Donaldson's proof of Narasimhan Seshadri theorem Holomorphic vector bundles stability Proof the NS theorem modulo lemmas proof of the lemmas Riemann Hilbert correspondence Holomorphic vector bundles and Connections 2 complex mted E complex vector bundle AR ^E ^E valued ^R forms een ^e P forms RF ^E actions of Ak ^E D ^t ^E Sections of Atid ^E RI ^E ^a ^p SPACE I 1

Given a ComretionA, Gveniant derivative

\n
$$
d_{A}: \Omega_{\Phi}^{R}(E) \longrightarrow \Omega_{\Phi}^{R+1}(E) \quad (exptend (inempty))
$$
\nDefine,

\n
$$
\overline{\partial}_{A}: \Omega^{R}(\Phi) \longrightarrow \Omega^{R+1}(E)
$$
\n
$$
\overline{\partial}_{A}: \overline{\partial}_{\Phi} \longrightarrow \overline{\partial}_{\Phi}^{R+1}(E)
$$
\n
$$
\overline{\partial}_{\Phi} \longrightarrow \overline{\partial}_{\Phi}^{R}(\Phi)
$$
\n
$$
\overline{\partial}_{\Phi} \longrightarrow \overline{\partial}_{\Phi}
$$

Theorem: A complex vector bundle $E \rightarrow \overline{Z}$ is holomorphic iff \exists a connection A such that $\partial_{A}^{L} = \overline{\partial}_{A} \circ \overline{\partial}_{A} : \Omega(E) \longrightarrow \Omega^{'2}(E)$ vanishes i.e. $F_A^{o,2} = 0$ Prooff See Donaldson Kron heimer Section $2.2.2$. M_{max} : Riemann surface, then $\Omega^{0,2}(\Sigma) = 0$ \Rightarrow $\overline{\partial}_{A}^{2}=0$ always true. Det: Dolbeaut operator on E is a c linear map $\overline{\partial}_{\xi} : \Omega^{\zeta}(\xi)$ $S^{o,1}(E)$ $A \cdot t$ $\overline{\partial}_{E}(f\&)=\overline{\partial}f\circ\&+f\overline{\partial}_{E}\&$ $f \in C^{\infty} (2)$ $y \in$ '(t) $G := \sum_{i=1}^n$ transformations of E ie Gox bundle isomorphisms $\mathcal{G}^C \bigcap \mathcal{D}^C(\epsilon) := \{ \bar{d}_{\epsilon} : \bar{d}_{\epsilon}^2 : \bar{d}_{\epsilon}^2 > 0 \}$ $\mu \cdot \overline{\partial}_{E}$ = μ (∂_{E} μ)

propr (Holomorphic)
Structures on 200 styrenes on $\sqrt{\frac{c}{c}}$ E \rightarrow ^s bijective. Def: A Hermitian vector buille aver 2 \mathcal{I} is a pair (E,h) , where E is ^a Gox vector bundle and ^h is a hermitian wetric on E. A connection A on E is said to be $\frac{1}{1-\sqrt{1-\frac{1}{1$ f it is companieur $x + h$ h = 2 . with $h = \langle \cdot, \cdot \rangle$ i.e. $1\langle 8,1\rangle = \langle \nabla_{\!\mathsf{A}}\beta, t \rangle$ $+$ \langle $8, V_{\mathsf{A}} \tau \rangle$ HA.tt sections of ^E unitary $G_{\text{max}}(n)$ Ξ $(\sqrt{x}A(E,h)_{hy}$ $u \cdot \partial_E = (u \overline{\partial}_E \overline{u}))$ pop , $\{U_m$ tony comections $\{\iff\}$ Dolbeart $\{S_m\}$ $\frac{\partial n(E, h)}{\partial n E}$

