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1 Covering theory

Here are some good references for covering theory: Jänich [Jän05, Kapitel 9], Fulton [Ful95,

Parts VI and VII], May [May99, §1-§4], and Hatcher [Hat02, §1].

1.1 Covering maps

Definition 1.1. Let 𝑋, 𝐵 be topological spaces. A covering map is a continuous map 𝑝 : 𝑋 → 𝐵

such that: for every 𝑏 ∈ 𝐵 there are an open neighborhood𝑈 of 𝑏 ∈ 𝐵, a discrete space 𝐷 , and a

homeomorphism 𝜏 : 𝑝−1(𝑈 ) → 𝑈 × 𝐷 such that

pr
1
◦ 𝜏 = 𝑝 |𝑝−1 (𝑈 ) .

𝑋 is a covering space of 𝐵 if there is a covering map 𝑝 : 𝑋 → 𝐵. •

Example 1.2. Let 𝑋 be a topological space. Let 𝐷 be a discrete space. The map pr
1

: 𝑋 ×𝐷 → 𝑋

is a covering map. ♠

Example 1.3. The projection maps 𝑝 : R → 𝑆1 ≔ R/2𝜋𝑍 and 𝑞 : 𝑆𝑛 → R𝑃𝑛 ≔ 𝑆𝑛/{±1} are
covering maps. ♠

Example 1.4. For 𝑘 ∈ N the map 𝑝𝑘 : 𝑆1 → 𝑆1
defined by 𝑝𝑘 ( [𝑥]) = [𝑘𝑥] is a covering map. ♠

Example 1.5. some covering spaces of the figure eight ♠

Example 1.6. The map exp : C→ C× is a covering map. ♠

Example 1.7. Let 𝑑 ∈ N0. Let 𝑃𝑑 ⊂ C[𝑥] be the subset of polynomials with distinct roots. Set

𝑅𝑑 ≔ {(𝑥, 𝑝) ∈ C × 𝑃𝑑 : 𝑝 (𝑥) = 0}. The map pr
2

: 𝑅𝑑 → 𝑃𝑑 is a covering map. ♠

Example 1.8. Let 𝑛 ∈ N. Let 𝑝 ∈ N and 𝑞1, . . . , 𝑞𝑛 ∈ Z such that

gcd(𝑝, 𝑞𝑖) = 1.

Identify R2𝑛 = C𝑛 and define 𝜙 ∈ SO(2𝑛) by

𝜙 (𝑧1, . . . , 𝑧𝑛) ≔ (𝑒2𝜋𝑖𝑞1/𝑝𝑧1, · · · , 𝑒2𝜋𝑖𝑞𝑛/𝑝𝑧1) .

By construction, the subgroup ⟨𝜙⟩ ⊂ SO(2𝑛) is cyclic of order 𝑝 and acts freely on 𝑆2𝑛−1
. The

lens space 𝐿(𝑝;𝑞1, . . . , 𝑞𝑛) is the quotient

𝐿(𝑝;𝑞1, . . . , 𝑞𝑛) ≔ 𝑆2𝑛−1/⟨𝜙⟩.

The projection map 𝑝 : 𝑆2𝑛−1 → 𝐿(𝑝;𝑞1, . . . , 𝑞𝑛) is a covering map. ♠
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Example 1.9. Denote by H the R–algebra of the quaternions. Set Sp(1) ≔ {𝑞 ∈ Sp(1) : |𝑞 | = 1}.
The map Ad : Sp(1) → SO(ImH)

Ad(𝑞)𝑥 ≔ 𝑞𝑥𝑞∗

is a covering map. ♠

Proposition 1.10. If 𝑝 : 𝑋 → 𝐵 is a proper local homeomorphism, then it is a covering map. ■

Exercise 1.11. Prove Proposition 1.10.

Proposition 1.12. Let 𝑝 : 𝑋 → 𝐵 be a covering space with 𝐵 connected. For every 𝑏0, 𝑏1 ∈ 𝐵 there
is a bijection 𝑝−1(𝑏0) → 𝑝−1(𝑏1).

Proof. For 𝑏0 ∈ 𝐵 set

𝑆𝑏0
≔ {𝑏 ∈ 𝐵 : there is a bijection 𝑝−1(𝑏0) → 𝑝−1(𝑏)}.

Trivially, 𝑏0 ∈ 𝑆𝑏0
. If 𝑏 ∈ 𝑆𝑏0

and 𝑈 is an open neighborhood of 𝑏 ∈ 𝐵 as in Definition 1.1, then

𝑈 ⊂ 𝑆𝑏0
. Therefore, 𝑆𝑏0

is open. Finally,

𝐵\𝑆𝑏0
=

⋃
𝑏∉𝑆𝑏

0

𝑆𝑏 .

Therefore, 𝑆𝑏0
is closed. Since 𝐵 is connected, 𝑆𝑏0

= 𝐵. ■

Definition 1.13. Let 𝑝 : 𝑋 → 𝐵 be a proper covering map. The degree of 𝑝 is the map

deg· (𝑝) : 𝐵 → N0 defined by

deg𝑏 (𝑝) ≔ #𝑝−1(𝑏) . •

1.2 Quotients and covering maps

Definition 1.14. Let 𝐺 be a topological group. Let 𝑋 be a topological space.

(1) A left action of 𝐺 on 𝑋 is a continuous map 𝐿 : 𝐺 × 𝑋 → 𝑋 satisfying

𝐿(1, ·) = id𝑋 and 𝐿(𝑔, 𝐿(ℎ, 𝑥)) = 𝐿(𝑔ℎ, 𝑥) .

Define 𝐿𝑔 ∈ Homeo(𝑋 ) by 𝐿𝑔 ≔ 𝐿(𝑔, ·) and abbreviate

𝑔 · 𝑥 ≔ 𝐿(𝑔, 𝑥).

(2) The quotient of 𝑋 by 𝐿 is the topological space

𝐺\𝑋 ≔ 𝑋/∼𝐿

with 𝑥 ∼𝐿 𝑦 if and only if 𝑥 = 𝑔 · 𝑦 for some 𝑔 ∈ 𝐺 .

(3) A left action 𝐿 of𝐺 on 𝑋 is properly discontinuous if every 𝑥 ∈ 𝑋 has a neighborhood𝑈

such that

𝑈 ∩ (𝑔 ·𝑈 ) ≠ ∅ if and only if 𝑔 = 1 ∈ 𝐺. •
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Proposition 1.15. Let𝐺 be a group. Let 𝑋 be a topological space. Let 𝐿 be a properly discontinuous
left action of 𝐺 on 𝑋 . Set 𝐵 ≔ 𝐺\𝑋 .

(1) The canonical projection map 𝑝 : 𝑋 → 𝐵 is a covering map.

(2) Let 𝑆 be a discrete space. Let 𝜆 : 𝐺 → Homeo(𝑆) = Bij(𝑆) be a group homomorphism. Set

𝑌 ≔ 𝑋 ×𝐺 𝑆 ≔ 𝐺\(𝑋 × 𝑆)

with 𝑔 · (𝑥, 𝑠) ≔ (𝑔 · 𝑥, 𝜆(𝑔)𝑠). The canonical projection map 𝑞 : 𝑌 → 𝐵 is a covering
map. ■

Exercise 1.16. Prove Proposition 1.15.

If 𝐵 is not too pathological (e.g., if 𝐵 is a manifold or CW complex), then (up to isomorphism)

every covering map 𝑝 : 𝑋 → 𝐵 arises from the construction in Proposition 1.15.

1.3 Lifting along covering maps, I

Definition 1.17. Let 𝑝 : 𝑋 → 𝐵 and 𝑓 : 𝐴→ 𝐵 be a continuous maps. A lift of 𝑓 along 𝑝 is a

continuous map
˜𝑓 : 𝐴→ 𝑋 such that

𝑝 ◦ ˜𝑓 = 𝑓 . •

The following diagram illustrates the situation in Definition 1.17:

𝑋

𝐴 𝐵.

𝑝

𝑓

˜𝑓

The key to the theory of covering spaces is to solve the lifting problem: which maps 𝑓 admit a
lift along 𝑝?

Proposition 1.18. Let 𝑝 : 𝑋 → 𝐵 be a covering map. Let 𝑓 : 𝐴 → 𝐵 be a continuous map. Let
𝑎0 ∈ 𝐴 and 𝑥0 ∈ 𝑝−1(𝑓 (𝑎0)). If 𝐴 is connected, then there is at most one lift ˜𝑓 : 𝐴→ 𝑋 of 𝑓 along
𝑝 with ˜𝑓 (𝑎0) = 𝑥0.

The proof is an immediate consequence of the following.

Lemma 1.19. Let 𝑝 : 𝑋 → 𝐵 be a covering map. Set

𝑋 ×𝐵 𝑋 ≔ {(𝑥,𝑦) ∈ 𝑋 × 𝑋 : 𝑝 (𝑥) = 𝑝 (𝑦)} and Δ ≔ {(𝑥, 𝑥) ∈ 𝑋 ×𝐵 𝑋 }.

The subset Δ ⊂ 𝑋 ×𝐵 𝑋 is open and closed.

Proof. For 𝑥 ∈ 𝑋 denote by 𝑉𝑥 an open neighborhood of 𝑥 ∈ 𝑋 such that 𝑝 (𝑉𝑥 ) is open and

𝑝 |𝑉𝑥 : 𝑉𝑥 → 𝑝 (𝑉𝑥 ) is a homeomorphism. (𝑉 × 𝑉 ) ∩ (𝑋 ×𝐵 𝑋 ) is an open neighborhood of

(𝑥, 𝑥) ∈ 𝑋 ×𝐵 𝑋 and contained in Δ. Therefore, Δ is open.

Let (𝑥,𝑦) ∈ (𝑋 ×𝐵 𝑋 )\Δ. Choose 𝑉𝑥 ,𝑉𝑦 as above with 𝑉𝑥 ∩𝑉𝑦 = ∅. (𝑉𝑥 ×𝑉𝑦) ∩ 𝑋 ×𝐵 𝑋 is

an open neighborhood of (𝑥,𝑦) ∈ 𝑋 ×𝐵 𝑋 and does not intersect Δ. Therefore, Δ is closed. ■
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Proof of Proposition 1.18. Suppose ˜𝑓1, ˜𝑓2 : 𝐴 → 𝑋 are lifts of 𝑓 along 𝑝 with
˜𝑓𝑖 (𝑎0) = 𝑥0. By

Lemma 1.19, 𝑆 ≔ ( ˜𝑓1, ˜𝑓2)−1(Δ) is open and closed. Since 𝑎0 ∈ 𝑆 and𝐴 is connected, 𝑆 = 𝐴; hence:
˜𝑓1 = ˜𝑓2. ■

Example 1.20. The map 𝑝𝑘 : 𝑆1 → 𝑆1
does not admit a lift along the projection 𝑝 : R→ 𝑆1

. ♠

This illustrates that not every map 𝑓 : 𝐴 → 𝐵 can be lifted along 𝑝 . However, it is quite

easy to see that this posssible if 𝐴 = [0, 1]. It is quite easy to see that paths can be lifted along

covering maps. In fact, this can be done in families.

Definition 1.21. Let 𝐴 be a topological space. A continuous map 𝑝 : 𝑋 → 𝐵 has the homotopy
lifting property (HLP) with respect to 𝐴 if for every homotopy ℎ : [0, 1] × 𝐴 → 𝐵 and

lift
˜ℎ0 : 𝐴 → 𝑋 of ℎ(0, ·) there is a homotopy

˜ℎ : [0, 1] × 𝐴 → 𝑋 which is a lift of ℎ with

˜ℎ(0, ·) = ˜ℎ0. •

The following diagram illustrates the situation in Definition 1.21:

𝐴 𝑋

[0, 1] ×𝐴 𝐵.

˜ℎ0

𝑝

ℎ

˜ℎ

Definition 1.22. A continuous map 𝑝 : 𝑋 → 𝐵 is a Hurewicz fibration if it has the HLP with

respect to every topological space. •

Lemma 1.23. If 𝑝 : 𝑋 → 𝐵 is a covering map, then is a Hurewicz fibration.

