Analysis of reducibles and Donaldson's theorem

Michael B. Rothgang (he/him)

Symplectic geometry group Humboldt-Universität zu Berlin

Gauge theory seminar February 02, 2021

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

February 02, 2021 1 / 19

Intersection forms and Donaldson's theorem (review)

Classification of reducible connections

Kuranishi models near reducible connections

Proof of Donaldson's theorem

Fintushel-Stern's proof of Donaldson's theorem

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

Review: 4-manifolds and intersection forms

- ► always: X closed oriented simply connected 4-manifold
- $H_i(X)$ trivial for $i \neq 2 \rightarrow$ focus on $H_2(X; \mathbb{Z}) \cong H^2(X; \mathbb{Z})$
- $H^2(X;\mathbb{Z})$ corresponds to intersection form

 $Q_X \colon H^2(X;\mathbb{Z}) \times H^2(X;\mathbb{Z}) \to \mathbb{Z}, (\alpha,\beta) \mapsto \langle a \cup b, [X] \rangle,$

 Q_X is symmetric, \mathbb{Z} -bilinear and unimodular

Review: 4-manifolds and intersection forms

- always: X closed oriented simply connected 4-manifold
- $H_i(X)$ trivial for $i \neq 2 \rightarrow$ focus on $H_2(X; \mathbb{Z}) \cong H^2(X; \mathbb{Z})$
- $H^2(X;\mathbb{Z})$ corresponds to intersection form

 $Q_X \colon H^2(X;\mathbb{Z}) \times H^2(X;\mathbb{Z}) \to \mathbb{Z}, (\alpha,\beta) \mapsto \langle \mathsf{a} \cup \mathsf{b}, [X] \rangle,$

 Q_X is symmetric, \mathbb{Z} -bilinear and unimodular

three basic invariants

- **•** parity: *Q* is even iff $im(Q) \subset 2\mathbb{Z}$, otherwise odd
- rank: $\operatorname{rk}(Q) = b_2(X) = \dim_{\mathbb{Q}} H_2(X; \mathbb{Q})$

• signature: sign
$$Q = b_2^+ - b_2^-$$

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

Review: 4-manifolds and intersection forms

- ► always: X closed oriented simply connected 4-manifold
- $H_i(X)$ trivial for $i \neq 2 \rightarrow$ focus on $H_2(X; \mathbb{Z}) \cong H^2(X; \mathbb{Z})$
- $H^2(X;\mathbb{Z})$ corresponds to intersection form

 $Q_X \colon H^2(X;\mathbb{Z}) \times H^2(X;\mathbb{Z}) \to \mathbb{Z}, (\alpha,\beta) \mapsto \langle a \cup b, [X] \rangle,$

 Q_X is symmetric, \mathbb{Z} -bilinear and unimodular

three basic invariants

- **• parity**: *Q* is *even* iff $im(Q) \subset 2\mathbb{Z}$, otherwise *odd*
- rank: $\operatorname{rk}(Q) = b_2(X) = \dim_{\mathbb{Q}} H_2(X; \mathbb{Q})$
- signature: sign $Q = b_2^+ b_2^-$
- ► Freedman '82: for topological manifolds, X → Q_X is surjective and at most two-to-one.
- ▶ Rohlin '52: X smooth with Q_X even \Rightarrow sign $Q_X \in 16\mathbb{Z}$

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

Review: intersection forms and Donaldson's theorem

- indefinite unimodular forms are classified by the rank, signature and parity
- ► Hasse-Minkowski theorem: all indefinite unimodular forms are $l(1) \oplus m(-1)$ (odd type) or $l\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \oplus mE_8$ (even type).
- definite forms: many exotic examples
- \blacktriangleright diagonalisable over $\mathbb Q$, but not necessarily over $\mathbb Z$

くロット 4 雪 ト 4 ヨ ト ヨ ヨ こ うみつ

Review: intersection forms and Donaldson's theorem

- indefinite unimodular forms are classified by the rank, signature and parity
- ▶ Hasse-Minkowski theorem: all indefinite unimodular forms are $l(1) \oplus m(-1)$ (odd type) or $l\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \oplus mE_8$ (even type).
- definite forms: many exotic examples
- \blacktriangleright diagonalisable over $\mathbb Q$, but not necessarily over $\mathbb Z$

Donaldson's theorem (1983)

X oriented closed simply connected smooth 4-manifold with Q_X definite. Then Q_X is diagonalisable.