Conclusion:	Holomorphism	Wolomorphism
Thm.	Let, (ξ, h) be a hermitian,	
Indomorphism	Vect, (ξ, h) be a hermitian,	
Indomorphism	Under	Complement
Indomorphism	Under	Complement
And	Unitary	Comsection
And	Unitary	Comvection
And	Chann	Comvection
Idual	chem	Commuting
Assume	$\xi = \sum x e^T$, $\xi = x$	
Aut	Integrals	Aut
Aut	Aut	Aut
Aut	Aut	Aut
Aut	Aut	Hom
Hom	Hom	Hom

$$
\mathcal{P}F_{A} = \frac{1}{2} \log h
$$
\n
$$
A \text{sswe } \Sigma \text{ is a Riemann surface.}
$$
\n
$$
i * F_{A} = c^{\infty}(\Sigma, R)
$$
\n
$$
i * F_{A} = \lambda + 4f
$$
\n
$$
= \lambda + 20*0f
$$
\n
$$
d x h w, \quad h = e^{-2f} h
$$
\n
$$
F_{A} = \frac{1}{2} \log h
$$
\n
$$
= \frac{1}{2} \log h
$$
\n
$$
= \frac{1}{2} \log h
$$
\n
$$
= -2 \frac{1}{2} \log h
$$

Corollomy: U , U \rightarrow Σ be a holomorphism - bin . Then \exists a hermitian matrix h A a unitary commetron AdA \n
i * $En = \mu$ * $\overline{a}e^{-\overline{a}x}$
var : ur : $\mu = \int C_1(\alpha) (\epsilon \deg \alpha)$
Nar : $\mu = \int C_1(\alpha) (\epsilon \deg \alpha)$
Nar : $\mu = \int C_1(\alpha) (\epsilon \deg \alpha)$
Nar : $\overline{a} = \lambda \sum_{i=1}^{n} a_i$
Nar : $\overline{a} = \sum_{i=1}^{n} a_i$
Nar : $\overline{a} = \sum_{i=1}^{n} a_i$
1 : $\sum_{i=1}^{n} a_i$
1 : $\sum_{i=1}^{n} a_i$
1 : $\sum_{i=1}^{n} a_i$
1 : $\sum_{i=1}^{n} a_i$
1 : $\sum_{i=1}^{n} a_i$
1 : $\sum_{i=1}^{n} a_i$
1 : $\sum_{i=1}^{n} a_i$
1 : $\sum_{i=1}^{n} a_i$
1 : $\sum_{i=1}^{n} a_i$
1 : $\sum_{i=1}^{n} a_i$
1

The following follows as Gz is PID Lemmer At ⁴¹ ⁰ ^E Hom ^E ^F Then 7 ^a factorizations p e a o ^k^v lo^v S I Rto St Tomkp rank of ^E and rank Q rank Jh and deg ^Q ^E deg ^R Harden Narsimhan filtration A ^z admits ^a canonical filtration in Eo ^C ^E ^C Ez ^C CEE ^E ^S ^t St ^c Ey is semi stable E ⁱ ⁱ f ⁱ E i E R And µ Him lultti Jordan Hilder filtration Any semi stake bundle E has ^a filtration Eo ^C E ^C ^C Er E y ^t Eye Oti stable all ^E Ice Gti ti Minxnttermitiammatria Intine norms ⁰ ^M In trim and IMI tnfMMT standard EX s ⁱ 1Mt ^E ^V CMI ^E ⁿ 1Mt Ii If ^M Ag BD then VIM 311nAftp.D A 2 space of ^W ² unitary connections egg 2 group of w2i2 gauge transformations ⁱ ^e Complex automorphisms NAI ^A 4g72 Tg JIA ^H FA Al ^e IfHe Aero lemma^I if ^o ^u ^E ^N ^o is an exact sequence holo bundles and

Hen 4 A unitary Conn.

 α

7 (A)
$$
\frac{1}{2} \left(\frac{1}{2} \pi \sinh M \left(\frac{\mu(\mu)}{\mu(\epsilon)} - \frac{\mu(\epsilon)}{\mu(\epsilon)} \right) \right)
$$

\n4. 24 validity occurs only if the formula

\n5 prints.

\n97 bits.

\n99 bits.

\n1. 34 $\mu(\epsilon) = \frac{1}{2} \pi$ (0.5) shows not $i \cdot k$.