Proof. If 𝐷 is a discrete space, then pr
1

: 𝐵 × 𝐷 → 𝐵 is a Hurewicz fibration. Consequently,

every 𝑏 ∈ 𝐵 has a neighborhood𝑈 such that 𝑝 |𝑝−1 (𝑈 ) is a Hurewicz fibration.
Let 𝐴 be a topological space. Let ℎ : [0, 1] × 𝐴 → 𝐵 be a homotopy. For every (𝑡, 𝑎) ∈

[0, 1] × 𝐴 choose a neighborhood 𝑈𝑡,𝑎 of ℎ(𝑡, 𝑎) as above. Since [0, 1] is compact, there are

0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 1 and an open neighborhood𝑉𝑎 of 𝑎 ∈ 𝐴 with [𝑡𝑖 , 𝑡𝑖+1] ×𝑉𝑎 ⊂ ℎ−1(𝑈𝑡,𝑎)
for some 𝑡 ∈ [0, 1]. Let ˜ℎ0 be a lift of ℎ(0, ·). Since 𝑝 |𝑝−1 (ℎ ( [𝑡𝑖 ,𝑡𝑖+1 ]×𝑉𝑎 ) ) is a Hurewicz fibration, a

finite induction argument constructs a lift
˜ℎ𝑉𝑎 of ℎ | [0,1]×𝑉𝑎 with

˜ℎ𝑉𝑎 (0, ·) = ˜ℎ0 |𝑉𝑎 .
By Proposition 1.18 and because [0, 1] is connected, ˜ℎ𝑉𝑎 and

˜ℎ𝑉𝑏 agree on [0, 1] × (𝑉𝑎 ∩𝑉𝑏).
Therefore, they assemble into a lift

˜ℎ of ℎ with
˜ℎ(0, ·) = ˜ℎ0. ■

1.4 The monodromy representation

The theory of covering maps is intricately intertwined with concept of fundamental group(oid).

Definition 1.24. Let 𝑋 be a topological space. Let 𝛾, 𝛿 : [0, 1] → 𝑋 be paths.

(1) If 𝛾 (1) = 𝛿 (0), then the concatenation of 𝛾 and 𝛿 is the path 𝛾 ∗ 𝛿 : [0, 1] → 𝑋 defined by

(𝛾 ∗ 𝛿) (𝑡) ≔
{
𝛾 (2𝑡) if 𝑡 ∈ [0, 1/2],
𝛿 (2𝑡 − 1) if 𝑡 ∈ [1/2, 1] .
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(2) The reverse of 𝛾 is the path 𝛾 : [0, 1] → 𝑋 defined by

𝛾 (𝑡) ≔ 𝛾 (1 − 𝑡) .

(3) Let (𝑋, 𝑥) be a pointed topological space. Its fundamental group is the set 𝜋1(𝑋, 𝑥)
of homotopy classes rel {0, 1} of paths 𝛾 : [0, 1] → 𝑋 with 𝛾 (0) = 𝛾 (1) = 𝑥 and the

multiplication defined by

[𝛾] · [𝛿] ≔ [𝛿 ∗ 𝛾] .
The unit 1 ∈ 𝜋1(𝑋, 𝑥) is the homotopy class of the constant path [𝑥] and [𝛾]−1 = [𝛾]. •

The above definition of the group structure on 𝜋1(𝑋, 𝑥) might appear backwards. This

convention is justified by Proposition 1.25 (2). It is also the group structure inherited from the

composition in a fundamental groupoid Π1(𝑋 ).

Proposition 1.25. Let 𝑝 : 𝑋 → 𝐵 be a covering map.

(1) For every path 𝛾 : [0, 1] → 𝐵 there is a map tra𝛾 : 𝑝−1(𝛾 (0)) → 𝑝−1(𝛾 (1)) such that if 𝛾 is
a lift of 𝛾 , then

tra𝛾 (𝛾 (0)) = 𝛾 (1) .

(2) If 𝛾, 𝛿 : [0, 1] → 𝑋 are paths with 𝛾 (1) = 𝛿 (0), then

tra𝛾∗𝛿 = tra𝛿 ◦ tra𝛾 .

(3) For every path 𝛾 : [0, 1] → 𝐵 the map tra𝛾 is a bijection; indeed:

tra𝛾 = tra
−1

𝛾 .

(4) The map tra𝛾 depends only on the homotopy class of 𝛾 rel {0, 1}.

Proof. By Proposition 1.18, tra𝛾 is well-defined. This proves (1).

If 𝛾 is a lift of 𝛾 and
˜𝛿 is a lift of 𝛿 with

˜𝛿 (0) = 𝛾 (0), then 𝛾 ∗ ˜𝛿 is a lift of 𝛾 ∗ 𝛿 with

(𝛾 ∗ ˜𝛿) (0) = 𝛾 (0). This proves (2).
If 𝛾 is a lift of 𝛾 , then ¯𝛾 is a lift of 𝛾 . This proves (3).

Let Γ : [0, 1] × [0, 1] → 𝐵 be a homotopy rel {0, 1}. If Γ̃ is a lift of Γ along 𝑝 , then Γ̃(·, 1) is
constant it maps to 𝑝−1(Γ(0, 1)) and the latter is discrete. This proves (4). ■

Example 1.26. Consider Example 1.7 for𝑑 = 2. By the quadratic formula the roots of 𝑝 = 𝑥2+𝑎𝑥+𝑏
are

−1

2

(
𝑎 ±
√
𝑎2 − 4𝑏

)
.

Therefore, 𝑃2 = {𝑥2 + 𝑎𝑥 + 𝑏 ∈ C[𝑥] : 𝑎2 ≠ 4𝑏}. Consider the path 𝑝 : [0, 1] → 𝑃2 defined by

𝑝 (𝑡) ≔ 𝑥2 − 𝑒2𝜋𝑖𝑡 = (𝑥 + 𝑒𝜋𝑖𝑡 ) (𝑥 − 𝑒𝜋𝑖𝑡 ) .

The lift 𝑝 : [0, 1] → 𝑅2 of 𝑝 along pr
2

: 𝑅2 → 𝑃2 with 𝑝 (0) = (1, 𝑝 (𝑡)) is

𝑝 (𝑡) = (𝑒𝜋𝑖𝑡 , 𝑝 (𝑡)).

Therefore, tra𝑝 (1) = −1. ♠
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Definition 1.27. Let 𝑝 : 𝑋 → 𝐵 be a covering map. Let 𝑏 ∈ 𝐵. The monodromy representation
of 𝑝 is the homomorphism tra : 𝜋1(𝐵,𝑏) → Bij(𝑝−1(𝑏)) defined by

tra(𝛾) ≔ tra𝛾 . •

Definition 1.28. Let 𝑝 : (𝑋, 𝑥0) → (𝐵,𝑏0) be a pointed covering map. The characteristic
subgroup of 𝑝 and 𝑥0 is the subgroup

𝐶 (𝑝, 𝑥0) ≔ im(𝑝∗ : 𝜋1(𝑋, 𝑥0) → 𝜋1(𝐵,𝑏0)) < 𝜋1(𝐵,𝑏0) . •

Definition 1.29. Let 𝐺 be a group. Let 𝐻 < 𝐺 be a subgroup. The normal core of 𝐻 < 𝐺 is the

normal subgroup

Core𝐺 (𝐻 ) ≔
⋂
𝑔∈𝐺

𝑔𝐻𝑔−1 ⊳𝐺. •

Proposition 1.30. Let 𝑝 : (𝑋, 𝑥0) → (𝐵,𝑏0) be a pointed covering map.

(1) The homomorphism 𝑝∗ : 𝜋1(𝑋, 𝑥0) → 𝐶 (𝑝, 𝑥0) < 𝜋1(𝐵,𝑏0) is an isomorphism.

(2) For every [𝛾] ∈ 𝜋1(𝐵,𝑏0) and 𝑦 ≔ tra( [𝛾]) (𝑥)

𝐶 (𝑝,𝑦) = [𝛾]𝐶 (𝑝, 𝑥0) [𝛾]−1.

(3) For every [𝛾] ∈ 𝜋1(𝐵,𝑏0)

tra( [𝛾]) (𝑥) = 𝑥 if and only if [𝛾] ∈ 𝐶 (𝑝, 𝑥0).

(4) If 𝑋 is path-connected, then

tra(·) (𝑥) : 𝜋1(𝐵,𝑏0)/𝐶 (𝑝, 𝑥0) → 𝑝−1(𝑏)

is a bijection; in particular,

deg(𝑝) = |𝐶 (𝑝, 𝑥0) : 𝜋1(𝐵,𝑏0) |.

(5) If 𝑋 is path-connected, then

ker(tra : 𝜋1(𝐵,𝑏0) → Bij(𝑝−1(𝑏0)) = Core𝜋1 (𝐵,𝑏0 ) (𝐶 (𝑝, 𝑥0)) .

Proof. If [𝛾] ∈ ker𝑝∗, then there is a homotopy Γ : [0, 1] × [0, 1] → 𝐵 rel {0, 1} with Γ(0, ·) =
𝛾 ≔ 𝑝 ◦ 𝛾 and Γ(1, ·) = 𝑏. Denote by Γ̃ : [0, 1] × [0, 1] → 𝑋 the lift of Γ with Γ̃(0, ·) = 𝛾 .

Γ̃(·, 0), Γ̃(·, 1), and Γ̃(1, ·) are lifts of the constant path 𝑏; hence: equal to the constant path 𝑥 .

Therefore, Γ̃ is a homotopy rel {0, 1} and 𝐻 (1, ·) = 𝑥 is the constant path 𝑥 . Consequently,

[𝛾] = 1 ∈ 𝜋1(𝑋, 𝑥0). This proves (1).
If 𝛾 : [0, 1] → 𝑋 is a path with 𝛾 (0) = 𝑥 and 𝛾 (1) = 𝑦, then the map 𝜋1(𝑋, 𝑥0) → 𝜋 (𝑋,𝑦)

defined by

[𝛿] ↦→ [¯𝛾 ∗ 𝛿 ∗ 𝛾]
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is an isomorphism. This implies (2).

If [𝛾] ∈ 𝐶 (𝑝, 𝑥0), then tra( [𝛾]) (𝑥0) = 𝑥0. If tra( [𝛾]) (𝑥0) = 𝑥0, then the lift 𝛾 of 𝛾 with

𝛾 (0) = 𝑥0 satisfies𝛾 (1) = 𝑥0; hence: it defines an element [𝛾] ∈ 𝜋1(𝑋, 𝑥0). Evidently, 𝑝∗ [𝛾] = [𝛾].
This proves (3).

By (3), tra(·) (𝑥0) is injective. To prove that tra(·) (𝑥0) is surjective, let 𝑥 ∈ 𝑝−1(𝑏0). Since 𝑋
is path-connected, there is path 𝛾 : [0, 1] → 𝑋 with 𝛾 (0) = 𝑥0 and 𝛾 (1) = 𝑥 . By construction,

𝛾 ≔ 𝑝 ◦ 𝛾 satisfies 𝛾 (0) = 𝛾 (1) = 𝑏0, and tra( [𝛾]) (𝑥0) = 𝑥 . This proves (4)
By (3),

ker tra =
⋂

𝑥∈𝑝−1 (𝑏0 )
𝐶 (𝑝, 𝑥) .

This, (2), and (4) imply (5). ■

1.5 Lifting along covering maps, II

Definition 1.31. A topological space 𝑋 is locally path connected if for every 𝑥 ∈ 𝑋 and every

neighborhood𝑈 of 𝑥 ∈ 𝑋 there is a path connected, open neighborhood 𝑉 ⊂ 𝑈 of 𝑥 ∈ 𝑋 . •

Theorem 1.32 (Lifting criterion). Let 𝑝 : 𝑋 → 𝐵 be a covering map. Let 𝑓 : 𝐴→ 𝐵 be a continuous
map. Suppose that 𝐴 is connected and locally path connected. Let 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝑝−1(𝑓 (𝑎)). Set
𝑏 ≔ 𝑝 (𝑥). There is a lift ˜𝑓 : 𝐴→ 𝑋 of 𝑓 along 𝑝 with ˜𝑓 (𝑎) = 𝑥 if and only if

im(𝑓∗ : 𝜋1(𝐴, 𝑎) → 𝜋1(𝐵,𝑏)) < 𝐶 (𝑝, 𝑥) .

