Analysis of reducibles and Donaldson's theorem

Michael B. Rothgang (he/him)

Symplectic geometry group Humboldt-Universität zu Berlin

Gauge theory seminar February 02, 2021

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-29-0) February 02, 2021 1/19

KOD KARD KED KED EIE VAA

[Intersection forms and Donaldson's theorem \(review\)](#page-2-0)

[Classification of reducible connections](#page-7-0)

[Kuranishi models near reducible connections](#page-13-0)

[Proof of Donaldson's theorem](#page-17-0)

[Fintushel-Stern's proof of Donaldson's theorem](#page-24-0)

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 2/19

KOD KARD KED KED EIE VAA

Review: 4-manifolds and intersection forms

- \blacktriangleright always: X closed oriented simply connected 4-manifold
- ► $H_i(X)$ trivial for $i \neq 2 \rightarrow$ focus on $H_2(X;\mathbb{Z}) \cong H^2(X;\mathbb{Z})$
- \blacktriangleright $H^2(X;\mathbb{Z})$ corresponds to **intersection form**

 $Q_X: H^2(X;\mathbb{Z}) \times H^2(X;\mathbb{Z}) \to \mathbb{Z}, (\alpha, \beta) \mapsto \langle a \cup b, [X] \rangle,$

 Q_X is symmetric, Z-bilinear and unimodular

Review: 4-manifolds and intersection forms

- \blacktriangleright always: X closed oriented simply connected 4-manifold
- ► $H_i(X)$ trivial for $i \neq 2 \rightarrow$ focus on $H_2(X;\mathbb{Z}) \cong H^2(X;\mathbb{Z})$
- \blacktriangleright $H^2(X;\mathbb{Z})$ corresponds to **intersection form**

 $Q_X: H^2(X;\mathbb{Z}) \times H^2(X;\mathbb{Z}) \to \mathbb{Z}, (\alpha, \beta) \mapsto \langle a \cup b, [X] \rangle,$

 Q_X is symmetric, Z-bilinear and unimodular

 \blacktriangleright three basic invariants

- **parity**: Q is even iff im(Q) \subset 2 \mathbb{Z} , otherwise odd
- **rank**: $rk(Q) = b_2(X) = \dim_{\mathbb{Q}} H_2(X; \mathbb{Q})$

signature: sign
$$
Q = b_2^+ - b_2^-
$$

Review: 4-manifolds and intersection forms

- \blacktriangleright always: X closed oriented simply connected 4-manifold
- ► $H_i(X)$ trivial for $i \neq 2 \rightarrow$ focus on $H_2(X;\mathbb{Z}) \cong H^2(X;\mathbb{Z})$
- \blacktriangleright $H^2(X;\mathbb{Z})$ corresponds to **intersection form**

 $Q_X: H^2(X;\mathbb{Z}) \times H^2(X;\mathbb{Z}) \to \mathbb{Z}, (\alpha, \beta) \mapsto \langle a \cup b, [X] \rangle,$

 Q_X is symmetric, Z-bilinear and unimodular

 \blacktriangleright three basic invariants

- **parity**: Q is even iff im(Q) \subset 2 \mathbb{Z} , otherwise odd
- **rank**: $rk(Q) = b_2(X) = \dim_{\mathbb{Q}} H_2(X; \mathbb{Q})$
- **Signature**: sign $Q = b_2^+ b_2^-$
- \blacktriangleright Freedman '82: for topological manifolds, $X \mapsto Q_X$ is surjective and at most two-to-one.
- ► Rohlin '52: X smooth with Q_x even \Rightarrow sign $Q_x \in 16\mathbb{Z}$

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 3/19

Review: intersection forms and Donaldson's theorem

- \triangleright indefinite unimodular forms are classified by the rank, signature and parity
- \blacktriangleright Hasse-Minkowski theorem: all indefinite unimodular forms are $l(1)\oplus m(-1)$ (odd type) or l $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \oplus mE_8$ (even type).
- \blacktriangleright definite forms: many exotic examples
- diagonalisable over $\mathbb O$, but not necessarily over $\mathbb Z$

Review: intersection forms and Donaldson's theorem

- \triangleright indefinite unimodular forms are classified by the rank, signature and parity
- \blacktriangleright Hasse-Minkowski theorem: all indefinite unimodular forms are $l(1)\oplus m(-1)$ (odd type) or l $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \oplus mE_8$ (even type).
- \blacktriangleright definite forms: many exotic examples
- diagonalisable over $\mathbb O$, but not necessarily over $\mathbb Z$

Donaldson's theorem (1983)

X oriented closed simply connected smooth 4-manifold with Q_X definite. Then Q_X is diagonalisable.