\n1. 4 $\mu(\epsilon) > \mu(\epsilon)$

\n2. 5 $\mu(\epsilon) > \mu(\epsilon)$

\n3. 6 $\mu(\epsilon) > \mu(\epsilon)$

\n4. 1 $\mu(\epsilon) > \mu(\epsilon)$

\n5. 5 $\sigma > \pi$ (0.1) λ (0.1) <math display="</p>

 $\overline{d}_{win} := \inf_{A \in \mathcal{P}} \overline{d}(A).$ $C(t, J(A)) \longrightarrow J_{min}$ with $A_i \in \mathcal{P}$ Then IIF A: 11 2 is 6202 hence
by Uhlenbeck a Cpfness there epira a subseq upto jange transformations call it again Ai β i. Ai \longrightarrow A weakly in W^{1,2}. This implies $F_{A} \rightharpoonup F_{A}$ weakly in L². Lemma: Cet, $f: H \longrightarrow \mathbb{R}$ be a convex function, were it is normal vector

then f Cn I irf Hai Hints Use Hahn Banach separation theorem for convex sets Take It µ2CE f 11 V MIE 11 This will be ^a Convex fin Thro JIA ^E int ^J Ai Jamin A ^a mini meter Q AEaP9 we will take 8 ^r bit of unitary connection corresponding to ^E O E By above F ^A unitary connections J ^A ^E int J ^B Bto E E ^A ^E ^O ^E

Lemma2:
$$
inf_{B\in O(E)} g(B) \in O(E)
$$
 or
\n $lim_{x \to 0} g(B) \neq 0$ (2)
\n $lim_{x \to 0} g(B) \neq 0$
\n $lim_{x \to 0} (E, E) \neq 0$.
\n $lim_{x \to 0} (E, E) \neq 0$.
\n $lim_{x \to 0} (E, E) \neq 0$.
\n $lim_{x \to 0} x \Rightarrow E \Rightarrow E \Rightarrow H \Rightarrow 0$ or
\n $lim_{x \to 0} H$ is notomorphic bundles.
\nAssume the theorem is true for lower
\n*rank* should be
\n $lim_{x \to 0} H$ is not a $lim_{x \to 0} H$
\n $lim_{x \to 0} H$ is a $lim_{x \to 0} H$
\n $lim_{x \to 0} H$ is a H
\n $lim_{x \to 0} f$ is a $lim_{x \to 0} H$
\n $lim_{x \to 0} f$ is a $lim_{x \to 0} H$
\n $lim_{x \to 0} f$ is a $lim_{x \to 0} H$
\n $lim_{x \to 0} f$ is a $lim_{x \to 0} H$
\n $lim_{x \to 0} f$ is a $lim_{x \to 0} H$
\n $lim_{x \to 0} f$ is a $lim_{x \to 0} H$
\n $lim_{x \to 0} H$ is a $lim_{x \to 0} H$
\n $lim_{x \to 0} H$ is a $lim_{x \to 0} H$
\n $lim_{x \to 0} H$ is a $lim_{x \to 0} H$
\n $lim_{x \to 0} H$ is a $lim_{x \to 0} H$
\n $lim_{x \to 0} H$

How J(A) = 0.

\nProof of claim 1: Suppose not, from 2,
$$
\exists
$$
 x to 2, and the number of terms 2, and the number of terms

But we have seen that

\n
$$
\frac{\pi}{2} \leq \pi + \frac{1}{2} \leq \pi
$$
\n
$$
\frac{\pi}{2} \leq \pi + \frac{1}{2} \leq \pi
$$
\n
$$
\frac{\pi}{2} \leq \frac{1}{2}, \frac{1}{2} \leq \frac{1}{2} \times \frac{1}{2} \leq \frac{1}{2} \times \frac{1}{
$$