Proof. If 𝑓 admits as lift
˜𝑓 along 𝑝 with

˜𝑓 (𝑎) = 𝑥 , then

𝑓∗𝜋1(𝐴, 𝑎0) = 𝑝∗ ˜𝑓∗𝜋1(𝐴, 𝑥0) < 𝑝∗𝜋1(𝑋, 𝑥0) = 𝐶 (𝑝, 𝑥0) .

For 𝑎 ∈ 𝐴 choose a path 𝛾 : [0, 1] → 𝐴 with 𝛾 (0) = 𝑎0 and 𝛾 (1) = 𝑎 and set

˜𝑓 (𝑎) ≔ tra𝑓 ◦𝛾 (𝑥0).

This does not depend on the choice of 𝛾 . Indeed, if 𝛿 : [0, 1] → 𝐴 is path 𝛿 (0) = 𝑎0 and 𝛿 (1) = 𝑎,
then 𝑓∗( [𝛾]−1 [𝛿]) ∈ im𝑝∗. Therefore, by Proposition 1.30 (3), tra𝑓 ◦𝛾 (𝑥0) = tra𝑓 ◦𝛿 (𝑥0).

It remains to prove that
˜𝑓 is continuous. If 𝑝 = pr

1
: 𝐵 × 𝐷 → 𝐵 with 𝐷 discrete and

𝑥0 = (𝑏0, 𝑑0), then the above construction yields the continuous map
˜𝑓 = (𝑓 , 𝑑0). A moment’s

thought shows that repeating the above construction with 𝑎0 and 𝑥0 replaced with 𝑎 and ˜𝑓 (𝑎)
respectively produces the same map

˜𝑓 . Since𝐴 is locally path connected, every 𝑏 ∈ 𝐵 has a path

connected neighborhood 𝑉 with 𝑓 (𝑉 ) ⊂ 𝐵 contained in an open subset 𝑈 as in Definition 1.1.

Therefore,
˜𝑓 is continuous. ■

1.6 The classification of covering maps

If one wants to stick to the fundamental group (instead of the fundamental groupoid), then it

is convenient to introduce base-points throughout and in the category of pointed topological

spaces and pointed continuous map.
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Definition 1.33. Two pointed covering maps 𝑝 : (𝑋, 𝑥0) → (𝐵,𝑏0) and 𝑞 : (𝑌,𝑦0) → (𝐵,𝑏0) are
isomorphic if there is a pointed homeomorphism 𝜙 : (𝑋, 𝑥0) → (𝑌,𝑦0) such that 𝑞 ◦ 𝜙 = 𝑝 . •

Theorem 1.34. Let (𝐵,𝑏0) be a connected, locally path-connected, pointed topological space. Two
pointed covering maps 𝑝 : (𝑋, 𝑥0) → (𝐵,𝑏0) and 𝑞 : (𝑌,𝑦0) → (𝐵,𝑏0) with 𝑋,𝑌 connected are
isomorphic if and only if

𝐶 (𝑝, 𝑥0) = 𝐶 (𝑞,𝑦0) .

Proof. This is a straight-forward consequence of Theorem 1.32. ■

Definition 1.35. A topological space 𝑋 is semi-locally simply-connected if every 𝑥 ∈ 𝑋 has a

neighborhood such that every loop 𝛾 : [0, 1] → 𝑈 with 𝛾 (0) = 𝛾 (1) = 𝑥 is homotopic rel {0, 1}
to a constant loop in 𝑋 . •

Theorem 1.36. Let (𝐵,𝑏0) be a connected, locally path-connected, semi-locally simply-connecteed,
pointed topological space. For every 𝐶 < 𝜋1(𝐵,𝑏0) there is a pointed covering map 𝑝 : (𝑋, 𝑥0) →
(𝐵,𝑏0) with 𝑋 connected and

𝐶 (𝑝, 𝑥0) = 𝐶.

Proof.

Step 1. Construction of the set 𝑋 and 𝑝 : 𝑋 → 𝐵.

Denote by 𝑃𝑏 the set of paths 𝛾 : [0, 1] → 𝐵 with 𝛾 (0) = 𝑏. Define the equivalence relation
∼ on 𝑃𝑏 by 𝛾 ∼ 𝛿 if and only if 𝛾 (1) = 𝛿 (1) and [𝛾 ∗ ¯𝛿] ∈ 𝐶 . Denote the equivalence class of 𝛾
with respect to ∼ by ⟨𝛾⟩ Set

𝑋 ≔ 𝑃𝑏/∼

and define 𝑝 : 𝑋 → 𝐵 by

𝑝 (⟨𝛾⟩) ≔ 𝛾 (1).

Step 2. Construction of the topology on 𝑋 .

For 𝛾 : [0, 1] → 𝐵 with 𝛾 (0) = 𝑏 and 𝑠 ∈ [0, 1] define 𝛾𝑠 : [0, 1] → 𝑃𝑏 by 𝛾𝑠 (𝑡) ≔ 𝛾 (𝑠𝑡). By
construction, 𝑝 (⟨𝛾𝑠⟩) = 𝛾 (𝑠). Let 𝑈 ⊂ 𝑋 an path-connected open subset and ⟨𝛾⟩ ∈ 𝑝−1(𝑈 ).
Denote by 𝑉 (𝑈 , [𝛾]) ⊂ 𝑋 to be subset of elements of the form ⟨𝛾 ∗ 𝛿⟩ with 𝛿 : [0, 1] → 𝑈 and

𝛿 (0) = 𝛾 (1). Evidently, these form the basis of a topology.

Step 3. Proof that 𝑝 is continuous and open.

Since 𝐵 is locally path-connected, 𝑝 is continuous. Since𝑈 is path-connected, 𝑝 (𝑉 (𝑈 , [𝛾])) =
𝑈 . Therefore, 𝑝 is open.

Step 4. Proof that 𝑝 is a covering map.

Let 𝑐 ∈ 𝐵. Let 𝑈 be a path-connected neighborhood of 𝑐 ∈ 𝐵 such that every 𝜀 : [0, 1] → 𝑈

with 𝜀 (0) = 𝜀 (1) = 𝑏 is homotopic rel {0, 1} to the constant loop 𝑐 in 𝐵. Let ⟨𝛾⟩, ⟨𝛿⟩ ∈ 𝑝−1(𝑏). If
𝑉 (𝑈 , [𝛾]) ∩𝑉 (𝑈 , [𝛿]) ≠ ∅, then there are paths 𝜀, 𝜙 : [0, 1] → 𝑈 with 𝜀 (0) = 𝛾 (1), 𝜙 (0) = 𝛿 (1),
and

[𝛾 ∗ 𝜀 ∗ ¯𝜙 ∗ ¯𝛿] ∈ 𝐶.
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By construction, 𝜀 ∗ ¯𝜙 is homotopic rel {0, 1} to the constant path 𝑐 . Therefore, [𝛾 ∗ ¯𝛿]; hence:
⟨𝛾⟩ = ⟨𝛿⟩. This proves that 𝑝−1(𝑐) is discrete.

If 𝑝 (⟨𝛾⟩) ∈ 𝑈 , then there is a path 𝛿 : [0, 1] → 𝑈 with 𝛿 (0) = 𝛾 (1) and 𝛿 (1) = 𝑐 . Evidently
[𝛾] ∈ 𝑉 (𝑈 , ⟨𝛾 ∗ 𝛿⟩). Therefore,

𝑝−1(𝑈 ) =
∐

⟨𝛾 ⟩∈𝑝−1 (𝑏 )
𝑉 (𝑈 , ⟨𝛾⟩).

It remains to prove that 𝑝 : 𝑉 (𝑈 , ⟨𝛾⟩) → 𝑈 is a homeomorphism. It already is continuous and

open. Since𝑈 is path-connected, this map is surjective. Since every loop in𝑈 based at 𝛾 (1) can
be contracted, the map is injective.

Step 5. Proof that 𝑋 is path connected.

𝑋 is path-connected since the maps 𝑠 ↦→ ⟨𝛾𝑠⟩ are continuous.

Step 6. Proof that 𝐶 (𝑝, 𝑥0) = 𝐶 .

Finally, it remains to verify that 𝐶 (𝑝, ⟨𝑏⟩) = 𝐶 . A loop 𝛾 : [0, 1] → 𝐵 with 𝛾 (0) = 𝛾 (1) = 𝑏
represents an element of 𝐶 (𝑝, ⟨𝑏⟩) if and only if its lift 𝑠 ↦→ ⟨𝛾𝑠⟩ to 𝑋 satisfies 𝑏 = ⟨𝛾0⟩ = ⟨𝛾1⟩ =
⟨𝛾⟩. By construction, the latter is equivalent to [𝛾] ∈ 𝐶 . ■

1.7 Deck transformations

Definition 1.37. Let 𝑝 : 𝑋 → 𝐵 be a covering map. A deck transformation of 𝑝 is a homeomor-

phism 𝜙 : 𝑋 → 𝑋 such that

𝑝 ◦ 𝜙 = 𝑝.

These form the deck transformation group denoted by

Deck(𝑝) . •

Proposition 1.38. Let 𝑝 : 𝑋 → 𝐵 be a covering map. If 𝑋 is connected, then action of Deck(𝑝) on
𝑋 is properly discontinuous.

Definition 1.39. Let 𝐺 be a group. Let 𝐻 < 𝐺 be a subgroup. The normaliser of 𝐻 < 𝐺 is

𝑁𝐺 (𝐻 ) ≔ {𝑔 ∈ 𝐺 : 𝑔𝐻𝑔−1 = 𝐻 }. •

Proposition 1.40. Let 𝑝 : 𝑋 → 𝐵 be a covering map. Let 𝑏 ∈ 𝐵 and 𝑥,𝑦 ∈ 𝑝−1(𝑏).

(1) Let 𝜙 ∈ Deck(𝑝). If 𝜙 (𝑥) = 𝑦, then 𝐶 (𝑝, 𝑥) = 𝐶 (𝑝,𝑦).

(2) If 𝑋 is connected and locally path-connected, and 𝐶 (𝑝, 𝑥) = 𝐶 (𝑝,𝑦), then there is a unique
𝜙 ∈ Deck(𝑝) with 𝜙 (𝑥) = 𝑦.
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(3) If 𝑋 is connected and locally path-connected, then there is a unique anti-isomorphism

𝜏 : Deck(𝑝) → 𝑁𝜋1 (𝐵,𝑏 ) (𝐶 (𝑝, 𝑥))/𝐶 (𝑝, 𝑥)

with the following property: if 𝜙 ∈ Deck(𝑝) and 𝛾 : [0, 1] → 𝑋 is a path with 𝛾 (0) = 𝑥 and
𝛾 (1) = 𝜙 (𝑥), then

(1.41) 𝜏 (𝜙) = [𝑝 ◦ 𝛾] .

(4) If 𝑋 is connected and locally path-connected, then Deck(𝑝) acts transitively on 𝑝−1(𝑏) if
and and only if 𝐶 (𝑝, 𝑥) < 𝜋1(𝐵,𝑏) is normal.

Proof. (1) and (2) are consequences of Theorem 1.32 and Proposition 1.18.

(1) and (2) the map ev𝑥 : Deck(𝑝) → {𝑦 ∈ 𝑝−1(𝑥) : 𝐶 (𝑝, 𝑥0) = 𝐶 (𝑝,𝑦0)} defined by

ev𝑥 (𝜙) = 𝜙 (𝑥)

is bijective. By Proposition 1.30 (2) and (4), the map

tra(·) (𝑥) : 𝑁𝜋1 (𝐵,𝑏0 ) (𝐶 (𝑝, 𝑥0))/𝐶 (𝑝, 𝑥0) → {𝑦 ∈ 𝑝−1(𝑥) : 𝐶 (𝑝, 𝑥0) = 𝐶 (𝑝,𝑦0)}

is bijective. The map

𝜏 ≔ (tra(·) (𝑥))−1 ◦ ev𝑥

satisfies (1.41) and is bijective.