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

Recall: setup and reducible connections

- G compact Lie group: G = SO(3) or G = SU(2), X compact simply connected oriented Riemannian 4-manifold, E → X G-principal bundle.
- $\mathcal{A} = \{ \text{connection 1-forms on } E \},\$ $\mathcal{B} = \mathcal{A}/\mathcal{G} \text{ quotient by gauge group } \mathcal{G} \text{ of } E,\$ $\mathcal{M} = \{ [\mathcal{A}] \in \mathcal{B} : F_{\mathcal{A}}^+ = 0 \} \text{ moduli space of ASD instantons.}$

Recall: setup and reducible connections

- G compact Lie group: G = SO(3) or G = SU(2), X compact simply connected oriented Riemannian 4-manifold, E → X G-principal bundle.
- A = {connection 1-forms on E},
 B = A/G quotient by gauge group G of E,
 M = {[A] ∈ B : F_A⁺ = 0} moduli space of ASD instantons.
- ► Each $A \in A$ has
 - ▶ a holonomy group $H_A \stackrel{\text{Lie}}{\leq} \text{Aut}(E_x) \cong G$ and
 - an isotropy group $\Gamma_A = \{ u \in \mathcal{G} : u(A) = A \}.$
- For X connected, Γ_A is isomorphic to the centraliser of H_A .
- A is reducible $\Leftrightarrow H_A \leq G$ is a proper subgroup $\Leftrightarrow Z(G) \leq \Gamma_A$ is a proper subgroup.

Michael Rothgang (HU Berlin)

Proposition

If G = SU(2) or SO(3) and $H \leq G$ is a closed connected Lie subgroup, then $H = \{id\}, H = G \text{ or } H \cong \mathbb{S}^1$.

 $H_A = {id}$ means E is trivial and A is the product connection. For SU(2)-bundles,

$$H_A \cong \mathbb{S}^1 \Leftrightarrow E \cong L \oplus L^{-1} \Leftrightarrow c_2(E) = -c_1(L)^2$$

for a complex line bundle L; for SO(3)-bundles

$$H_A \cong \mathbb{S}^1 \Leftrightarrow E \cong \mathbb{R} \oplus L \Leftrightarrow p_1(E) = c_1(L)^2.$$

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

・ロ・ ・ 戸 ・ ・ ヨ ・ ・ ヨ ト ・ クタマ

Classification of reducible connections (cont.) For SU(2)-bundles,

$$H_A \cong \mathbb{S}^1 \Leftrightarrow E \cong L \oplus L^{-1} \Leftrightarrow c_2(E) = -c_1(L)^2$$

for a complex line bundle L; for SO(3)-bundles

$$H_A \cong \mathbb{S}^1 \Leftrightarrow E \cong \mathbb{R} \oplus L \Leftrightarrow p_1(\mathbb{R} \oplus L) = c_1(L)^2.$$

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Classification of reducible connections (cont.) For SU(2)-bundles,

$$H_A \cong \mathbb{S}^1 \Leftrightarrow E \cong L \oplus L^{-1} \Leftrightarrow c_2(E) = -c_1(L)^2$$

for a complex line bundle L; for SO(3)-bundles

Fact $H_A \cong \mathbb{S}^1 \Leftrightarrow E \cong \mathbb{R} \oplus L \Leftrightarrow p_1(\mathbb{R} \oplus L) = c_1(L)^2.$

A line bundle *L* over *X* admits an ASD connection iff $c_1(L)$ is represented by an ASD 2-form, and the connection is unique up to gauge equivalence.

