$$\begin{array}{c|c} \hline Donald son's proof of Narasimhan-Sechadri
theorem;
• Holomorphic vector bundles & stability
• Proof the NS theorem modulo lemmas
• Proof of the lemmas
• Riemann Hilbert Correspondence.
Holomorphic vector bundles
and Connections
2: Complex vector bundle
 Σ
 $\Lambda^{k}(E) := E - valued k - forms$
 $\Lambda^{i0} = (dZ)$
 $R^{i1} = (dZ)$
 $R^{i2} = e^{in}$
 $\Lambda^{i0} = (dZ)$
 $R^{i2} = (ing A E)^{i}$
 $\Lambda^{k}(E) := Sections of $\Lambda^{k}(E) \otimes \Phi$
 $\Sigma^{k}(E) : Sections of $\Lambda^{k}(E)$
 $\Sigma^{k}(E) : Sections of $\Lambda^{k}(E)$$$$$$$$$$$$$$$$$$$$$$$

hiven a connection A, Covariant derivative

$$d_{A}: \Omega_{d}^{R}(E) \longrightarrow \Omega_{d}^{R+1}(E)$$
 (explained
inearly)
Define,
 $\overline{\partial}_{A}: \Omega^{P,Q}(E) \longrightarrow \Omega^{P,Q+1}(E)$
by $\Omega^{P,Q}(E) \longrightarrow \Omega^{P,Q+1}(E)$
 $\overline{\partial}_{A}: \Omega^{P,Q}(E) \longrightarrow \Omega^{P,Q+1}(E)$
 $\overline{\partial}_{A} \longrightarrow$

Theorem: A complex vector bundle E -> Z is holomorphic iff] a connection A such that $\overline{\partial}_{A}^{2} = \overline{\partial}_{A} \circ \overline{\partial}_{A} : \Omega^{\circ}(E) \longrightarrow \Omega^{\circ,2}(E)$ Vanishes i.e. $F_{A}^{\circ,2} = 0$. proof: See [Donaldson & Kronheimer] Section 2.2.2. Note: 212: Riemann Surface, then $2^{2}(2) = 0$ => J_A^2 = 0 always true Def: Dolbeault operator on E is $\overline{\mathcal{J}}_{E}: \Omega^{\circ}(E) \longrightarrow \Omega^{\circ,1}(E) A.t.$ a & linear map $\bar{\partial}_E(f x) = \bar{\partial}f \partial x + f \bar{\partial}_E x$ $\forall f \in c^{\infty}(\Sigma, \mathcal{L}) \land \mathcal{J} \in \mathcal{P}(\mathcal{E}).$ G^C := gange transformations of E. i.e. you bundle isomorphisms $\mathcal{G}(\mathcal{A}) = \{ \overline{\partial}_{\mathcal{E}} : \overline{\partial}_{\mathcal{E}}^2 = 0 \}$ $\mathcal{V} \cdot \bar{\mathcal{I}}_{\mathsf{F}} = \mathcal{V} \left(\bar{\mathcal{I}}_{\mathsf{F}} \, \mathcal{U}^{\mathsf{T}} \right).$

) 5 (E) prop: (Holomorphic? {structures on} - E CC 55 is bijective. Def: A Hermitian vector buble aver Z is a pair (E, h), where E is a yox vector bundle and h is a hermition metric on E. A connection A on E is savid to be Unitary Connection if it is Compatible with $h = \langle \cdot, \cdot \rangle$ i.e. $d\langle s,t\rangle = \langle \nabla_A s,t\rangle + \langle s,\nabla_A t\rangle$ ¥, s, t, sections of E $\forall , \&, t$, sections $\forall f$ omittion $\exists (\mathcal{A}(E, h) by \ U \cdot \partial_E = (U \overline{D}_E \overline{U}))^*$ prop: {Unitary connections } <> { Dolbeart(on (E, h) on(Eh)

$$= \sum_{i=1}^{n} F_{A} = \overline{\partial} \log h$$
(or $F_{A}^{0,2} = 0$)
Assme Σ is a Riemann Surface.
 $i * F_{A} \in c^{\infty}(\Sigma, \mathbb{R})$
 $i * F_{A} = \lambda + 4f$
 $= \lambda + 2\partial^{*}\partial f$
 $define, \quad \widehat{h} = e^{2f}h$
 $F_{A} = \overline{\partial} \partial \log \widehat{h}$
 $= \overline{\partial} \partial (-2f) + \overline{\partial} \partial \log h$
 $= -2 \overline{\partial} \partial f + \overline{F}_{A}$
 $= -2 \overline{\partial} \partial f + i * F_{A}$
 $= -2 \overline{\partial}^{*} \partial f + i * F_{A}$
 $= -2 \overline{\partial}^{*} \partial f + i * F_{A}$