To verify that 𝜏 is an anti-homomorphism, let 𝜙,𝜓 ∈ Deck(𝑝). Let 𝛾, 𝛿 : [0, 1] → 𝑋 be a

path with 𝛾 (0) = 𝛿 (0) = 𝑥 , 𝛾 (1) = 𝜙 (𝑥), and 𝛿 (1) = 𝜓 (𝑥). Since 𝜀 ≔ 𝛿 ∗ (𝜓 ◦𝛾) satisfies 𝜀 (0) = 𝑥
and 𝜀 (1) = 𝜓 (𝜙 (𝑥)),

𝜏 (𝜓𝜙) = [𝑝 ◦ (𝛿 ∗ (𝜓 ◦ 𝛾))] = 𝜏 (𝜙)𝜏 (𝜓 ) .

Therefore, 𝜏 is an anti-homomorphism. This proves (3).

(4) is a direct consequence of Proposition 1.30 (4). ■

Exercise 1.42. Compute Deck(𝑝) for Example 1.5. (This assumes that you already have some

tools to understand the fundamental group in this case.)

Definition 1.43. A covering map 𝑝 : 𝑋 → 𝐵 is normal if 𝐶 (𝑝, 𝑥0) < 𝜋1(𝐵,𝑏0) is normal. •

If 𝑝 : 𝑋 → 𝐵 is a normal covering map with 𝑋 connected and locally path-connected, then

it induces a homeomorphism Deck(𝑝)\𝑋 � 𝐵.

1.8 Universal covering maps

Definition 1.44. A covering map 𝑝 : 𝑋 → 𝐵 is universal if 𝑋 is path-connected and simply-

connected. •

If 𝐺 is a group with group operation (𝑔, ℎ) ↦→ 𝑔ℎ , then 𝐺op
denotes the opposite group

operation (𝑔, ℎ) ↦→ ℎ𝑔.
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Proposition 1.45. If 𝑝 : 𝑋 → 𝐵 is a universal covering map, then it is normal and for every 𝑥 ∈ 𝑋
and 𝑏 ≔ 𝑝 (𝑥) there is an isomorphism Deck(𝑝) � 𝜋1(𝐵,𝑏0)op. ■

Exercise 1.46. Compute 𝜋1(𝑆1, [0]).

Proposition 1.47. Let (𝐵,𝑏0) be a connected, locally path-connected, pointed topological space.
Let 𝑝 : (𝑋, 𝑥0) → (𝐵,𝑏0) and 𝑞 : (𝑌,𝑦0) → (𝐵,𝑏0) be pointed covering maps with 𝑋,𝑌 connected.
Suppose that 𝐶 (𝑝, 𝑥0) < 𝐶 (𝑞,𝑦0). Denote by 𝑓 : (𝑋, 𝑥0) → (𝑌,𝑦0) the unique lift of 𝑝 along 𝑞.

(1) The map 𝑓 is a covering map and Deck(𝑓 ) < Deck(𝑝).

(2) The anti-isomorphism𝜏 : Deck(𝑝) → 𝑁𝜋1 (𝐵,𝑏0 ) (𝐶 (𝑝, 𝑥0))/𝐶 (𝑝, 𝑥0)mapsDeck(𝑓 ) < Deck(𝑝)
to 𝑁𝐶 (𝑞,𝑦0 ) (𝐶 (𝑝, 𝑥0))/𝐶 (𝑝, 𝑥0).

(3) If 𝑝 is normal, then 𝑓 is normal. In particular,

𝑌 � Deck(𝑓 )\𝑋 � 𝑋 ×Deck(𝑓 ) 𝑆 with 𝑆 ≔ Deck(𝑝)/Deck(𝑓 ) .

Proof. Denote by 𝑟 : (𝑍, 𝑧) → (𝑌,𝑦0) a pointed covering map with 𝑍 connected and 𝐶 (𝑟, 𝑧) =
𝐶 (𝑝, 𝑥0) < 𝐶 (𝑞,𝑦0) � 𝜋1(𝑌,𝑦0). Denote by 𝜙 the lift of 𝑓 along 𝑟 . Denote by𝜓 the lift of 𝑞 ◦ 𝑟
along 𝑝 . The following diagram summarises this situation:

(𝑍, 𝑧0)

(𝑋, 𝑥0) (𝑌,𝑦0)

(𝐵,𝑏0) .

𝑟𝜓

𝑝

𝑓

𝜙

𝑞

Since

𝑝 ◦𝜓 ◦ 𝜙 = 𝑞 ◦ 𝑟 ◦ 𝜙 = 𝑞 ◦ 𝑓 = 𝑝,

𝜓 ◦ 𝜙 is the lift of 𝑝 along 𝑝 and thus agrees with id𝑋 . Since

𝑞 ◦ 𝑓 ◦𝜓 = 𝑞 ◦ 𝑟,

𝑓 ◦𝜓 is the lift of 𝑞 ◦ 𝑟 along 𝑞; but so is 𝑟 ; hence: 𝑓 ◦𝜓 = 𝑟 . Therefore,

𝑟 ◦ 𝜙 ◦𝜓 = 𝑓 ◦𝜓 = 𝑟 ;

that is: 𝜙 ◦𝜓 is the lift of 𝑟 along 𝑟 and thus agrees with id𝑍 . This proves (1).

(2) and (3) are obvious. ■
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1.9 The classification of 𝐺–principal covering maps

Warning: here we use right instead of left actions.

Definition 1.48. Let𝐺 be a group. A𝐺–principal covering map 𝑝 : 𝑋 → 𝐵 is a normal covering

map with a free right action 𝜌 : 𝐺 → Deck(𝑝)op
such that 𝑝 induces a homeomorphism

𝑋/𝐺 � 𝐵. •

Definition 1.49. Two pointed𝐺–principal coveringmaps (𝑝 : (𝑋, 𝑥0) → (𝐵,𝑏0), 𝜌) and (𝑞 : (𝑌,𝑦0) →
(𝐵,𝑏0), 𝜎) are isomorphic if there is a homeomorphism 𝜙 : (𝑋, 𝑥0) → (𝑌,𝑦0) with

𝑞 ◦ 𝜙 = 𝑝 and 𝜙𝜌𝜙−1 = 𝜎. •

Definition 1.50. Let (𝑝 : (𝑋, 𝑥0) → (𝐵,𝑏0), 𝜌) be a pointed principal 𝐺–covering map. The

monodromy representation of (𝑝, 𝜆) is the homomorphism 𝜇 : 𝜋1(𝐵,𝑏0) → 𝐺 characterised by

tra( [𝛾]) (𝑥) = 𝜆(𝜇 ( [𝛾])) (𝑥). •

Example 1.51. Let (𝐵,𝑏0) be a connected, locally path-connected, pointed topological space. Let

𝑝 : (𝑋, 𝑥0) → (𝐵,𝑏0) be a universal covering map. Proposition 1.40 (3) gives an isomorphism

𝜏 : 𝜋1(𝐵,𝑏0) � Deck(𝑝)op
. This exhibits 𝑝 is a 𝜋1(𝐵,𝑏0)–principal covering map. Let 𝜇 ∈

Hom(𝜋1(𝐵,𝑏0),𝐺) be a homomorphism. Let 𝜋1(𝐵,𝑏0) act on 𝑋 ×𝐺 via

(𝑥,𝑔) [𝛾] ≔ (𝜏 ( [𝛾]) (𝑥), 𝑔𝜇 ( [𝛾])).

Set

𝑌 ≔ 𝜋1(𝐵,𝑏0)\(𝑋 ×𝐺) and 𝑦 ≔ [𝑥, 1] .

The projection map 𝑞 : (𝑌,𝑦0) → (𝐵,𝑏0) is a pointed covering map. The map 𝜎 : 𝐺 →
Deck(𝑞)op

is induced by right-multiplication on𝐺 makes 𝑞 into a principal𝐺–covering map. ♠

Theorem 1.52. Let (𝐵,𝑏0) be a connected, locally path-connected, semi-locally simply-connected,
pointed topological space

(1) Two pointed 𝐺–principal covering maps are isomorphic if and only if their monodromy
representations agree.

(2) Every 𝜇 ∈ Hom(𝜋1(𝐵,𝑏0),𝐺) is the monodromy representation of a pointed 𝐺–principal
covering map.

Proof sketch. Fix a pointed universal covering map 𝑟 : (𝑍, 𝑧0) → (𝐵,0 𝑏). Let (𝑝 : (𝑋, 𝑥0) →
(𝐵,𝑏0), 𝜌) be a pointed 𝐺–principal covering map. Let (𝑞 : (𝑌,𝑦0) → (𝐵,𝑏0), 𝜎) be the 𝐺–

principal covering constructed in the previous example from 𝑟 and the monodromy representa-

tion 𝜇 of 𝑝 .

Denote by 𝑓 : (𝑍, 𝑧0) → (𝑋, 𝑥0) the lift of 𝑟 along 𝑝 . A moments thought shows that

𝑓 (𝜏 ( [𝛾])𝑥) = 𝜌 (𝜇 ( [𝛾]))−1 𝑓 (𝑥) .
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Define Φ : 𝑍 ×𝐺 → 𝑋 by

Φ(𝜁 , 𝑔) = 𝜌 (𝑔) (𝑓𝑥0
(𝜁 )) .

Let [𝛾] ∈ 𝜋1(𝐵,𝑏0). Denote by 𝜏 : 𝜋1(𝐵,𝑏0) � Deck(𝑟 )op
the isomorphism from Proposi-

tion 1.40 (3). The map Φ is 𝜋1(𝐵,𝑏0)–invariant; indeed:

Φ((𝑥, 𝑔) [𝛾]) = Φ(𝜏 ( [𝛾]) (𝑥), 𝑔𝜇 ( [𝛾]))
= 𝜌 (𝑔 · 𝜇 ( [𝛾])) 𝑓𝑥 (𝜏 ( [𝛾])𝑥)
= 𝜌 (𝑔) 𝑓𝑥 (𝑥)
= Φ(𝑥,𝑔).

Therefore, Φ induces a continuous map 𝜙 : (𝑌,𝑦0) → (𝑋, 𝑥0). Evidently,

𝑞 ◦ 𝜙 = 𝑝.

A moment’s thought shows that 𝜙 is an isomorphism of pointed 𝐺–principal covering maps.

To complete prove it remains to verify that the construction in the preceding example indeed

gives a 𝐺–principal covering map with monodromy given by 𝜇. This is an exercise. ■

1.10 The Seifert–van Kampen theorem

Theorem 1.53 (Seifert–van Kampen). Let 𝑋 be a topological space. Let {𝑈1,𝑈2} be an open
cover of 𝑋 . Suppose that 𝑋,𝑈1,𝑈2,𝑈1 ∩ 𝑈2 are connected, locally path-connected, semi-locally
simply-connected. Let 𝑥 ∈ 𝑈1 ∩𝑈2. Denote by

𝜄𝑖 : 𝜋1(𝑈1 ∩𝑈2, 𝑥0) → 𝜋1(𝑈𝑖 , 𝑥0) and 𝚥𝑖 : 𝜋1(𝑈𝑖 , 𝑥0) → 𝜋1(𝑋, 𝑥0)

the maps induced by inclusion. The fundamental group 𝜋1(𝑋, 𝑥0) has the following universal
property: if 𝜙𝑖 : 𝜋1(𝑈𝑖 , 𝑥0) → 𝐺 are homomorphisms with 𝜙1 ◦ 𝜄1 = 𝜙2 ◦ 𝜄2, then there is a unique
𝜙 : 𝜋1(𝑋, 𝑥0) → 𝐺 such that

𝜙 ◦ 𝚥𝑖 = 𝜙𝑖 .

The following diagram illustrates Theorem 1.53:

𝜋1(𝑈1 ∩𝑈2, 𝑥0) 𝜋1(𝑈1, 𝑥0)

𝜋1(𝑈2, 𝑥0) 𝜋1(𝑋, 𝑥0)

𝐺.

𝑖1

𝑖2 𝑗1
𝜙1

𝑗2

𝜙2

∃!