Proposition

Reducible ASD connection 1-forms with holonomy group $\cong \mathbb{S}^1$ \leftrightarrow pairs $\{c, -c\}$ where $c \neq 0 \in H^2(X; \mathbb{Z})$ satisfies $c^2 = -c_2(E)$ (for G = SU(2)) resp. $c^2 = p_1(E)$ (for G = SO(3)).

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Classification of reducible connections (cont.) For SU(2)-bundles,

$$H_A \cong \mathbb{S}^1 \Leftrightarrow E \cong L \oplus L^{-1} \Leftrightarrow c_2(E) = -c_1(L)^2$$

for a complex line bundle L; for SO(3)-bundles

$H_A \cong \mathbb{S}^1 \Leftrightarrow E \cong \mathbb{R} \oplus L \Leftrightarrow p_1(\mathbb{R} \oplus L) = c_1(L)^2.$

A line bundle *L* over *X* admits an ASD connection iff $c_1(L)$ is represented by an ASD 2-form, and the connection is unique up to gauge equivalence.

Proposition

Fact

Reducible ASD connection 1-forms with holonomy group $\cong \mathbb{S}^1$ \leftrightarrow pairs $\{c, -c\}$ where $c \neq 0 \in H^2(X; \mathbb{Z})$ satisfies $c^2 = -c_2(E)$ (for G = SU(2)) resp. $c^2 = p_1(E)$ (for G = SO(3)).

Corollary

If Q_X is definite, there are only finitely many reducible connections (up to gauge equivalence).

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

February 02, 2021 7 / 19

Locals models of the moduli space $\ensuremath{\mathcal{M}}$

Recall that

- ▶ G is an infinite-dimensional Banach Lie group, the action $G \times A \rightarrow A$ is a smooth map of Banach manifolds.
- ▶ Its differential in \mathcal{G} at $A \in \mathcal{A}$ is $-d_A \colon \Omega^0(\mathfrak{g}_E) \to \Omega^1(\mathfrak{g}_E)$, with ASD part is $d_A^+ \colon \ker d_A^* \to \Omega^+_X(\mathfrak{g}_E)$.
- $\delta_A := d_A^+ \oplus d_A^*$ is elliptic, hence Fredholm.

Proposition

If A is an ASD connection over X, a neighbourhood of [A] in \mathcal{M} is modelled on a quotient $f^{-1}(0)/\Gamma_A$, where $f: \ker \delta_A \to \operatorname{coker} d_A^+$ is a Γ_A -equivariant map.

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

Local models near reducible connections (cont.)

Let A be a reducible connection, G = SU(2) or G = SO(3).

 Case 1: H_A ≃ S¹ Since S¹ is abelian, C_G(H_A) = H_A, hence Γ_A ≃ S¹.
 Near a reducible connection with H_A ≃ S¹, M is modeled on a quotient ℝⁿ/S¹, a cone over projective space.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ ∃|∃ ろぬの

Local models near reducible connections (cont.)

Let A be a reducible connection, G = SU(2) or G = SO(3).

Case 1: H_A ≅ S¹
 Since S¹ is abelian, C_G(H_A) = H_A, hence Γ_A ≅ S¹.
 Near a reducible connection with H_A ≅ S¹, M is modeled on a quotient ℝⁿ/S¹, a cone over projective space.

• Case 2: H_A is trivial. In this case, $\Gamma_A \cong C_G(H_A) = G$.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ ∃|∃ ろぬの

Local models near reducible connections (cont.)

Let A be a reducible connection, G = SU(2) or G = SO(3).

Case 1: H_A ≅ S¹
 Since S¹ is abelian, C_G(H_A) = H_A, hence Γ_A ≅ S¹.
 Near a reducible connection with H_A ≅ S¹, M is modeled on a quotient ℝⁿ/S¹, a cone over projective space.