K ロ > K 個 > K 로 > K 로 > (로)= 19 Q Q

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 4/19

Recall: setup and reducible connections

- G compact Lie group: $G = SO(3)$ or $G = SU(2)$. X compact simply connected oriented Riemannian 4-manifold, $E \rightarrow X$ G-principal bundle.
- \blacktriangleright $\mathcal{A} = \{\text{connection 1-forms on } E\},\$ $\mathcal{B} = \mathcal{A}/\mathcal{G}$ quotient by gauge group \mathcal{G} of E, $\mathcal{M} = \{[A] \in \mathcal{B} : F_A^+ = 0\}$ moduli space of ASD instantons.

KOD KARD KED KED EIE VAA

Recall: setup and reducible connections

- G compact Lie group: $G = SO(3)$ or $G = SU(2)$. X compact simply connected oriented Riemannian 4-manifold, $E \rightarrow X$ G-principal bundle.
- \blacktriangleright $\mathcal{A} = \{\text{connection 1-forms on } E\},\$ $B = A/G$ quotient by gauge group G of E, $\mathcal{M} = \{[A] \in \mathcal{B} : F_A^+ = 0\}$ moduli space of ASD instantons.
- \blacktriangleright Each $A \in \mathcal{A}$ has
	- ► a holonomy group $H_A \stackrel{\mathsf{Lie}}{\leq} \mathsf{Aut}(E_\mathsf{x}) \cong G$ and
	- ightharpoonup $\Gamma_A = \{u \in \mathcal{G} : u(A) = A\}.$
- For X connected, Γ_A is isomorphic to the centraliser of H_A .
- A is reducible $\Leftrightarrow H_A \leqslant G$ is a proper subgroup \Leftrightarrow $Z(G) \leqslant \Gamma_A$ is a proper subgroup.

Proposition

If $G = SU(2)$ or $SO(3)$ and $H \le G$ is a closed connected Lie subgroup, then $H = \{id\}, H = G \text{ or } H \cong \mathbb{S}^1.$

 $H_A = \{id\}$ means E is trivial and A is the product connection. For SU(2)-bundles,

$$
H_A \cong \mathbb{S}^1 \Leftrightarrow E \cong L \oplus L^{-1} \Leftrightarrow c_2(E) = -c_1(L)^2
$$

for a complex line bundle L ; for $SO(3)$ -bundles

$$
H_A\cong \mathbb{S}^1 \Leftrightarrow E\cong \mathbb{R}\oplus L \Leftrightarrow p_1(E)=c_1(L)^2.
$$

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 6/19

Classification of reducible connections (cont.) For SU(2)-bundles,

$$
H_A \cong \mathbb{S}^1 \Leftrightarrow E \cong L \oplus L^{-1} \Leftrightarrow c_2(E) = -c_1(L)^2
$$

for a complex line bundle L ; for $SO(3)$ -bundles

 $H_A \cong \mathbb{S}^1 \Leftrightarrow E \cong \mathbb{R} \oplus L \Leftrightarrow p_1(\mathbb{R} \oplus L) = c_1(L)^2.$

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 7/19

Classification of reducible connections (cont.) For SU(2)-bundles,

$$
H_A \cong \mathbb{S}^1 \Leftrightarrow E \cong L \oplus L^{-1} \Leftrightarrow c_2(E) = -c_1(L)^2
$$

for a complex line bundle L ; for $SO(3)$ -bundles

 $H_A \cong \mathbb{S}^1 \Leftrightarrow E \cong \mathbb{R} \oplus L \Leftrightarrow p_1(\mathbb{R} \oplus L) = c_1(L)^2.$

Fact

A line bundle L over X admits an ASD connection iff $c_1(L)$ is represented by an ASD 2-form, and the connection is unique up to gauge equivalence.

Proposition

Reducible ASD connection 1-forms with holonomy group $\cong \mathbb{S}^1$ \leftrightarrow pairs $\{c,-c\}$ where $c\neq 0\in H^2(X;\mathbb{Z})$ satisfies $c^2=-c_2(E)$ (for $G=SU(2))$ resp. $c^2=p_1(E)$ (for $G=SO(3)$).