𝜙

Exercise 1.54. Proof this from the classification of pointed 𝐺–principal covering maps.
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1.11 The topological proof of the Nielsen–Schreier Theorem

Definition 1.55. Let 𝑆 be a set. The free group on 𝑆 is the group 𝐹 (𝑆) generated by 𝑆 . A group

𝐺 is free if it is isomorphic to 𝐹 (𝑆) for some 𝑆 . The rank of 𝐺 is rk(𝐺) ≔ #𝑆 . •

Theorem 1.56 (Nielsen–Schreier Theorem). If 𝐺 is a free group, then every subgroup 𝐻 < 𝐺 is
free. If rk(𝐺) = 𝑟 ∈ N0 and |𝐻 : 𝐺 | = 𝑖 ∈ N, then rk(𝐻 ) = 𝑖 (𝑟 − 1) + 1.

The proof relies on realising 𝐺 as a fundamental group and covering theory.

Definition 1.57.

(1) A graph is a triple Γ = (𝑉 , 𝐸, 𝛼) with 𝑉 a set, 𝐸 a set of unordered pairs, and a map

𝛼 :

⋃
𝐸 → 𝑉 . The vertices and edges of Γ are the elements of 𝑉 and 𝐸 respectively. An

edge 𝑒 connects 𝑥,𝑦 ∈ 𝑉 if 𝛼 (𝑒) = {𝑥,𝑦}.

(2) For every unordered pair 𝑒 = {𝑥,𝑦} set

𝐼𝑒 ≔ (𝑒 × [0, 1])/∼

with ∼ denoting the equivalence relation generated by (𝑥, 𝑡) ∼ (𝑦, 1 − 𝑡).

(3) The topological realisation of Γ is

𝑋 (Γ) ≔
(
𝑉 ⨿

∐
𝑒∈𝐸

𝐼𝑒

)/
∼

with ∼ denoting the equivalence realation generated by [𝑥, 0] ∼ 𝛼 (𝑥). •

Example 1.58. Let 𝑆 be a set. Set𝑉 ≔ {∗} and 𝐸 ≔ {0, 1} × 𝑆 . There is a unique map 𝛼 : 𝐸 → 𝑉 .

The graph Γ = (𝑉 , 𝐸, 𝛼) has a unique vertices ★ and an edge connecting ∗ to itself for every

𝑠 ∈ 𝑆 . The topological realisation 𝑋 (Γ) of Γ is homeomorphic to a bouquet of circles indexed
by 𝑆 :

𝑋 (Γ) �
∨
𝑠∈𝑆
{𝑠} × 𝑆1 ≔

(∐
𝑠∈𝑆
{𝑠} × 𝑆1

)/
∼

with ∼ denoting the equivalence relation generated by (𝑠, [0]) ∼ (𝑡, [0]). By Theorem 1.53,

𝜋1(𝑋 (Γ), ∗) � 𝐹 (𝑆) . ♠

Definition 1.59. Let Γ = (𝑉 , 𝐸, 𝛼) be a graph.

(1) A subgraph of a graph Γ = (𝑉 , 𝐸, 𝛼) is a graph Δ = (𝑊, 𝐹, 𝛽) with𝑊 ⊂ 𝑉 , 𝐹 ⊂ 𝐸, and
𝛽 = 𝛼 |𝐹 .

(2) A path in Γ is a is a sequence of vertices 𝑣0, . . . , 𝑣𝑛 together with a sequence of edges

𝑒0, . . . , 𝑒𝑛 such that 𝑒𝑖 connects 𝑣𝑖 and 𝑣𝑖+1. A cycle in Γ is a path with 𝑛 ⩾ 1, 𝑣0 = 𝑣𝑛 , and

𝑒𝑖 ≠ 𝑒𝑖+1.
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(3) Γ is connected if for every 𝑣,𝑤 ∈ 𝑉 there is a path with 𝑣0 = 𝑣 and 𝑣𝑛 = 𝑤 .

(4) A forest is a graph without cycles. A tree is a connected forest. •
Proposition 1.60. Let Γ be a connected graph. 𝑋 (Γ) is homotopy equivalent to a bouquet of circles.

Proof sketch. Denote by T the set of subgraphs of Γ which are trees. There is an obvious

order on T. Use Zorn’s lemma to construct a maximal 𝑇 ∈ T. A moment’s thought shows

that 𝑇 has the same vertices as Γ. The subspace 𝑋 (𝑇 ) ⊂ 𝑋 (Γ) is contractible. 𝑋 (Γ)/𝑋 (𝑇 )
is homeomorphic to a bouquet of circles. Finally, the projection 𝑋 (Γ) → 𝑋 (Γ)/𝑋 (𝑇 ) is a
homotopy equivalence. ■

Proposition 1.61. Let Γ be a graph. If 𝑝 : 𝑌 → 𝑋 (Γ) is a covering map, then 𝑌 is homeomorphic
to 𝑋 (Δ) for some graph Δ.

Proof. Exercise. ■

Proof of Theorem 1.56. Let 𝐺 be a free group. Construct a graph Γ with 𝜋1(𝑋 (Γ)) � 𝐺 . If

𝐻 < 𝐺 is a subgroup, then there is a covering map 𝑝 : 𝑌 → 𝑋 (Γ) with characteristic subgroup

isomorphic to 𝐻 . By the above, 𝜋1(𝑌 ) is free.
If 𝐹 has rank 𝑟 and |𝐻 : 𝐺 | = 𝑖 , then deg(𝑝) = 𝑖; hence:

1 − rk(𝐻 ) = 𝜒 (𝑌 ) = 𝑖 𝜒 (𝑋 (Γ)) = 𝑖 (1 − 𝑟 ) .

This implies rk(𝐻 ) = 𝑖 (𝑟 − 1) + 1. ■

2 Fibre bundles

The purpose of this section is to develop the theory of Ehresmann connections on fibre bundles.

[Ste51] is the classical reference of the topological theory of fibre bundles. [Hus94] is a more

modern reference. The theory of connections of fibre bundles is due to Ehresmann [Ehr51].

Kolář, Michor, and Slovák [KMS93]

2.1 Definition and examples

Definition 2.1. Let 𝑋, 𝐵 be smooth manifolds. A fibre bundle is a smooth map 𝑝 : 𝑋 → 𝐵

such that for every 𝑏 ∈ 𝐵 there are an open subset 𝑏 ∈ 𝑈 ⊂ 𝐵, a smooth manifold 𝐹 , and a

diffeomorphism 𝜏 : 𝑝−1(𝑈 ) → 𝑈 × 𝐹 such that

pr
1
◦ 𝜏 = 𝑝;

that is: the diagram

𝑝−1(𝑈 ) 𝑈 × 𝐹

𝑈

𝜏

𝑝

pr
1

commutes. The total space of 𝑝 is 𝑋 . The base space of 𝑝 is 𝐵. For 𝑏 ∈ 𝐵 the fibre of 𝑝 over 𝑏 is

𝑋𝑏 ≔ 𝑝−1(𝑏) . •
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Definition 2.2. Let 𝑝 : 𝑋 → 𝐵 and 𝑞 : 𝑌 → 𝐶 fibre bundles. A morphism of fibre bundles
(𝜙, 𝑓 ) : 𝑝 → 𝑞 is a pair of smooth maps 𝜙 : 𝑋 → 𝑌 and 𝑓 : 𝐵 → 𝐶 such that

𝑞 ◦ 𝜙 = 𝑓 ◦ 𝑝;

that is: the diagram

𝑋 𝑌

𝐵 𝐶

𝑝

𝜙

𝑞

𝑓

commutes. If 𝐵 = 𝐶 , then a morphism of fibre bundles over 𝐵 𝜙 : 𝑝 → 𝑞 is a smooth map

𝜙 : 𝑋 → 𝑌 such that (𝜙, id𝐵) is a morphism of fibre bundles. •

Example 2.3. Let 𝐵, 𝐹 be smooth manifolds. The trivial fibre bundle over 𝐵 with fibre 𝐹 is the

projection map pr
1

: 𝐵 × 𝐹 → 𝐵. ♠

Example 2.4. The Hopf bundle is the projection 𝑝 : 𝑆2𝑛+1 ⊂ C𝑛+1\{0} → C𝑃𝑛 . ♠

Example 2.5. Let 𝑋, 𝐵 be smooth manifolds. If 𝑝 : 𝑋 → 𝐵 is a covering map, then it is a fiber

bundle. ♠

Example 2.6. Let 𝐵 be a smooth manifold. If 𝑝 : 𝐸 → 𝐵 is a vector bundle, then it is a fiber

bundle. ♠

Example 2.7. Let 𝐵 be a manifold. Let 𝑉 be an Euclidean vector bundle over 𝐵. The sphere
bundle

𝑝 : 𝑆 (𝑉 ) → 𝐵 with 𝑆 (𝑉 ) ≔ {𝑣 ∈ 𝑉 : |𝑣 | = 1}.

is a fibre bundle. ♠

Example 2.8. Let 𝐵 be a smooth manifold and 𝑝 : 𝑉 → 𝐵 be a vector bundle. For 𝑟 ∈ N0 denote

by

Gr𝑟 (𝑉 ) ≔ {(𝑏,Π) : 𝑏 ∈ 𝐵,Π ⊂ 𝑉𝑏 with dimΠ = 𝑟 }

the Grassmannian of 𝑟–planes in 𝑉 . Gr𝑟 (𝑉 ) admits the structure of a smooth manifold such

that the map 𝑞 : Gr𝑟 (𝑉 ) → 𝐵 obtained by restriction of pr
1
is a fibre bundle. ♠

Example 2.9. Let 𝐵 be a manifold. Let 𝑝 : 𝑉 → 𝐵 be a vector bundle. Denote by

Fr(𝑉 ) ≔ {(𝑏, 𝜙) : 𝑏 ∈ 𝐵, 𝜙 : Rrk𝑏 𝑉 → 𝑉𝑏 isomomorphism}

the frame bundle of 𝑉 . Fr(𝑉 ) admits the structure of a smooth manifold such that the map

𝑞 : Fr(𝑉 ) → 𝐵 obtained by restriction of pr
1
is a fibre bundle. ♠

Example 2.10. Let 𝑘 ∈ N0. Let 𝑋,𝑌 be smooth manifolds. Let𝑈 ,𝑉 be open neighborhoods of

𝑥 ∈ 𝑋 . Two maps 𝑓 ∈ 𝐶∞(𝑈 ,𝑌 ) and 𝑔 ∈ 𝐶∞(𝑉 ,𝑌 ) have the same 𝑘–jet at 𝑥 if 𝑓 (𝑥) = 𝑔(𝑥) ≕ 𝑦

and for every chart 𝜙 on 𝑋 with 𝜙 (𝑥) = 0 and𝜓 on 𝑌 with𝜓 (𝑦) = 0 the maps
˜𝑓 ≔ 𝜓 ◦ 𝑓 ◦ 𝜙−1

and 𝑔 ≔ 𝜓 ◦ 𝑔 ◦ 𝜙−1
satisfy

𝜕𝛼 ˜𝑓 (0) = 𝜕𝛼𝑔(0)
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for every 𝛼 ∈ Ndim𝑥 𝑋
0

with |𝛼 | ⩽ 𝑘 and every chart 𝜙 on 𝑋 and𝜓 on 𝑌 . Having the same 𝑘–jet

at 𝑥 is an equivalence relation. Denote the set of equivalence classes by 𝐽𝑘𝑥 (𝑋,𝑌 ). An element

of 𝐽𝑘𝑥 (𝑋,𝑌 ) is a 𝑘–jet at 𝑥 . The 𝑘–jet space space of maps 𝑋 → 𝑌 is

𝐽𝑘 (𝑋,𝑌 ) ≔
∐
𝑥∈𝑋

𝐽𝑘𝑥 (𝑋,𝑌 )

𝐽𝑘 (𝑋,𝑌 ) admits the structure of a smooth manifold such that the canonical projection maps

𝑝 : 𝐽𝑘 (𝑋,𝑌 ) → 𝑋 , 𝑞 : 𝐽𝑘 (𝑋,𝑌 ) → 𝑌 are fibre bundle. ♠

Exercise 2.11. Construct the above mentioned structures of a smooth manifold on 𝑆 (𝑉 ), Gr𝑟 (𝑉 ),
Fr(𝑉 ), and 𝐽𝑘 (𝑋,𝑌 ).