• Case 2: H_A is trivial. In this case, $\Gamma_A \cong C_G(H_A) = G$. \mathcal{B} has a stratification $\mathcal{B} = \bigsqcup_{[\Gamma] \in C} \mathcal{B}^{\Gamma}$ with strata

$$\mathcal{B}^{\Gamma} := \{ [A] \in \mathcal{B} : \Gamma_A \cong_{\mathsf{conj}} \Gamma \},$$

where $C = \{\Gamma \leq G : \text{closed subgroup}\}/\text{conjugation}$. Near a reducible connection with $H_A = \{\text{id}\}$, \mathcal{M} is modeled on a cone over a singular space.

Michael Rothgang (HU Berlin)

Donaldson's theorem: proof outline

Recall: Donaldson's theorem

X oriented closed simply connected smooth 4-manifold with Q_X definite. Then Q_X is diagonalisable.

Proof outline

- ► Take a suitable SU(2)-bundle E → X; consider M = {ASD connections}.
- Collar theorem: \mathcal{M}^* smooth manifold with ideal boundary X.
- Truncate: cut a neighbourhood of each reducible connection \Rightarrow cobordism between X and disjoint union of \mathbb{CP}^2 's.
- Use cobordism invariance of signature and a small computation.

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

- Suppose w.l.o.g. Q_X is negative definite, i.e. $b^+ = 0$.
- Let E → X be a smooth SU(2)-bundle with c₂(E) = 1, consider M := {smooth ASD connections on E}.
- Choose a generic metric on X, then M^{*} is a smooth manifold of dimension 8 · 1 + 3 · (b₁ − b⁺ − b⁰) = 5.
- Finitely many reducibles [A_e], correspond to {e, −e} ⊂ H²(X; Z) with e² = −c₂(E) = −1.
- ▶ Near each $[A_e]$, \mathcal{M} is modelled as $\mathbb{C}^3/\mathbb{S}^1$, a cone over \mathbb{CP}^2 .
- ▶ Choose a conical neighbourhood U_e of each $[A_e]$, denote $P_e := \partial U_e \cong \mathbb{CP}^2$. Let $\mathcal{M}' := \mathcal{M} \setminus (U \cup \bigcup_e U_e)$.

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Proof of Donaldson's theorem (cont.)

Truncated moduli space: $\mathcal{M}' := \mathcal{M} \setminus (U \cup \bigcup_e U_e).$

▶ Denote $n(Q_X) := \#$ reducibles:

 \mathcal{M}' is a cobordism between X and $\sqcup_e U_e \cong \bigsqcup_{k=1}^{n(Q_X)} \mathbb{CP}^2 =: Y.$

Fig. 13

Figure: Sketch of the moduli space \mathcal{M}' . Figure taken from Donaldson-Kronheimer, The Geometry of four-manifolds, 1990.

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

February 02, 2021 12 / 19

Proof of Donaldson's theorem (cont.)

X is cobordant to
$$Y:=igsquirt_{k=1}^{n(Q_X)}\mathbb{CP}^2.$$

Lemma (Algebraic fact)

 $n(Q_X) \leq \mathsf{rk}(Q_X)$ with equality iff $Q_X \cong n(-1)$.

Proposition

If W is an oriented cobordism between closed simply connected 4-manifolds, $sign(Q_X) = sign(Q_Y)$.

 Q_X is negative definite: sign $(Q_X) = -rk(Q_X)$, thus

$$\mathsf{rk}(Q_X) = |\mathsf{sign}(Q_X)| = |\mathsf{sign} \ Q_Y| \le n(Q_X) \underbrace{\mathsf{sign}(\mathbb{CP}^2)}_{=+1} = n(Q_X),$$

thus sign $Q_X = n(Q)$ and Q is diagonalisable.

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

Proof of Donaldson's theorem (concluded)

Lemma (Algebraic fact)

Let Q be a negative definite quadratic form over \mathbb{Z} . Denoting $n(Q) := \#\{\{\alpha, -\alpha\} : Q(\alpha, \alpha) = -1\}$, we have $n(Q) \leq \mathsf{rk}(Q)$ with equality iff Q is diagonalisable, i.e. $Q \cong n(-1)$.