$$
4s \text{ vol}(z) = 1
$$
\n
$$
J(A) \geq \int \sqrt{\frac{i}{2\pi}} F_A - M_{\ell} T_{\epsilon}
$$
\n
$$
+ \frac{1}{2} \int \int T_{\gamma} \left(\frac{i}{2\pi} F_{A_M} - M_{\ell} T_M \right) - 10^{-2}
$$
\n
$$
+ \int \int T_{\gamma} \left(\frac{i}{2\pi} F_{A_M} - M_{\ell} T_M \right) + 10^{-2}
$$
\n
$$
+ \int \int T_{\gamma} \left(\frac{i}{2\pi} F_{A_M} - M_{\ell} T_M \right) + 10^{-2}
$$
\n
$$
= -70 \text{ MeV} \text{ U} \left(M \right) + 70 \text{ MeV} \text{ U} \left(\frac{2}{2} \right)
$$
\n
$$
+ 210^{-2}
$$
\n
$$
+ 210^{-2}
$$
\n
$$
= 210
$$
\n<math display="</math>

Lemma2: inf
$$
J(A) \in O(\epsilon)
$$
 or
\n $\frac{1}{A}hot_0$ bmdle $A \neq \epsilon$ of some
\n $\frac{1}{A}cont_0$ (e, x) $\neq 0$.
\n
\n $A: \epsilon O(\epsilon)$ for inf $J(A)$.
\n $A: \epsilon O(\epsilon)$ for inf $J(A)$.
\n $A: \epsilon O(\epsilon)$
\n $\Rightarrow \text{ If } A: \text{ if } B \neq 0$ for all ϵ for all

Supp x not	Lemma 3: Suppose z is a stable bundle of z (from (E, E))	Lemma 3: Suppose z is a stable bundle of z (from (E, E))	Lemma 3: Suppose z is a stable bundle of z (from (E, E))	Lemma 3: Suppose z is a stable bundle of z (from z and z), then for z (from <math< th=""></math<>
--------------	--	--	--	---

Write	P_{ij}	s trable	s lobe
are	Q_{1} rad to M	(K_{i-1})	(K_{i-1})
and a function point $0(M)$, W_{k} hours	(K_{k-1})		
Find:	For each speed $0 \rightarrow 0 \rightarrow M \rightarrow N \rightarrow 0$		
from Q_{1} is a function point $0(M)$, W_{k} hours	(K_{k-1})		
from Q_{1} is a constant point $0(M)$, W_{k} hours	(K_{k-1})		
from Q_{1} is a constant point $0(M)$, W_{k} hours	(K_{k-1})		
From Q_{1} is a constant point $0(M)$ hours, Q_{2} hours	(K_{k-1})		
From Q_{1} is a constant point 0 hours, Q_{2} hours	(K_{k-1})	(K_{k-1})	
From Q_{1} is a constant point 0 hours, W_{k-1} hours	(K_{k-1})	(K_{k-1})	
From Q_{1} is a constant point 0 hours, W_{k-1}	(K_{k-1})	(K_{k-1})	
From Q_{1} is a constant point 0 hours, W_{k-1} hours	(K_{k-1})	$($	

Pi(X (B_t on Hornmòric reprisentati,
\nof (B-100729)pondiny to
$$
0^l A_{Jt}^l A_{Jt}^l
$$
.
\n $A \parallel B t \parallel_{L^2} = 1$.
\nTuan one com provisthort
\n $J(A_{J}^t, A_{Jt}^t, \emptyset B t) \rightarrow J_1 \infty$
\n $A \rightarrow 0$
\n<

Examphesji G GL ^p complex vectorbundles fomentation Spn7 ad 2 G V n Hermitian pigged 4 i a Ruth Ten Iv Ir bundles Ioniethditemafpuin Ei Exercise a Hermitian vector bundle E ⁱ ^e ^A ^U ⁿ bundle the induced Puln bundle Ee has ^a flat Ruin Connection iff ^E has ^a unitary comedian ^A Such that Fa ^a Ie for some ² form a

$$
\frac{\text{Hint: } \text{Lie } (P \cup (r)) = U(r)_{o} = \text{trace } \text{Skew} \text{ Hermition} \text{matrix}
$$
\n
$$
U(r) \longrightarrow U(r)_{o} \text{ matrix } \text{Q.S.}
$$
\n
$$
B \longmapsto B - \frac{tr(B)}{r} T
$$