Exercise 2.12. Construct diffeomorphism 𝐽 0(𝑋,𝑌 ) → 𝑋 × 𝑌 and 𝐽 1(𝑋,R) → 𝑇 ∗𝑋 × R.

Proposition 2.13. Let 𝑝 : 𝑋 → 𝐵 be a fiber bundle. If 𝐵 is connected and 𝑏0, 𝑏1 ∈ 𝐵, then 𝑋𝑏0
and

𝑋𝑏1
are diffeomorphic. ■

Theorem 2.14 (Ehresmann fibration theorem). Let 𝑋, 𝐵 be smooth manifolds. If 𝑝 : 𝑋 → 𝐵 is a
proper submersion, then 𝑝 is a fibre bundle.

2.2 Constructions: Product, disjoint union, pullback

Proposition 2.15. Let 𝑝 : 𝑋 → 𝐵 and 𝑞 : 𝑌 → 𝐵 be fibre bundles.

(1) The subset
𝑋 ×𝐵 𝑌 ≔ {(𝑥,𝑦) ∈ 𝑋 × 𝑌 : 𝑝 (𝑥) = 𝑞(𝑦)}

is a submanifold and the projection map 𝑞 : 𝑋 ×𝐵 𝑌 → 𝐵 is a fiber bundle.

(2) The map 𝑝 ⨿ 𝑞 : 𝑋 ⨿ 𝑌 → 𝐵 is a fiber bundle.

■

Proposition 2.16. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝑓 : 𝐴→ 𝐵 a smooth map.

(1) The subset
𝑓 ∗𝑋 ≔ {(𝑎, 𝑥) ∈ 𝐴 × 𝑋 : 𝑓 (𝑎) = 𝑝 (𝑥)}

is a smooth submanifold and the map 𝑓 ∗𝑝 : 𝑓 ∗𝑋 → 𝐴 obtained as the restriction of pr
1
is a

fibre bundle.

(2) Denote by𝜙 : 𝑓 ∗𝑋 → 𝑋 the restriction of pr
2
. If𝑞 : 𝑌 → 𝐴 is a fibre bundle and (𝜓, 𝑓 ) : 𝑞 →

𝑝 is a morphism, then 𝑓 ∗𝜓 ≔ (𝑞,𝜓 ) : 𝑞 → 𝑓 ∗𝑝 is the unique morphism over 𝐴 such that

(𝜙, 𝑓 ) ◦ (𝑓 ∗𝜓, id𝐴) = (𝜓, 𝑓 );
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that is: the diagram

𝑌 𝑋

𝑓 ∗𝑋

𝐴

𝐴 𝐵

𝑞

𝑓 ∗𝜓

𝜓

𝑝𝑓 ∗𝑝

𝜙

𝑓

𝑓

commutes. ■

Definition 2.17. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. The fibre bundle 𝑓 ∗𝑝 : 𝑓 ∗𝑋 → 𝐴 is the

pullback of 𝑝 via 𝑓 . •

Definition 2.18. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝑓 : 𝐴→ 𝐵 be a smooth map. A smooth

map
˜𝑓 : 𝐴→ 𝑋 is a lift of 𝑓 along 𝑝 if 𝑝 ◦ ˜𝑓 = 𝑓 . A section of 𝑝 is lift of id𝐵 along 𝑝; that is: a

smooth map 𝑠 : 𝐵 → 𝑋 satisfying 𝑝 ◦ 𝑠 = id𝐵 . •

Applying Proposition 2.16 with 𝑞 = id𝐴 yields.

Corollary 2.19. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝑓 : 𝐴 → 𝐵 a smooth map. Denote by
𝑓 ∗𝑝 : 𝑓 ∗𝑋 → 𝐴 the pullback of 𝑝 via 𝑓 . Let 𝜙 : 𝑓 ∗𝑋 → 𝑋 be as above. Composition with 𝜙
induces a bijection

{sections of 𝑓 ∗𝑋 } → {lifts of 𝑓 }, 𝑠 ↦→ 𝜙 ◦ 𝑠 . ■

2.3 Ehresmann connections

It is not terribly difficult to prove the following.

Theorem 2.20. If 𝑝 : 𝑋 → 𝐵 is a fibre bundle, then it is a Hurewicz fibration. ■

However, fibre bundles usually lack the unique path lifting property. This defect is can be

overcome by choosing an Ehresmann connections.

Definition 2.21. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. The vertical tangent bundle of 𝑝 is the vector

bundle

𝑉𝑝 ≔ ker(𝑇𝑝 : 𝑇𝑋 → 𝑝∗𝑇𝐵) → 𝑋 . •

Remark 2.22. There is a mild abuse of notation in the above: usually 𝑇𝑝 is a map 𝑇𝑋 → 𝑇𝐵.

It would be more correct to write 𝑝∗𝑇𝑝 for the above map (but that makes the notation quite

heavy). ♣

Definition 2.23. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. An Ehresmann connection on 𝑝 is a splitting

of the exact sequence

0→ 𝑉𝑝
𝜄−→ 𝑇𝑋

𝑇𝑝
−−→ 𝑝∗𝑇𝐵 → 0;
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that is: an isomorphism

𝐴 : 𝑇𝑋 → 𝑉𝑝 ⊕ 𝑝∗𝑇𝐵

such that the diagram

𝑉𝑝 𝑇𝑋 𝑝∗𝑇𝐵

𝑉𝑝 𝑉𝑝 ⊕ 𝑝∗𝑇𝐵 𝑝∗𝑇𝐵

𝜄 𝑇𝑝

𝐴

commutes. The horizontal subbundle of 𝐴 is the subbundle 𝐻𝐴 ⊂ 𝑇𝑋 defined by

𝐻𝐴 ≔ 𝐴−1(𝑝∗𝑇𝐵) .

The connection 1–form of 𝐴 is the 1–form 𝜃𝐴 ∈ Ω1(𝑋,𝑉𝑝) defined by

𝜃𝐴 ≔ pr𝑉𝑝
◦𝐴.

The set of Ehresmann connections on 𝑝 is denoted byA(𝑝). •

Example 2.24. Let 𝐵, 𝐹 be smooth manifolds. For the trivial fibre bundle pr𝐵 : 𝐵 × 𝐹 → 𝐵

𝑉pr𝐵
= pr

∗
𝐹𝑇𝐹 .

The product connection 𝐴0 is the Ehresmann connection

𝐴0 ≔ (𝑇pr𝐹 ,𝑇pr𝐵) : 𝑇𝑋 → pr
∗
𝐹𝑇𝐹 ⊕ pr

∗
𝐵𝑇𝐵.

The horizontal subbundle of 𝐴0 is 𝐻𝐴0
= ker𝑇pr𝐹 . The connection 1–form of 𝐴0 is 𝜃𝐴0

=

𝑇pr𝐹 . ♠

Example 2.25. Continue with the above situation. For every 𝑎 ∈ Hom(pr
∗
𝐵
𝑇𝐵, pr

∗
𝐹
𝑇𝐹𝐵)

𝐴 ≔

(
1 𝑎

0 1

)
◦𝐴0

defines an Ehresmann connection on pr𝐵 . In fact, every Ehresmann connection on pr𝐵 is of this

form. ♠

Example 2.26. Let 𝑋, 𝐵 be smooth manifolds. If 𝑝 : 𝑋 → 𝐵 is a covering map, then 𝑉𝑝 = 0;

hence: 𝑝 admits a unique Ehresmann connection. ♠

Proposition 2.27. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle.

(1) A subbundle 𝐻 ⊂ 𝑇𝑋 is the horizontal subbundle of an Ehresmann connection if and only if
the map 𝑇𝑝 : 𝐻 → 𝑝∗𝑇𝐵 is an isomorphism.

(2) A 1–form 𝜃 ∈ Ω1(𝑋,𝑉𝑝) is the connection 1–form of an Ehresmann connection if and only if

𝜃 ◦ 𝜄 = id𝑉𝑝 .
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Proof. If 𝑇𝑝 : 𝐻 → 𝑝∗𝑇𝐵 is an isomorphism, then 𝑇𝑋 = 𝑉𝑝 ⊕ 𝐻 and 𝐴 ≔ id𝑉𝑝 ⊕ 𝑇𝑝 : 𝑇𝑋 =

𝑉𝑝 ⊕ 𝐻 → 𝑉𝑝 ⊕ 𝑝∗𝑇𝐵 is an Ehresmann connection with 𝐻𝐴 = 𝐻 .

If 𝜃 ◦ 𝜄 = id𝑉𝑝 , then 𝐴 = (𝜃,𝑇𝑝) : 𝑇𝑋 → 𝑉𝑝 ⊕ 𝑝∗𝑇𝐵 is an Ehresmann connection with

𝜃𝐴 = 𝜃 . ■

Definition 2.28. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let𝑉 be a vector bundle over 𝑋 . A differential

form 𝛼 ∈ Ω•(𝑋,𝑉 ) is horizontal if for every 𝑣 ∈ 𝑉𝑝

𝑖𝑣𝛼 = 0.

The subspace of basic (or horizontal) differential forms is denoted by

Ω•
hor
(𝑋,𝑉 ) . •

Proposition 2.29. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. There is an Ehresmann connection 𝐴 on 𝑝 . If
𝐴0, 𝐴 are Ehresmann connections on 𝑝 , then there is an 𝑎 ∈ Ω1

basic
(𝑋,𝑉𝑝) ⊂ End(𝑇𝑋 ) such that

𝐴 = 𝐴0 + 𝑎;

moreover, for every 𝑎 ∈ Ω1

hor
(𝑋,𝑉𝑝), 𝐴0 + 𝑎 is an Ehresmann connection.

Proof. Choose an open cover U = {𝑈𝛼 : 𝛼 ∈ 𝐴} of 𝑋 such that for every 𝛼 ∈ 𝐴 there are a

smooth manifold 𝐹𝛼 and a diffeomorphism 𝜏𝛼 : 𝑝−1(𝑈𝛼 ) → 𝑈𝛼 × 𝐹𝛼 such that

pr
1
◦ 𝜏𝛼 = 𝑝.

For every 𝛼 ∈ 𝐴 the 1–form 𝜃𝛼 ∈ Ω1(𝑝−1(𝑈𝛼 ),𝑉𝑝) defined by

𝜃𝛼 ≔ 𝜏∗𝛼 (𝑇pr
2
) .

Denote by {𝜒𝛼 : 𝛼 ∈ 𝐴} a partition of unity subordinate toU. The 1–form 𝜃 defined by

𝜃 ≔
∑︁
𝛼∈𝐴

𝜒𝛼 · 𝜃𝛼

satisfies 𝜃 ◦ 𝜄 = id𝑉𝑝 ; hence: it is the connection 1–form of an Ehresmann connection.

Let 𝐴0 be an Ehresmann connection. 𝐴 ∈ Hom(𝑇𝑋,𝑉𝑝 ⊕ 𝑝∗𝑇𝐵) defines an Ehresmann

connection if and only if

𝐴 ◦𝐴−1

0
=

(
1 ∗
0 1

)
This proves the remaining assertions. ■

Remark 2.30. Here is a different proof of the existence part: Choose a Riemannian metric on 𝑋

and let 𝐻 be the orthogonal complement of 𝑉𝑝 . ♣

Proposition 2.31. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝐴 ∈ A(𝑝). Let 𝑓 : 𝐴 → 𝐵 be a smooth
map. Denote by 𝑓 ∗𝑝 : 𝑓 ∗𝑋 → 𝐴 the pullback of 𝑝 via 𝑓 and denote by (𝜙, 𝑓 ) : 𝑓 ∗𝑝 → 𝑝 the
associated morphism.
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(1) The map 𝑇𝜙 : 𝑇 𝑓 ∗𝑋 → 𝜙∗𝑇𝑋 induces an isomorphism

Ψ : 𝑉𝑓 ∗𝑝 → 𝜙∗𝑉𝑝 .