Corollony: At,
$$\mathcal{A} \rightarrow \Sigma$$
 be a holomor-
- phic. Then $\exists a$ he mitian metric
 $h \quad f \qquad a unitary connection Ast$
 $i & F_A = \mu & \bar{\jmath}_A = \bar{\jmath}_A$.
 2π
Nofx: $\mu = \int C_1(\mathcal{A}) (\equiv \deg \mathcal{A})$
 Σ
Nara simhan - Se shadri thm:
approx $E \rightarrow \Sigma$ is an indecomposable,
holomorphic vector bundle, where
 Σ is a Riemann surface. Then
 E is Stable $\iff \exists a$ hermitian metric
and a Unitary Connection A $\mathcal{A} \cdot t. \; \bar{\eth}_A = \bar{\eth}_E$
 $i & F_A = \mathcal{M}(E)$.
Moreover A is Unique upto Unitary
gauge transformations.

$$\begin{aligned} \overline{\operatorname{Jordan}} - \operatorname{Hö}[\operatorname{der} fi] \operatorname{tration}^{\circ} & \operatorname{Any} \operatorname{Semistrike}^{\circ} \\ & \operatorname{bundle} \mathcal{E} & \operatorname{her} & \operatorname{a} fi(\operatorname{tration})^{\circ} \\ & \operatorname{bundle} \mathcal{E} & \operatorname{her} & \operatorname{ce}_{\mathbb{R}} = \mathcal{E} & \operatorname{sle} & \operatorname{Ei}_{\mathbb{E}_{i-1}}^{\circ} \\ & \operatorname{Stable} \mathcal{E} & \operatorname{hele} & = \operatorname{he}(\operatorname{ut}) & \operatorname{fi} \\ & \operatorname{Mxn} & \operatorname{Hermitian} \\ & \operatorname{matrix} \\ & \operatorname{Mxn} & \operatorname{Hermitian} \\ & \operatorname{matrix} \\ & \operatorname{Define} & \operatorname{norms} \mathcal{D}(\mathbb{M}) := \operatorname{tr} \operatorname{JMH}^{\ast} = \operatorname{tr} \operatorname{JH}^{2} \\ & \operatorname{and} & [\mathbb{M}] := \\ & \operatorname{ftr}(\mathbb{M}\mathbb{M}^{\ast}) & (\operatorname{standard}!) \\ & \operatorname{and} & [\mathbb{M}] := \\ & \operatorname{ftr}(\mathbb{M}\mathbb{M}^{\ast}) & (\operatorname{standard}!) \\ & \operatorname{starcises:} \\ & (i) & [\mathbb{M}] & \leq \mathcal{V}(\mathbb{M}) & \leq \mathbb{N}[\mathbb{M}] \\ & (ii) & 2f & \mathbb{M} = \begin{pmatrix} \mathbb{A} & \mathbb{B} \\ & \mathbb{B}^{\ast} & \mathbb{D} \end{pmatrix}, \\ & \operatorname{tenn} \\ & \mathcal{V}(\mathbb{M}) & \mathcal{P}[\operatorname{tr} \mathbb{A}] + [\operatorname{tr} & \mathbb{D}] \\ & \operatorname{starcs} \\ & \mathcal{E}^{2,2} := \\ & \operatorname{group} & \operatorname{of} & \operatorname{W}^{2,2} \\ & \operatorname{gauge} & \operatorname{transformations} \\ & \operatorname{gen} & \operatorname{starcs} \\ & \operatorname$$

J(A) Z (romk M (M(M)-M(E)) + romk N (M(E) - M(N)) & equality occurs only if the setuence Strits. proof of NS theorem (Suppose not i.e. $\exists \mathcal{F} \subset \mathcal{F} \quad \mathcal{S}.t.$ $\mu(\kappa) > \mu(\varepsilon)$ Then by above lemma, 0=J(A) > J, >0 => Jo = O => E is de composable contradiction !! (\Rightarrow)

(Existence of minimizero) $\mathcal{J}(A) = \left\| \mathcal{S}\left(\frac{1}{2\pi} * F_A - \mu\right) \right\|_{L^2(\Sigma)}$ J_{win}:= inf J(A). AERCA^{1,2} $(Lt, J(Ai) \longrightarrow J_{\min} with Ai \in P$ Then IFA: 11,2 is body hence by Uhlenbeck a CPF ness there epist a subser up to gange transformations call it again Ai s.t. Ai ____ A weakly in W1,2. This implies FA; -> tA weakly in L2. Lemma: Ket, f: H -> IR be a convex traction, were it is normal vector Space. Df x: ->x weakly in H.