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 7/19

KOD KARD KED KED EIE VAA

Classification of reducible connections (cont.) For SU(2)-bundles,

$$
H_A \cong \mathbb{S}^1 \Leftrightarrow E \cong L \oplus L^{-1} \Leftrightarrow c_2(E) = -c_1(L)^2
$$

for a complex line bundle L ; for $SO(3)$ -bundles

 $H_A \cong \mathbb{S}^1 \Leftrightarrow E \cong \mathbb{R} \oplus L \Leftrightarrow p_1(\mathbb{R} \oplus L) = c_1(L)^2.$

Fact

A line bundle L over X admits an ASD connection iff $c_1(L)$ is represented by an ASD 2-form, and the connection is unique up to gauge equivalence.

Proposition

Reducible ASD connection 1-forms with holonomy group $\cong \mathbb{S}^1$ \leftrightarrow pairs $\{c,-c\}$ where $c\neq 0\in H^2(X;\mathbb{Z})$ satisfies $c^2=-c_2(E)$ (for $G=SU(2))$ resp. $c^2=p_1(E)$ (for $G=SO(3)$).

Corollary

If Q_X is definite, there are only finitely many reducible connections (up to gauge equivalence). KO KARA KE KE KE HE ANA

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 7 / 19

Locals models of the moduli space $\mathcal M$

Recall that

- ▶ G is an infinite-dimensional Banach Lie group, the action $G \times \mathcal{A} \rightarrow \mathcal{A}$ is a smooth map of Banach manifolds.
- \blacktriangleright lts differential in $\mathcal G$ at $A\in\mathcal A$ is $-d_A\colon \Omega^0(\mathfrak{g}_{\scriptstyle{E}})\to \Omega^1(\mathfrak{g}_{\scriptstyle{E}}),$ with ASD part is d_A^+ : ker $d_A^* \to \Omega^+_X(\mathfrak{g}_E)$.
- \blacktriangleright $\delta_A := d^+_A \oplus d^*_A$ is elliptic, hence Fredholm.

Proposition

If A is an ASD connection over X, a neighbourhood of $[A]$ in M is modelled on a quotient $f^{-1}(0)/\Gamma_A$, where f : $\,\mathrm{ker} \, \delta_{\mathcal{A}} \to \mathrm{coker} \, d^+_{{\mathcal{A}}}$ is a $\mathsf{\Gamma}_{{\mathcal{A}}}$ -equivariant map.

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 8/19

Local models near reducible connections (cont.)

Let A be a reducible connection, $G = SU(2)$ or $G = SO(3)$.

► Case 1: $H_A \cong \mathbb{S}^1$ Since \mathbb{S}^1 is abelian, $\mathcal{C}_G(H_A)=H_A$, hence $\mathsf{\Gamma}_A\cong\mathbb{S}^1.$ Near a reducible connection with $H_A \cong \mathbb{S}^1$, $\mathcal M$ is modeled on a **quotient** R ⁿ*/*S 1 **, a cone over projective space.**

KOD KARD KED KED EIE VOOR

Local models near reducible connections (cont.)

Let A be a reducible connection, $G = SU(2)$ or $G = SO(3)$.

- ► Case 1: $H_A \cong \mathbb{S}^1$ Since \mathbb{S}^1 is abelian, $\mathcal{C}_G(H_A)=H_A$, hence $\mathsf{\Gamma}_A\cong\mathbb{S}^1.$ Near a reducible connection with $H_A \cong \mathbb{S}^1$, $\mathcal M$ is modeled on a **quotient** R ⁿ*/*S 1 **, a cone over projective space.**
- ► Case 2: H_A is trivial. In this case, $\Gamma_A \cong C_G(H_A) = G$.

Local models near reducible connections (cont.)

Let A be a reducible connection, $G = SU(2)$ or $G = SO(3)$.