(2) The 1–form
Ψ−1 ◦ 𝜙∗𝜃𝐴 ∈ Ω1(𝑓 ∗𝑋,𝑉𝑓 ∗𝑝)

is the connection 1–form of an Ehresmann connection 𝑓 ∗𝐴.

Proof. Since 𝑝 ◦𝜙 = 𝑓 ◦ (𝑓 ∗𝑝),𝑇𝜙 (𝑉𝑓 ∗𝑝) ⊂ 𝜙∗𝑉𝑝 . Therefore,𝑇𝜙 induces a morphism Ψ : 𝑉𝑓 ∗𝑝 →
𝑉𝑝 . Since 𝜙 (tautologically) induces an diffeomorphism (𝑓 ∗𝑝) (𝑎) → 𝑝−1(𝑓 (𝑎)), Ψ is an isomor-

phism. This proves (1).

To prove (2), let 𝑣 ∈ 𝑉𝑓 ∗𝑝 and compute

(Ψ−1 ◦ 𝜙∗𝜃𝐴) (𝑣) = Φ−1𝜃𝐴 (𝑇𝜙 (𝑣)) = Φ−1𝜃𝐴 (Ψ(𝑣)) = Φ−1(Ψ(𝑣)) = 𝑣 . ■

Definition 2.32. In the situation of Proposition 2.31, 𝑓 ∗𝐴 is the pullback of 𝐴 via 𝑓 . •

2.4 Parallel transport

Definition 2.33. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝐴 ∈ A(𝑝). Let 𝑏0 ∈ 𝐵 and 𝑥0 ∈ 𝑝−1(𝑏0).
Let 𝑣 ∈ 𝑇𝑏0

𝐵. The 𝐴–horizontal lift of 𝑣 to 𝑥0 is the unique 𝑣 ∈ 𝐻𝐴,𝑥0
with 𝑇𝑥0

𝑝 (𝑣) = 𝑣 . •

Definition 2.34. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝐴 ∈ A(𝑝). A smooth map 𝑓 : 𝐴→ 𝑋 is a

𝐴–horizontal if
im𝑇𝑥 𝑓 ⊂ 𝑓 ∗𝐻𝐴;

or, equivalently,

𝑓 ∗𝜃𝐴 = 0. •

The correspondence between lifts and sections of the pullback from Corollary 2.19 interacts

with being horizontal as follows.

Proposition 2.35. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝑓 : 𝐴→ 𝐵 be a smooth map. Denote by
𝑓 ∗𝑝 : 𝑓 ∗𝑋 → 𝐴 the pullback of 𝑝 . Denote by 𝜙 : 𝑓 ∗𝑋 → 𝑋 the canonical map. Let 𝐴 ∈ A(𝑝) and
denote its pullback via 𝑓 by 𝑓 ∗𝐴. Composition with 𝜙 induces a bijection

{(𝑓 ∗𝐴)–horizontal sections of 𝑓 ∗𝑋 } → {𝐴–horizontal lifts of 𝑓 }, 𝑠 ↦→ 𝜙 ◦ 𝑠 .

Proof. A section 𝑠 : 𝐴→ 𝑓 ∗𝑋 of 𝑓 ∗𝑝 is 𝑓 ∗𝐴–horizontal if and only if

0 = 𝑠∗𝜃 𝑓 ∗𝐴 = Ψ−1 ◦ 𝑠∗𝜙∗𝜃𝐴 = Ψ−1 ◦ (𝜙 ◦ 𝑠)∗𝜃𝐴 .

Since Ψ is an isomorphism, this is equivalent to (𝜙 ◦ 𝑠)∗𝜃𝐴 = 0; that is: (𝜙 ◦ 𝑠) being 𝐴–
horizontal. ■

Proposition 2.36. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝐴 ∈ A(𝑝). Let 𝛾 : [0, 1] → 𝐵 be a smooth
path. For every 𝑥0 ∈ 𝑝−1(𝛾 (0)) there is at most one horizontal lift 𝛾 : [0, 1] → 𝑋 with 𝛾 (0) = 𝑥0.
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Proof. By Proposition 2.35, it suffices to consider 𝐵 = [0, 1] and 𝛾 = id𝐵 . There is a unique

𝐴–horizontal vector field 𝑣𝐴 ∈ Γ(𝐻𝐴) ⊂ Vect(𝑋 ) which is 𝑝–related to 𝜕𝑡 ∈ Vect( [0, 1]). A
section 𝑠 : [0, 1] → 𝑋 is 𝐴–horizontal if and only if it is an integral curve of 𝑣𝐴. The assertion

therefore follows from the Picard–Lindelöf Theorem. ■

The above proof also tell us that constructing horizontal lifts of paths amounts to integrating

a vector field.

Definition 2.37. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. An Ehresmann connection 𝐴 ∈ A(𝑝)
is complete if for every smooth path 𝛾 : [0, 1] → 𝐵 and every 𝑥0 ∈ 𝑝−1(𝛾 (0)) there is an

𝐴–horizontal lift 𝛾 : [0, 1] → 𝑋 with 𝛾 (0) = 𝑥0. •

Remark 2.38. The theory of Ehresmann connections developed so far does not require 𝑝 to be

a fibre bundle. It would suffice that 𝑝 is a submersion so that 𝑉𝑝 = ker𝑇𝑝 is a vector bundle

of rank complementary to 𝑇𝐵. However,if 𝑝 admits a complete Ehresmann connection, then

𝑝 is a fibre bundle. One can also prove that if 𝑝 is a fibre bundle, then it admits a complete

Ehresmann connection [dHoy16]. Of course, if 𝑝 is proper, then every Ehresmann connection

on 𝑝 is complete. ♣

Definition 2.39. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝐴 ∈ A(𝑝) be a complete Ehresmann

connection. Let 𝛾 : [0, 1] → 𝐵 be a smooth path. The parallel transport along 𝛾 is the

diffeomorphism tra
𝐴
𝛾 : 𝑝−1(𝛾 (0)) → 𝑝−1(𝛾 (1)) characterised by

tra
𝐴
𝛾 (𝛾 (0)) ≔ 𝛾 (1)

for every 𝐴–horizontal lift 𝛾 of 𝛾 . •

Example 2.40. For covering maps this reconstructs the transport map. ♠

Example 2.41 (Parallel transport and line integrals). Let 𝐵 be a smooth manifold. Set 𝑋 ≔ 𝐵 ×R.
Consider the trivial bundle pr𝐵 : 𝑋 → 𝐵. Identifying 𝑉pr𝐵

= R every 𝛼 ∈ Ω1(𝐵) defines a
connection 1–form

𝜃𝐴 ≔ 𝑇prR + 𝛼.
A smooth path 𝛾 ≕ (𝐼 , 𝛾) : [0, 1] → 𝑋 is 𝐴–horizontal if and only if

0 = 𝜃 ( ¤̃𝛾) = ¤𝐼 + 𝛼 ( ¤𝛾) = ¤𝐼 + 𝛾∗𝛼

or, equivalently,

𝐼 (𝑡) = 𝐼 (0) −
ˆ
[0,𝑡 ]

𝛾∗𝛼.

Consequently,

tra
𝐴
𝛾 (𝑥0, 𝐼0) =

(
𝑥0, 𝐼0 −

ˆ
[0,1]

𝛾∗𝛼

)
. ♠

Definition 2.42. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝐴 ∈ A(𝑝). Let 𝑏0 ∈ 𝐵. The holonomy
group of 𝐴 based at 𝑏0 is the subgroup Hol𝑏0

(𝐴) < Diff (𝑝−1(𝑏0)) defined by

Hol𝑏0
(𝐴) ≔

{
tra

𝐴
𝛾 : 𝛾 : [0, 1] → 𝐵 piecewice smooth with 𝛾 (0) = 𝛾 (1) = 𝑏0

}
. •
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2.5 Curvature

Example 2.41 illustrates that the parallel transport tra
𝐴
𝛾 depends on 𝛾 and not just its homotopy

class rel {0, 1}. It does not factor through the fundamental groupoid Π1(𝐵). Of course, tra
𝐴
𝛾 is

invariant under reparametrisation. Piecewise smooth paths up to reparametrisations build up

the thin path groupoid 𝑃1(𝐵). Parallel transport factors though 𝑃1(𝐵).

Proposition 2.43. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝐴 ∈ A(𝑝). There is a unique horizontal
2–form 𝐹𝐴 ∈ Ω2

hor
(𝑋,𝑉𝑝) such that for every 𝑣,𝑤 ∈ Vect(𝑋 )

𝐹𝐴 (𝑣,𝑤) = −𝜃𝐴 ( [𝑣 − 𝜃𝐴 (𝑣),𝑤 − 𝜃𝐴 (𝑤)]).

𝐹𝐴 is the curvature of 𝐴.

Proof. For 𝑓 ∈ 𝐶∞(𝑋 ) and 𝑣,𝑤 ∈ Γ(𝐻𝐴)

𝜃𝐴 ( [𝑓 𝑣,𝑤]) = 𝑓 𝜃𝐴 ( [𝑣,𝑤]) − 𝜃𝐴 (L𝑤 𝑓 · 𝑣) = 𝑓 𝜃𝐴 ( [𝑣,𝑤]),

and, similarly, 𝜃𝐴 ( [𝑣, 𝑓 𝑤]) = 𝑓 𝜃𝐴 ( [𝑣,𝑤]). Therefore, 𝑣 ∧𝑤 ↦→ 𝜃𝐴 ( [𝑣,𝑤]) is tensorial. ■

Example 2.44. Consider the Hopf bundle 𝑝 : 𝑆2𝑛+1 ⊂ C𝑛+1\{0} → C𝑃𝑛 . The vertical tangent
bundle is spanned by the vector field 𝜕𝛼 ∈ Vect(𝑆𝑛+1) defined by

𝜕𝛼 (𝑧) = 𝑖𝑧.

Define a connection 𝐴 by

𝐻𝐴 ≔ {𝑣 ∈ 𝑇𝑆2𝑛+1
: 𝑣 ⊥ 𝜕𝛼 }.

Let 𝑣,𝑤 ∈ Vect(𝑆2𝑛+1) The curvature of 𝐴 is

𝐹𝐴 (𝑣,𝑤) = −⟨[𝑣,𝑤], 𝑖𝑧⟩ ⊗ 𝑖𝑧
= −⟨∇𝑣𝑤 − ∇𝑤𝑣, 𝑖𝑧⟩ ⊗ 𝑖𝑧
= −2⟨𝑣, 𝑖𝑤⟩ ⊗ 𝑖𝑧
= −2𝜋 · 𝑝∗𝜔FS ⊗ 𝜕𝛼 .

Here 𝜔FS ∈ Ω2(C𝑃𝑛) is the Fubini–Study form on C𝑃𝑛 . ♠

Exercise 2.45. Let𝑈𝑎 ≔ {[𝑧0, . . . , 𝑧𝑛] ∈ C𝑃𝑛 : 𝑧𝑎 ≠ 0} and define 𝜙𝑎 : 𝑈𝑎 → C𝑛 by

𝜙 ( [𝑧0, . . . , 𝑧𝑛]) ≔ [𝑧0/𝑧𝑎 : · · · : �𝑧𝑎/𝑧𝑎 : · · · : 𝑧𝑛/𝑧𝑎] .

Prove that there is a unique 2–form 𝜔FS on C𝑃𝑛 satisfying

(𝜙𝑎)∗𝜔FS =
𝑖

2𝜋

(
𝑛∑︁
𝑏=1

d𝑧𝑏 ∧ d𝑧𝑏

1 + |𝑧 |2 −
𝑛∑︁

𝑏,𝑐=1

𝑧𝑐d𝑧𝑐 ∧ 𝑧𝑏d𝑧𝑏

(1 + |𝑧 |2)2

)
.