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

Proof of Donaldson's theorem (concluded)

Lemma (Algebraic fact)

Let Q be a negative definite quadratic form over \mathbb{Z} . Denoting $n(Q) := \#\{\{\alpha, -\alpha\} : Q(\alpha, \alpha) = -1\}$, we have $n(Q) \leq \mathsf{rk}(Q)$ with equality iff Q is diagonalisable, i.e. $Q \cong n(-1)$.

Proof sketch.

- lnduction over r = rk(Q). Base case is clear.
- If α satisfies $Q(\alpha, \alpha) = -1$, get a splitting

$$\mathbb{Z}^{r} = \mathbb{Z}\alpha \oplus \alpha^{\perp}, \beta \mapsto \langle \beta, \alpha \rangle \alpha \oplus (\alpha - \langle \beta, \alpha \rangle \alpha).$$

Since Q is definite, $n(Q) = 1 + n(Q|_{\alpha^{\perp}})$ and $\mathsf{rk}(Q|_{\alpha^{\perp}}) + 1$.

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Proof of Donaldson's theorem (concluded)

Lemma (Algebraic fact)

Let Q be a negative definite quadratic form over \mathbb{Z} . Denoting $n(Q) := \#\{\{\alpha, -\alpha\} : Q(\alpha, \alpha) = -1\}$, we have $n(Q) \leq \mathsf{rk}(Q)$ with equality iff Q is diagonalisable, i.e. $Q \cong n(-1)$.

Proof sketch.

- lnduction over r = rk(Q). Base case is clear.
- If α satisfies $Q(\alpha, \alpha) = -1$, get a splitting

$$\mathbb{Z}^{r} = \mathbb{Z}\alpha \oplus \alpha^{\perp}, \beta \mapsto \langle \beta, \alpha \rangle \alpha \oplus (\alpha - \langle \beta, \alpha \rangle \alpha).$$

Since Q is definite, $n(Q) = 1 + n(Q|_{\alpha^{\perp}})$ and $\mathsf{rk}(Q|_{\alpha^{\perp}}) + 1$.

About cobordism-invariance of the signature:

- Chern-Weil theory implies that $p_1(TX)$ is cobordism-invariant.
- Hirzebruch signature theorem relates $p_1(TX)$ and sign (Q_X) .

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

Fintushel-Stern's proof of Donaldson's theorem

Theorem

There is no smooth, oriented simply connected closed four-manifold X with intersection form $Q_X \cong -E_8 \oplus -E_8$.

Proof sketch

- Suppose there were. Choose $e \in H^2(X; \mathbb{Z})$ with $e^2 = -2$.
- Consider the SO(3)-bundle $F = L \oplus \mathbb{R}$, where $c_1(L) = e$.
- Fix a regular Riemannian metric on X (are generic).
 Virtual dimension is 1, hence M^{*}_F is 1-dimensional.
- Since dim *M_F* = 1, boundary strata *M_{F^{(r)}* have negative dimension, hence empty ⇒ *M_F* compact.</sub>}

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Fintushel-Stern's proof of Donaldson's theorem (cont.)

- Consider the norm $\|\alpha\| = -\langle \alpha, \alpha \rangle$.
- ▶ A reducible ASD connection corresponds to $\{f, -f\}$, where $f \neq 0 \in H^2(X; \mathbb{Z})$ with $f^2 = p_1(F) = c_1(L)^2 = e^2$. Thus, f = e(mod 2) and ||f|| = ||e||.
- ▶ By first condition, $m := \frac{e+f}{2} \in H^2(X; \mathbb{Z})$. By Cauchy-Schwartz $||m^2|| \le ||e||^2 = 2$; equality iff e = f = m.

Fintushel-Stern's proof of Donaldson's theorem (cont.)