► Case 1: $H_A \cong \mathbb{S}^1$ Since \mathbb{S}^1 is abelian, $\mathcal{C}_G(H_A)=H_A$, hence $\mathsf{\Gamma}_A\cong\mathbb{S}^1.$ Near a reducible connection with $H_A \cong \mathbb{S}^1$, $\mathcal M$ is modeled on a **quotient** R ⁿ*/*S 1 **, a cone over projective space.**

► Case 2: H_A is trivial. In this case, $\Gamma_A \cong C_G(H_A) = G$. ${\mathcal B}$ has a stratification ${\mathcal B} = \bigsqcup_{[\Gamma] \in {\mathcal C}} {\mathcal B}^{\Gamma}$ with strata

$$
\mathcal{B}^{\Gamma}:=\{[A]\in\mathcal{B}:\Gamma_A\cong_{conj}\Gamma\},
$$

where $C = \{\Gamma \leq G : \text{closed subgroup}\}/\text{conjugation}\$. **Near a reducible connection with** $H_A = \{id\}$, M **is modeled on a cone over a singular space.**

K ロ ▶ K @ ▶ K 글 ▶ K 글 ▶ [글] = 19 Q Q

Donaldson's theorem: proof outline

Recall: Donaldson's theorem

X oriented closed simply connected smooth 4-manifold with Q_X definite. Then Q_X is diagonalisable.

Proof outline

- ▶ Take a suitable SU(2)-bundle $E \rightarrow X;$ consider $M = \{ASD$ connections $\}$.
- ► Collar theorem: M^* smooth manifold with ideal boundary X.
- \blacktriangleright Truncate: cut a neighbourhood of each reducible connection \Rightarrow cobordism between X and disjoint union of \mathbb{CP}^2 's.
- \triangleright Use cobordism invariance of signature and a small computation.

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 10 / 19

KOD KARD KED KED EIE VAA

- Suppose w.l.o.g. Q_X is negative definite, i.e. $b^+ = 0$.
- ► Let $E \to X$ be a smooth SU(2)-bundle with $c_2(E) = 1$, consider $M := \{$ smooth ASD connections on E $\}$.
- ► Choose a generic metric on X, then \mathcal{M}^* is a smooth manifold of dimension $8 \cdot 1 + 3 \cdot (b_1 - b^+ - b^0) = 5.$
- ► Finitely many reducibles $[A_e]$, correspond to $\{e,-e\} \subset H^2(X;\mathbb{Z})$ with $e^2 = -c_2(E) = -1.$
- \blacktriangleright Near each [A_e], M is modelled as $\mathbb{C}^3/\mathbb{S}^1$, a cone over \mathbb{CP}^2 .
- \triangleright Choose a conical neighbourhood U_e of each $[A_e]$, denote $P_e := \partial U_e \cong \mathbb{CP}^2$. Let $\mathcal{M}' := \mathcal{M} \setminus (U \cup \bigcup_e U_e)$.

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 11 / 19

KOD KARD KED KED EIE VAA

Proof of Donaldson's theorem (cont.)

Truncated moduli space: $\mathcal{M}':=\mathcal{M}\setminus(\mathcal{U}\cup\bigcup_{e}\mathcal{U}_{e}).$

Denote $n(Q_X) := \#$ reducibles:

 \mathcal{M}' is a cobordism between X and $\sqcup_e U_e \cong \bigsqcup_{k=1}^{n(Q_X)} \mathbb{CP}^2 =: Y$.

Fig. 13

Figure: Sketch of the moduli space \mathcal{M}' . Figure taken from Donaldson-Kronheimer, The Geometry of four-manifolds, 1990.

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 12 / 19

Proof of Donaldson's theorem (cont.)

X is cobordant to
$$
Y := \bigsqcup_{k=1}^{n(Q_X)} \mathbb{CP}^2
$$
.

Lemma (Algebraic fact)

 $n(Q_X) \leq \text{rk}(Q_X)$ with equality iff $Q_X \cong n(-1)$.

Proposition

If W is an oriented cobordism between closed simply connected 4-manifolds, $sign(Q_X) = sign(Q_Y)$.

 Q_X is negative definite: sign(Q_X) = $-rk(Q_X)$, thus

$$
\mathsf{rk}(Q_X) = |\mathsf{sign}(Q_X)| = |\mathsf{sign}\ Q_Y| \le n(Q_X) \underbrace{\mathsf{sign}(\mathbb{CP}^2)}_{=+1} = n(Q_X),
$$

thus sign $Q_X = n(Q)$ and Q is diagonalisable.

Proof of Donaldson's theorem (concluded)

Lemma (Algebraic fact)

Let Q be a negative definite quadratic form over $\mathbb Z$. Denoting $n(Q) := \#\{\{\alpha,-\alpha\} : Q(\alpha,\alpha) = -1\}$, we have $n(Q) < \text{rk}(Q)$ with equality iff Q is diagonalisable, i.e. $Q \cong n(-1)$.