then
$$f(x) \leq \inf_{i} f(x_{i})$$
.
Hint: Use Hahn - Banach Separation
Atheorem for convex sets.
Take $Ut = \lfloor f 2^{2}(E) \rfloor$.
 $f = |I rs(-mE_{E})||_{2}$
This will be a convex fn.
Thuo, $J(A) \leq \inf_{i} J(A_{i}) = \overline{J}min$
A: a minimizer.
Question: $A \in P$?
We will take
 $P = \overline{S}\cdot orbit of Unitony Connection
Corresponding to $E = O(E)$
By above $\exists A$ Unitony Connection dt
 $J(A) \leq \inf_{i} J(B)$.
 $B \in O(E)$?$

Lamma 2: inf J(B)
$$\in O(\xi)$$
 or
 \exists holo bundle $\mathcal{A} \neq \xi$ of same
rank and degree as ξ and
 $\operatorname{Hom}(\xi, \mathcal{R}) \neq 0$.
Lemma 3: Suppose ξ is a stable bundle
 $\operatorname{At}_{0} \rightarrow \mathcal{R} \rightarrow \xi \Rightarrow \mathcal{H} \rightarrow 0$ be an
exact set of holomorphic bundles.
Assne the theorem is true for lower
rank stable bundles. Then there
lpist a_{h} unitary connection $A = d \cdot t$.
 $J(k) < \operatorname{rank} \mathcal{R}(\mathcal{M}(\xi) - \mathcal{M}(\mathcal{R})) + \operatorname{rank} \mathcal{H}(\mathcal{M}(\mathcal{H}) - \mathcal{M}(\xi))$
 $\stackrel{!!}{J}_{1}^{!}$
 $\operatorname{Proof} of (=) of the thum:
 $\operatorname{Claim 1:}_{BE O(\xi)}$ is attained in $O(\xi)$
 $\operatorname{Be}O(\xi)$
 $\operatorname{Claim 2:}_{If} A \in \mathcal{O} = d \cdot t \cdot J(A) = \inf J(B)$$

then
$$J(A) = 0$$
.
Proof of claim 1: Suppose not,
then by Lemma 2, $J \propto \pm 0$
 $\in Hom (E, R)$. Consider its factoriz-
-ation
 $0 \rightarrow P \rightarrow E \rightarrow Q \rightarrow 0$
 $Jd \qquad \int B^{3}$
 $0 \leftarrow S \leftarrow R \leftarrow 0$
 $Jt \leftarrow R \leftarrow 0$
 $Jt \quad romk \beta = romk of E \text{ and}$
 $rowk Q = romk Q \quad and$
 $deg Q \leq deg R$.
Apply Lemma 3 to top row
 $inf J_{10(E)} \leq J_{1}$
Apply Lemma 1 to bottom row.
 $inf J \geq J_{0}$

But we have seen that
inf
$$J \leq inf J_{10(2)}$$
 i.e.
 $J_0 \leq J_1 \cdot Bnt$ it is straight
- forward to check that
 $J_1 \leq J_0$; which is a contradiction
 $J_1 \leq J_0$; which is a contradiction
 $Proof of claim 2:$
As, Σ is indeomposable, (Exercise)
Kerda^{*}da = $\{\lambda I_E : \lambda \in C\}$
Two $\exists a \text{ Self-adjoint Section $M \in W^{2,2}$
 $Im \exists a \text{ Self-adjoint Section $M \in W^{2,2}$
 $\xi.t. da^* da M = i * FA - M I_{\Sigma}$
(by Hodge there for $da^* dA = dA$)
Define
 $U_{12} = 1 + t U \in \mathbb{C}^{2}$ and $A_{t} := U_{t} \cdot A$.
(Exercise)$$

