+

2 − b−2
I Freedman ’82: for topological manifolds,

X 7→ QX is surjective and at most two-to-one.
I Rohlin ’52: X smooth with QX even ⇒ signQX ∈ 16Z
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Intersection forms and Donaldson’s theorem (review)

Review: intersection forms and Donaldson’s theorem

I indefinite unimodular forms are classified by the rank, signature and
parity

I Hasse-Minkowski theorem: all indefinite unimodular forms are
l(1)⊕m(−1) (odd type) or l

(
0 1
1 0

)
⊕mE8 (even type).

I definite forms: many exotic examples
I diagonalisable over Q, but not necessarily over Z

Donaldson’s theorem (1983)
X oriented closed simply connected smooth 4-manifold with QX definite.
Then QX is diagonalisable.
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Classification of reducible connections

Recall: setup and reducible connections

I G compact Lie group: G = SO(3) or G = SU(2),
X compact simply connected oriented Riemannian 4-manifold,
E → X G-principal bundle.

I A = {connection 1-forms on E},
B = A/G quotient by gauge group G of E ,
M = {[A] ∈ B : F+

A = 0} moduli space of ASD instantons.

I Each A ∈ A has
I a holonomy group HA

Lie
≤ Aut(Ex ) ∼= G and

I an isotropy group ΓA = {u ∈ G : u(A) = A}.
I For X connected, ΓA is isomorphic to the centraliser of HA.
I A is reducible ⇔ HA 6 G is a proper subgroup
⇔ Z (G) 6 ΓA is a proper subgroup.
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Classification of reducible connections

Classification of reducible connections

Proposition
If G = SU(2) or SO(3) and H 6 G is a closed connected Lie subgroup, then
H = {id}, H = G or H ∼= S1.
HA = {id} means E is trivial and A is the product connection.
For SU(2)-bundles,

HA ∼= S1 ⇔ E ∼= L⊕ L−1 ⇔ c2(E ) = −c1(L)2

for a complex line bundle L; for SO(3)-bundles

HA ∼= S1 ⇔ E ∼= R⊕ L⇔ p1(E ) = c1(L)2.
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Classification of reducible connections

Classification of reducible connections (cont.)
For SU(2)-bundles,

HA ∼= S1 ⇔ E ∼= L⊕ L−1 ⇔ c2(E ) = −c1(L)2

for a complex line bundle L; for SO(3)-bundles
HA ∼= S1 ⇔ E ∼= R⊕ L⇔ p1(R⊕ L) = c1(L)2.

Fact
A line bundle L over X admits an ASD connection
iff c1(L) is represented by an ASD 2-form,
and the connection is unique up to gauge equivalence.
Proposition
Reducible ASD connection 1-forms with holonomy group ∼= S1
↔ pairs {c,−c} where c 6= 0 ∈ H2(X ;Z) satisfies
c2 = −c2(E ) (for G = SU(2)) resp. c2 = p1(E ) (for G = SO(3)).
Corollary
If QX is definite, there are only finitely many reducible connections (up to
gauge equivalence).
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Kuranishi models near reducible connections

Locals models of the moduli spaceM

Recall that
I G is an infinite-dimensional Banach Lie group, the action G × A → A is a

smooth map of Banach manifolds.
I Its differential in G at A ∈ A is −dA : Ω0(gE )→ Ω1(gE ),

with ASD part is d+
A : ker d∗A → Ω+

X (gE ).
I δA := d+

A ⊕ d∗A is elliptic, hence Fredholm.

Proposition
If A is an ASD connection over X, a neighbourhood of [A] inM
is modelled on a quotient f −1(0)/ΓA,
where f : ker δA → coker d+

A is a ΓA-equivariant map.
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Kuranishi models near reducible connections

Local models near reducible connections (cont.)

Let A be a reducible connection, G = SU(2) or G = SO(3).
I Case 1: HA ∼= S1

Since S1 is abelian, CG(HA) = HA, hence ΓA ∼= S1.
Near a reducible connection with HA ∼= S1, M is modeled on a
quotient Rn/S1, a cone over projective space.

I Case 2: HA is trivial. In this case, ΓA ∼= CG(HA) = G .
B has a stratification B =

⊔
[Γ]∈C BΓ with strata

BΓ := {[A] ∈ B : ΓA ∼=conj Γ},

where C = {Γ 6 G : closed subgroup}/conjugation.
Near a reducible connection with HA = {id},
M is modeled on a cone over a singular space.
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Proof of Donaldson’s theorem

Donaldson’s theorem: proof outline

Recall: Donaldson’s theorem
X oriented closed simply connected smooth 4-manifold with QX definite.
Then QX is diagonalisable.

Proof outline
I Take a suitable SU(2)-bundle E → X ;

considerM = {ASD connections}.
I Collar theorem: M∗ smooth manifold with ideal boundary X .
I Truncate: cut a neighbourhood of each reducible connection
⇒ cobordism between X and disjoint union of CP2’s.

I Use cobordism invariance of signature and a small computation.
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Proof of Donaldson’s theorem

Proof of Donaldson’s theorem

I Suppose w.l.o.g. QX is negative definite, i.e. b+ = 0.
I Let E → X be a smooth SU(2)-bundle with c2(E ) = 1, consider
M := {smooth ASD connections on E}.

I Choose a generic metric on X , thenM∗ is a smooth manifold of
dimension 8 · 1 + 3 · (b1 − b+ − b0) = 5.

I Finitely many reducibles [Ae], correspond to {e,−e} ⊂ H2(X ;Z) with
e2 = −c2(E ) = −1.