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 14 / 19

KID KARIK KE KIEN IE KORA

Proof of Donaldson's theorem (concluded)

Lemma (Algebraic fact)

Let Q be a negative definite quadratic form over $\mathbb Z$. Denoting $n(Q) := \#\{\{\alpha, -\alpha\} : Q(\alpha, \alpha) = -1\}$, we have $n(Q) \leq \text{rk}(Q)$ with equality iff Q is diagonalisable, i.e. $Q \cong n(-1)$.

Proof sketch.

- Induction over $r = \mathsf{rk}(Q)$. Base case is clear.
- If α satisfies $Q(\alpha, \alpha) = -1$, get a splitting

$$
\mathbb{Z}^r = \mathbb{Z}\alpha \oplus \alpha^{\perp}, \beta \mapsto \langle \beta, \alpha \rangle \alpha \oplus (\alpha - \langle \beta, \alpha \rangle \alpha).
$$

► Since Q is definite, $n(Q) = 1 + n(Q|_{Q^{\perp}})$ and $rk(Q|_{Q^{\perp}}) + 1$.

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 14 / 19

K ロ > K 個 > K 로 > K 로 > 트립 = K) Q @

Proof of Donaldson's theorem (concluded)

Lemma (Algebraic fact)

Let Q be a negative definite quadratic form over $\mathbb Z$. Denoting $n(Q) := \#\{\{\alpha,-\alpha\} : Q(\alpha,\alpha) = -1\}$, we have $n(Q) < \text{rk}(Q)$ with equality iff Q is diagonalisable, i.e. $Q \cong n(-1)$.

Proof sketch.

- Induction over $r = \mathsf{rk}(Q)$. Base case is clear.
- If α satisfies $Q(\alpha, \alpha) = -1$, get a splitting

$$
\mathbb{Z}^r = \mathbb{Z}\alpha \oplus \alpha^{\perp}, \beta \mapsto \langle \beta, \alpha \rangle \alpha \oplus (\alpha - \langle \beta, \alpha \rangle \alpha).
$$

► Since Q is definite, $n(Q) = 1 + n(Q|_{\alpha}$ and $rk(Q|_{\alpha} +) + 1$.

About cobordism-invariance of the signature:

- **•** Chern-Weil theory implies that $p_1(TX)$ is cobordism-invariant.
- In Hirzebruch [s](#page-21-0)[i](#page-23-0)[g](#page-24-0)[n](#page-16-0)ature theorem relates $p_1(TX)$ $p_1(TX)$ [an](#page-24-0)[d](#page-20-0) sign (Q_X) (Q_X) (Q_X) (Q_X) (Q_X) [.](#page-17-0)

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 14 / 19

Fintushel-Stern's proof of Donaldson's theorem

Theorem

There is no smooth, oriented simply connected closed four-manifold X with intersection form $Q_X \cong -E_8 \oplus -E_8$.

Proof sketch

- Suppose there were. Choose $e \in H^2(X;\mathbb{Z})$ with $e^2 = -2$.
- ► Consider the SO(3)-bundle $F = L \oplus \mathbb{R}$, where $c_1(L) = e$.
- \blacktriangleright Fix a regular Riemannian metric on X (are generic). Virtual dimension is 1, hence $\mathcal{M}_\mathcal{F}^*$ is 1-dimensional.
- Since dim $M_F = 1$, boundary strata $M_{F(r)}$ have negative dimension, hence empty \Rightarrow \mathcal{M}_F compact.

K ロ > K 個 > K 로 > K 로 > 트립 = K) Q @

Fintushel-Stern's proof of Donaldson's theorem (cont.)

- **I** Consider the norm $\|\alpha\| = -\langle \alpha, \alpha \rangle$.
- **I A** reducible ASD connection corresponds to {f, -f}, where $f\neq 0\in H^2(X;\mathbb{Z})$ with $f^2=p_1(F)=c_1(L)^2=e^2.$ Thus, $f = e \pmod{2}$ and $||f|| = ||e||$.
- ▶ By first condition, $m := \frac{e+f}{2} \in H^2(X;\mathbb{Z})$. By Cauchy-Schwartz $\|m^2\|\leq \|e\|^2=2$; equality iff $e=f=m.$

KID KARIK KE KIEN IE KORA

Fintushel-Stern's proof of Donaldson's theorem (cont.)