As
$$\operatorname{Vol}(z) = 1$$
.
 $J(A) \geq \int \mathcal{V}\left(\frac{i}{2\pi}F_{A} - \mathcal{H}_{e}F_{e}\right)$
Hölden Σ
ineq
 $\geq \left|\int_{\Sigma} \operatorname{Tr}\left(\frac{i}{2\pi}F_{A} - \mathcal{H}_{e}F_{M}\right) - 1\left(P\right)^{2}\right|$
 $+ \left|\int_{\Sigma} \operatorname{Tr}\left(\frac{i}{2\pi}F_{A} - \mathcal{H}_{e}F_{M}\right) + 1\left(P\right)^{2}\right|$
 $= -\operatorname{Youte}\mathcal{M}\mathcal{M}(\mathcal{M}) + \operatorname{Youte}\mathcal{M}\mathcal{M}(e)$
 $+ \operatorname{Youte}\mathcal{N}\mathcal{M}(\mathcal{M}) - \operatorname{Youte}\mathcal{N}\mathcal{M}(e)$
 $+ 21\left(P\right)^{2}$
 $\geq J_{o}$
equality $= \geq P_{e}=0 \Rightarrow \varepsilon$ is
 $\operatorname{Le}\operatorname{Composable}$.

$$\begin{array}{c} \operatorname{Sng} \operatorname{prose} \operatorname{not} \\ \overline{\partial}_{A;B} : (\widehat{\mathcal{I}} \operatorname{tom} (E, E)) \longrightarrow \mathscr{Q} (\operatorname{Hom} (E, E)) \\ \overline{\partial}_{A;B} : (\widehat{\mathcal{I}} \operatorname{tom} (E, E)) \longrightarrow \mathscr{Q} (\operatorname{Hom} (E, E)) \\ \operatorname{Claim:} & \operatorname{Ker} \overline{\partial}_{A,B} \neq 0 \\ \operatorname{Sngprose} & \operatorname{not} \\ \operatorname{Sngprose} & \operatorname{not} \\ \operatorname{Sngprose} & \operatorname{not} \\ \operatorname{Sngprose} & \operatorname{not} \\ \operatorname{Not}$$

Where
$$P_{ij}$$
 stable $+$ slopes
 P_{ij-1}
are lequal to $M(\mathcal{K}_{ij-1})$.
Fact: For each exact $0 \rightarrow 0 \rightarrow M \rightarrow N \rightarrow 0$
and a connection proit $0(M)$, we have a
formily $A_{i} \in 0(M)$ (± 0) and $A_{0} \in 0(a \oplus N)$.
Hint: $\partial_{i} = (\overset{i}{\circ} I \overset{i}{I})$, $A_{i} = \partial_{i} \cdot A$.
By induction, for each P_{ij} them is
frue hence there are
 $A_{ij} \in O(\mathcal{P}_{ij})$. Following this construction
Carefully we can construct
 $A_{jr} \rightarrow A_{jr}^{\circ} \in 0$ ($\oplus P_{ij}$) $A_{ir}^{\circ} = A_{jr}^{\circ} = (\overset{\mu_{i}}{M_{ij}})$
Simillarly for $M_{ij} A_{jr}^{+}$.
To construct $D_{ij} \neq J \cdot I$.
 $[\beta] = \sum [\beta +] \in H^{\circ}(J + \otimes \mathcal{K})$

Pick (bt on Harmonic representation
of S. Correstonding to
$$d_{tt} A_{tt}^{t}$$
.
 $\xi \parallel \beta \parallel_{l^{2}} = 1$.
Then one can prove that
 $J(A_{p}^{t}, A_{pt}^{t}, \beta \beta t) \rightarrow J_{1}$ or
 $\beta \cdot t \rightarrow 0$.

and
 $J(s,t)^{2} = \int_{\Sigma} (J_{1}^{2} - 2s^{2} |\beta t|^{2} t o(t))^{2}$
for small q, t we writt here
 $J(s,t) < J_{1}$

(For more details see Donaldson's paper.)

(For manager of the set of the set of the state of the set of

 $Examples:(1) G = GL(\mathbf{n}, \mathbf{\xi})$ {Complex vector bundles} voith flat comections} <> P: TT, (2) = 61(4, 0) \sim (2) G = U(r)S Herromitian Vector buille with flat unitary connections \sim (3) $\hat{\mu} = \mathbb{P} \cup (r) = \bigcup_{n \in \mathcal{N}} (r)$ EPU(m) bundles with flat PU(m) comections EPU(m) Exercise: ~ triven a Hermitian vector bundle E i.e. a V(n) bmelle, the induced PU(n) bundle Ep has a flat BU(n) Connection if $f \in harrow a$ Unitary Connection A such that $F_A = \propto I_E$ for some 2-form

Hint: Lie
$$(PU(m)) = \mathcal{N}(m)_{0} = \text{trace free skew}$$

Hermitian
 $\mathcal{N}(m) \longrightarrow \mathcal{N}(n)_{0}$
 $\mathcal{B} \longrightarrow \mathcal{B} - \frac{\text{tr}(\mathcal{B})}{n} \mathbb{I}$