I Near each [Ae],M is modelled as C3/S1, a cone over CP2.
I Choose a conical neighbourhood Ue of each [Ae], denote

Pe := ∂Ue ∼= CP2. LetM′ :=M\ (U ∪
⋃

e Ue).
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Proof of Donaldson’s theorem

Proof of Donaldson’s theorem (cont.)
Truncated moduli space: M′ :=M\ (U ∪

⋃
e Ue).

I Denote n(QX ) := #reducibles:
M′ is a cobordism between X and teUe ∼=

⊔n(QX )
k=1 CP2 =: Y .

Figure: Sketch of the moduli spaceM′. Figure taken from Donaldson-Kronheimer,
The Geometry of four-manifolds, 1990.
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Proof of Donaldson’s theorem

Proof of Donaldson’s theorem (cont.)

X is cobordant to Y :=
⊔n(QX )

k=1 CP2.

Lemma (Algebraic fact)
n(QX ) ≤ rk(QX ) with equality iff QX ∼= n(−1).

Proposition
If W is an oriented cobordism between closed simply connected 4-manifolds,
sign(QX ) = sign(QY ).
QX is negative definite: sign(QX ) = −rk(QX ), thus

rk(QX ) = |sign(QX )| = |signQY | ≤ n(QX ) sign(CP2)︸ ︷︷ ︸
=+1

= n(QX ),

thus signQX = n(Q) and Q is diagonalisable.
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Proof of Donaldson’s theorem

Proof of Donaldson’s theorem (concluded)
Lemma (Algebraic fact)
Let Q be a negative definite quadratic form over Z. Denoting
n(Q) := #{{α,−α} : Q(α, α) = −1}, we have n(Q) ≤ rk(Q)
with equality iff Q is diagonalisable, i.e. Q ∼= n(−1).

Proof sketch.
I Induction over r = rk(Q). Base case is clear.
I If α satisfies Q(α, α) = −1, get a splitting

Zr = Zα⊕ α⊥, β 7→ 〈β, α〉α⊕ (α− 〈β, α〉α).

I Since Q is definite, n(Q) = 1 + n(Q|α⊥) and rk(Q|α⊥) + 1.

About cobordism-invariance of the signature:
I Chern-Weil theory implies that p1(TX ) is cobordism-invariant.
I Hirzebruch signature theorem relates p1(TX ) and sign(QX ).
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Fintushel-Stern’s proof of Donaldson’s theorem

Fintushel-Stern’s proof of Donaldson’s theorem

Theorem
There is no smooth, oriented simply connected closed four-manifold X with
intersection form QX ∼= −E8 ⊕−E8.

Proof sketch
I Suppose there were. Choose e ∈ H2(X ;Z) with e2 = −2.
I Consider the SO(3)-bundle F = L⊕ R, where c1(L) = e.
I Fix a regular Riemannian metric on X (are generic).

Virtual dimension is 1, henceM∗F is 1-dimensional.
I Since dimMF = 1, boundary strataMF (r) have negative dimension,

hence empty ⇒MF compact.
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Fintushel-Stern’s proof of Donaldson’s theorem

Fintushel-Stern’s proof of Donaldson’s theorem (cont.)
I Consider the norm ‖α‖ = −〈α, α〉.
I A reducible ASD connection corresponds to {f ,−f }, where

f 6= 0 ∈ H2(X ;Z) with f 2 = p1(F ) = c1(L)2 = e2. Thus,
f = e(mod2) and ‖f ‖ = ‖e‖.

I By first condition, m := e+f
2 ∈ H2(X ;Z).

By Cauchy-Schwartz ‖m2‖ ≤ ‖e‖2 = 2; equality iff e = f = m.

I Thus, f 6= e implies ‖m‖ ∈ {0, 1}. But E8 ⊕ E8 is even and doesn’t
contain a vector of length one.
Hence, m = 0 and f = −e. Thus,MF contains exactly one reducible
connection [Ae], corresponding to {e,−e}.

I Local models: [Ae] has neighbourhood inMF modelled on a cone over
CP0 = {pt}, i.e. a closed half-line.

⇒ MF compact 1-mfd with one boundary point, contradiction!
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Fintushel-Stern’s proof of Donaldson’s theorem

Comparison of proofs

Donaldson’s proof
I crucially relies on the non-compactness ofM
I uses cobordism invariance of signature

Donaldson-Kronheimer: replace by a computation of topology of B
I this generalises to non-definite forms as well

Fintushel-Stern’s proof
I uses compactness properties: E8 ⊕ E8 contains no length one vector

not enough energy for bubbling, don’t need collar theorem/gluing map
I depends on lattice
I can be adapted for general lattices, but requires QX definite.
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Fintushel-Stern’s proof of Donaldson’s theorem

Appendix
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Proof: Lie subgroups of G

Proposition
If G = SU(2) or SO(3) and H 6 G is a closed connected Lie subgroup, then
H = {id}, H = G or H ∼= S1.

Proof sketch.
Let H 6 G be connected and closed subgroup.
Is a Lie subgroup. By the subgroups-subalgebras theorem,

{Lie subgroups H 6 G} 1:1↔ {Lie subalgebras h ⊂ g},H 7→ TidH.

In our case, su(2) ∼= so(3) = {A ∈ R3×3 : A + At = 0}.
Choose basis and compute: (so(3), [·, ·]) ∼= (R3,×).
=> h cannot have dimension two, so H has dimension 0, 1 or 3.
⇒ H = {id}, H = G or H ∼= S1.
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