- **I** Consider the norm $\|\alpha\| = -\langle \alpha, \alpha \rangle$.
- ▶ A reducible ASD connection corresponds to $\{f, -f\}$, where $f\neq 0\in H^2(X;\mathbb{Z})$ with $f^2=p_1(F)=c_1(L)^2=e^2.$ Thus, $f = e \pmod{2}$ and $||f|| = ||e||$.
- ▶ By first condition, $m := \frac{e+f}{2} \in H^2(X;\mathbb{Z})$. By Cauchy-Schwartz $\|m^2\|\leq \|e\|^2=2$; equality iff $e=f=m.$

► Thus, $f \neq e$ implies $\|m\| \in \{0, 1\}$. But $E_8 \oplus E_8$ is even and doesn't **contain a vector of length one.**

Hence, $m = 0$ and $f = -e$. Thus, \mathcal{M}_F contains exactly one reducible connection $[A_e]$, corresponding to $\{e, -e\}$.

KID KARIK KE KIEN IE KORA

Fintushel-Stern's proof of Donaldson's theorem (cont.)

- **►** Consider the norm $||α|| = -\langle α, α \rangle$.
- ▶ A reducible ASD connection corresponds to $\{f, -f\}$, where $f\neq 0\in H^2(X;\mathbb{Z})$ with $f^2=p_1(F)=c_1(L)^2=e^2.$ Thus, $f = e \pmod{2}$ and $||f|| = ||e||$.
- ▶ By first condition, $m := \frac{e+f}{2} \in H^2(X;\mathbb{Z})$. By Cauchy-Schwartz $\|m^2\|\leq \|e\|^2=2$; equality iff $e=f=m.$
- **►** Thus, $f \neq e$ implies $\|m\| \in \{0, 1\}$. But $E_8 \oplus E_8$ is even and doesn't **contain a vector of length one.** Hence, $m = 0$ and $f = -e$. Thus, \mathcal{M}_F contains exactly one reducible connection $[A_e]$, corresponding to $\{e, -e\}$.
- **IF** Local models: $[A_e]$ has neighbourhood in M_F modelled on a cone over $\mathbb{CP}^0 = \{pt\}$, i.e. a closed half-line.
- \Rightarrow \mathcal{M}_F compact 1-mfd with one boundary point, contradiction!

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 16 / 19

Comparison of proofs

Donaldson's proof

- \blacktriangleright crucially relies on the non-compactness of M
- \blacktriangleright uses cobordism invariance of signature Donaldson-Kronheimer: replace by a computation of topology of β
- \blacktriangleright this generalises to non-definite forms as well

Fintushel-Stern's proof

- **►** uses compactness properties: $E_8 \oplus E_8$ contains no length one vector not enough energy for bubbling, don't need collar theorem/gluing map
- \blacktriangleright depends on lattice
- ighthroan be adapted for general lattices, but requires Q_X definite.

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 17 / 19

KID KARIK KE KIEN IE KORA

[Fintushel-Stern's proof of Donaldson's theorem](#page-24-0)

Appendix

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 18/19

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 게 이 이 이

Proof: Lie subgroups of G

Proposition

If $G = SU(2)$ or $SO(3)$ and $H \le G$ is a closed connected Lie subgroup, then $H = \{id\}, H = G \text{ or } H \cong \mathbb{S}^1.$

Proof sketch.

Let $H \le G$ be connected and closed subgroup. Is a Lie subgroup. By the subgroups-subalgebras theorem,

 $\{ \textsf{Lie subgroups } H \leqslant G \} \stackrel{1:1}{\leftrightarrow} \{ \textsf{Lie subalgebras } \mathfrak{h} \subset \mathfrak{g} \}, H \mapsto \mathcal{T}_{\mathsf{id}} H.$

In our case, $\mathfrak{su}(2) \cong \mathfrak{so}(3) = \{A \in \mathbb{R}^{3 \times 3} : A + A^t = 0\}.$ Choose basis and compute: $(\mathfrak{so}(3), [\cdot, \cdot]) \cong (\mathbb{R}^3, \times)$. \Rightarrow h cannot have dimension two, so H has dimension 0, 1 or 3. $\Rightarrow H = \{\text{id}\}, H = G \text{ or } H \cong \mathbb{S}^1.$

Michael Rothgang (HU Berlin) [Analysis of reducibles and Donaldson's theorem](#page-0-0) February 02, 2021 19 / 19