- Consider the norm $\|\alpha\| = -\langle \alpha, \alpha \rangle$.
- A reducible ASD connection corresponds to $\{f, -f\}$, where $f \neq 0 \in H^2(X; \mathbb{Z})$ with $f^2 = p_1(F) = c_1(L)^2 = e^2$. Thus, f = e(mod 2) and ||f|| = ||e||.
- ▶ By first condition, $m := \frac{e+f}{2} \in H^2(X; \mathbb{Z})$. By Cauchy-Schwartz $||m^2|| \le ||e||^2 = 2$; equality iff e = f = m.
- ▶ Thus, $f \neq e$ implies $||m|| \in \{0,1\}$. But $E_8 \oplus E_8$ is even and doesn't contain a vector of length one.

Hence, m = 0 and f = -e. Thus, M_F contains exactly one reducible connection $[A_e]$, corresponding to $\{e, -e\}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fintushel-Stern's proof of Donaldson's theorem (cont.)

- Consider the norm $\|\alpha\| = -\langle \alpha, \alpha \rangle$.
- A reducible ASD connection corresponds to $\{f, -f\}$, where $f \neq 0 \in H^2(X; \mathbb{Z})$ with $f^2 = p_1(F) = c_1(L)^2 = e^2$. Thus, f = e(mod 2) and ||f|| = ||e||.
- ▶ By first condition, $m := \frac{e+f}{2} \in H^2(X; \mathbb{Z})$. By Cauchy-Schwartz $||m^2|| \le ||e||^2 = 2$; equality iff e = f = m.
- Thus, f ≠ e implies ||m|| ∈ {0,1}. But E₈ ⊕ E₈ is even and doesn't contain a vector of length one.

Hence, m = 0 and f = -e. Thus, M_F contains exactly one reducible connection $[A_e]$, corresponding to $\{e, -e\}$.

- Local models: [A_e] has neighbourhood in M_F modelled on a cone over CP⁰ = {pt}, i.e. a closed half-line.
- $\Rightarrow~\mathcal{M}_{\textit{F}}$ compact 1-mfd with one boundary point, contradiction!

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

February 02, 2021 16 / 19

Comparison of proofs

Donaldson's proof

- \blacktriangleright crucially relies on the non-compactness of ${\cal M}$
- uses cobordism invariance of signature
 Donaldson-Kronheimer: replace by a computation of topology of B
- this generalises to non-definite forms as well

Fintushel-Stern's proof

- ▶ uses compactness properties: $E_8 \oplus E_8$ contains no length one vector not enough energy for bubbling, don't need collar theorem/gluing map
- depends on lattice
- can be adapted for general lattices, but requires Q_X definite.

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

Fintushel-Stern's proof of Donaldson's theorem

Appendix

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem

Proof: Lie subgroups of G

Proposition

If G = SU(2) or SO(3) and $H \leq G$ is a closed connected Lie subgroup, then $H = \{id\}, H = G$ or $H \cong S^1$.

Proof sketch.

Let $H \leq G$ be connected and closed subgroup. Is a Lie subgroup. By the subgroups-subalgebras theorem,

{Lie subgroups $H \leq G$ } $\stackrel{1:1}{\leftrightarrow}$ {Lie subalgebras $\mathfrak{h} \subset \mathfrak{g}$ }, $H \mapsto T_{id}H$.

In our case, $\mathfrak{su}(2) \cong \mathfrak{so}(3) = \{A \in \mathbb{R}^{3 \times 3} : A + A^t = 0\}.$ Choose basis and compute: $(\mathfrak{so}(3), [\cdot, \cdot]) \cong (\mathbb{R}^3, \times).$ $=> \mathfrak{h}$ cannot have dimension two, so H has dimension 0, 1 or 3. $\Rightarrow H = \{ id \}, H = G \text{ or } H \cong \mathbb{S}^1.$

Michael Rothgang (HU Berlin)

Analysis of reducibles and Donaldson's theorem