Prove that the above formula for 𝐹𝐴 indeed holds.
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Definition 2.46. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝐴 ∈ A(𝑝). 𝐹𝐴 ∈ Ω2

hor
(𝑋,𝑉𝑝) curvature

of 𝐴. The Ehresmann connection 𝐴 is flat if 𝐹𝐴 = 0. •

Proposition 2.47 (Flat connections and covering maps). Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. If
𝐴 ∈ A(𝑝) is complete and flat, then there is a covering map 𝑞 : 𝑆 → 𝐵 and a bijective immersion
𝜄 : 𝑆 ↬ 𝑋 such that 𝑞 = 𝑝 ◦ 𝜄 and 𝑇𝜄 : 𝑇𝑆 ↩→ 𝜄∗𝑇𝑋 induces an isomorphism 𝑇𝑆 � 𝜄∗𝐻𝐴; in
particular: tra

𝐴
𝛾 depends only on the homotopy class rel {0, 1} of 𝛾 .

𝑆 𝑋

𝐵.

𝜄

𝑞
𝑝

Proof of Proposition 2.47. 𝐴 is flat if and only if the distribution 𝐻𝐴 is involutive. Frobenius’s

theorem guarantees the existence of a bijective immersion 𝜄 : 𝑆 ↬ 𝑋 such that𝑇𝜄 : 𝑇𝑆 ↩→ 𝜄∗𝑇𝑋
induces an isomorphism 𝑇𝑆 � 𝜄∗𝐻𝐴.

To prove that 𝑞 ≔ 𝑝 ◦ 𝜄 is a covering map, let 𝑏0 ∈ 𝐵 and let 𝑈 be a connected, simply-

connected, open neighborhood of 𝑏0. Let 𝑉 be a connected component of 𝑆 ∩ 𝜄−1(𝑈 ). It

remains to prove that 𝑞 |𝑉 : 𝑉 → 𝑈 is a diffeomorphism. By construction, 𝑞 |𝑉 is a local

diffeomorphism. Since 𝑈 is path-connected, 𝑞 |𝑉 is surjective. To prove that 𝑞 |𝑉 is injective,

let 𝑠0, 𝑠1 ∈ 𝑞−1(𝑏0) ∩ 𝑉 . Since 𝑉 is path-connected, there is a smooth path 𝛾 : [0, 1] → 𝑆

with 𝛾 (0) = 𝑠0 and 𝛾 (1) = 𝑠1. Since 𝑈 is simply-connected, there is a smooth homotopy

Γ : [0, 1] × [0, 1] → 𝐵 rel {0, 1} with Γ(0, ·) = 𝑞 ◦ 𝛾 and Γ(1, ·) = 𝑏0. The task at hand is to find

an 𝐴–horizontal lift Γ̃ : [0, 1] × [0, 1] → 𝑋 of Γ along 𝑝 with Γ̃(0, 0) = 𝑥0 ≔ 𝜄 (𝑠0).
By Proposition 2.35, it suffices to consider 𝐵 = [0, 1] × [0, 1] and 𝛾 = id𝐵 . Denote by 𝑣1, 𝑣2

the 𝐴–horizontal lifts of 𝜕1, 𝜕2. The lift

Γ̃(𝑡1, 𝑡2) ≔ flow
𝑡1
𝑣1

◦ flow
𝑡2
𝑣2

(𝑥0)

maps into the maximal integral submanifold through 𝑥0; hence, it is 𝐴–parallel. ■

Proposition 2.48. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝑓 : 𝐴→ 𝐵 be a smooth map. Denote by
𝑓 ∗𝑝 : 𝑓 ∗𝑋 → 𝐴 the pullback of 𝑝 . Denote by 𝜙 : 𝑓 ∗𝑋 → 𝑋 the canonical map. Let 𝐴 ∈ A(𝑝) and
denote its pullback via 𝑓 by 𝑓 ∗𝐴. The curvature of 𝐴 and 𝑓 ∗𝐴 are related by

𝐹𝑓 ∗𝐴 = Ψ−1 ◦ 𝜙∗𝐹𝐴 .

Proof sketch. Let 𝑣,𝑤 ∈ 𝐻𝑓 ∗𝐴,𝑥0
and set 𝑣 ≔ 𝑇𝜙 (𝑣), �̃� ≔ 𝑇𝜙 (𝑤). Extend 𝑣,𝑤 and 𝑣, �̃� to

𝜙–related vector field in 𝐻𝑓 ∗𝐴 and 𝐻𝐴. (This part of the proof actually is a little fishy. It is

not obvious how to construct these. A clean way of doing this is to prove it only after the

introduction of the Fröhlicher–Nijenhuis bracket; see Proposition 2.71.) Since [𝑣,𝑤] and [𝑣, �̃�]
are 𝜙–related, 𝐹𝑓 ∗𝐴 ( [𝑣,𝑤]) = −𝜃 𝑓 ∗𝐴 ( [𝑣,𝑤]) = −Ψ−1 ◦ 𝜃𝐴 ( [𝑣, �̃�]) = Ψ−1 ◦ 𝜙∗𝐹𝐴 (𝑣,𝑤). ■

Here is another (more direct) way to see that 𝐹𝐴 = 0 implies homotopy-independence of

parallel transport.
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Lemma 2.49. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let𝐴 ∈ A(𝑝) be a complete Ehresmann connection.
Let 𝑏0 ∈ 𝐵 and 𝑥0 ∈ 𝑝−1(𝑏0) Let Γ : [0, 1] × [0, 1] → 𝐵 with Γ(0, 0) = 𝑏0. Define Γ̃ : [0, 1] ×
[0, 1] → 𝑋 by

Γ̃(𝑠, 𝑡) ≔ tra
𝐴
Γ ( ·,𝑡 ) | [0,𝑠 ] ◦ tra

𝐴
Γ (0,· ) | [0,𝑡 ] (𝑥0) .

The derivative of Γ̃(1, ·) satisfies

𝜕𝑡 Γ̃(1, ·) = �̃�𝑡Γ ◦ Γ̃(1, ·) +
ˆ

1

0

((flow
𝜎

𝜕𝑠Γ
)∗𝐹𝐴 (�̃�𝑠Γ, �̃�𝑡Γ)) ◦ Γ̃(1, ·) d𝜎.

Remark 2.50. The integrals in Lemma 2.49measures the deviation of Γ̃(1, ·) from being horizontal.

♣

Figure 1: An illustration of Lemma 2.49 for a null-homotopy Γ.

Proof of Lemma 2.49. It suffices to prove this for 𝐵 = [0, 1]2 and Γ = id𝐵 . Since Γ̃(𝑠, 𝑡) =

flow
𝑠

𝜕𝑠
◦ flow

𝑡

𝜕𝑡
(𝑥0),

𝜕𝑡 Γ̃(1, ·) = ((flow
1

𝜕𝑠
)∗𝜕𝑡 ) ◦ Γ̃(1, ·).

Since [𝜕𝑠 , 𝜕𝑡 ] = 0,

(flow
1

𝜕𝑠
)∗𝜕𝑡 = �(flow

1

𝜕𝑠
)∗𝜕𝑡 + 𝜃𝐴 ((flow

1

𝜕𝑠
)∗𝜕𝑡 )

= 𝜕𝑡 +
ˆ

1

0

𝜕𝜎𝜃𝐴 ((flow
𝜎

𝜕𝑠
)∗𝜕𝑡 ) d𝜎

= 𝜕𝑡 −
ˆ

1

0

𝜃𝐴 ((flow
𝜎

𝜕𝑠
)∗ [𝜕𝑠 , 𝜕𝑡 ]) d𝜎

= 𝜕𝑡 −
ˆ

1

0

(flow
𝜎

𝜕𝑠
)∗𝜃𝐴 ( [𝜕𝑠 , 𝜕𝑡 ]) d𝜎

= 𝜕𝑡 +
ˆ

1

0

(flow
𝜎

𝜕𝑠
)∗𝐹𝐴 (𝜕𝑠 , 𝜕𝑡 ) d𝜎. ■

Corollary 2.51. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝐴 ∈ A(𝑝). The parallel transport tra
𝐴
𝛾

depends only on the homotopy class rel {0, 1} of 𝛾 if and only if 𝐴 is flat. ■
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2.6 Digression: Ehresmann connections and Riemannian metrics

Question 2.52. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝑔 be a Riemannian metric on 𝑋 . Denote by

𝐴 the Ehresmann connection with 𝐻𝐴 = 𝑉⊥𝑝 . What is 𝐹𝐴?

Let us take a slightly broader perspective. Let 𝑋 be a smooth manifold. Let 𝑝 : 𝐸 → 𝑋 be a

vector bundle equipped with a covariant derivative ∇ : Γ(𝐸) → Ω1(𝑋, 𝐸). Suppose a direct sum
decomposition 𝐸 = 𝐸′ ⊕ 𝐸′′ given. Denote by 𝑃 ′ ∈ End(𝐸) the projection onto 𝐸′ respectively.
∇ induces a covariant derivative

∇′ ≔ 𝑃 ′ ◦ ∇ : Γ(𝐸′) → Ω1(𝑋, 𝐸′)

on 𝐸′ respectively. If 𝑠 ∈ Γ(𝐸′), then

∇𝑠 = ∇′𝑠 + II
′𝑠 with II

′ ≔ ∇𝑃 ′ ∈ Ω1(𝑋,Hom(𝐸′, 𝐸′′)) .

To see this, observe that (1 − 𝑃 ′)∇𝑠 = ∇((1 − 𝑃 ′)𝑠) − (∇(1 − 𝑃 ′))𝑠 .
If 𝐸 = 𝑇𝑋 and ∇ is torsion-free, then for 𝑣,𝑤 ∈ Γ(𝐸′) ⊂ Vect(𝑋 )

[𝑣,𝑤] = ∇𝑣𝑤 − ∇𝑤𝑣 = ∇′𝑣𝑤 − ∇′𝑤𝑣 + II
′(𝑣)𝑤 − II

′(𝑤)𝑣 .

To answer the initial question set 𝐸′ = 𝐻𝐴, 𝐸
′′ = 𝑉𝑝 , and choose ∇ to be the Levi-Civita

connection of 𝑔. The above formula implies

𝐹𝐴 (𝑣,𝑤) = −II
′(𝑣)𝑤 + II

′(𝑤)𝑣 .

Therefore,𝐴 is flat if and only if the section of Hom(𝐻𝐴⊗𝐻𝐴,𝑉𝑝) induced by II
′
is symmetric.

In fact, if 𝐴 is flat, then the latter is the second fundamental form of the integral submanifold of

𝐻𝐴.

I recommend to read [Kar99] for more on the Riemannian geometry computations on fibre

bundles. Karcher also gives a neat proof of Frobenius’ theorem.

2.7 The Gauß–Manin connection

Let 𝑋 be a manifold. The de Rham complex is (Ω•(𝑋 ), d). (The • here just indicates that Ω•(𝑋 )
is graded and we take all of the graded pieces.) Its cohomology H

•(Ω•(𝑋 ), d) is the de Rham
cohomology of 𝑋 :

H
𝑘
dR
(𝑋 ) ≔ ker(d : Ω𝑘 (𝑋 ) → Ω𝑘+1(𝑋 ))

im(d : Ω𝑘−1(𝑋 ) → Ω𝑘 (𝑋 ))
.

If 𝑓 : 𝑋 → 𝑌 is a smooth map, then the pullback 𝑓 ∗ : Ω•(𝑌 ) → Ω•(𝑋 ) descends to

𝑓 ∗ : H
𝑘
dR
(𝑌 ) → H

𝑘
dR
(𝑋 ) .

The latter depends only on the homotopy class of 𝑓 . If 𝑓 is a diffeomorphism, then 𝑓 ∗ is an
isomorphism.
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Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Set

H𝑘
dR
(𝑝) ≔

∐
𝑏∈𝐵

H
𝑘
dR
(𝑝−1(𝑏)) .

Denote by 𝑞 : H𝑘
dR
(𝑝) → 𝐵 the canonical projection. This can be given the structure of a flat

vector bundle.

Let {𝑈𝛼 : 𝛼 ∈ 𝐴} be an open cover of 𝐵, and for every 𝛼 ∈ 𝐴 let 𝐹𝛼 be a smooth manifold

and let 𝜏𝛼 : 𝑝−1(𝑈𝛼 ) → 𝑈𝛼 × 𝐹𝛼 be a diffeomorphism such that pr𝑈𝛼
◦ 𝜏𝛼 = 𝑝 . Define

𝜙𝛼 : 𝑞−1(𝑈𝛼 ) =
∐
𝑏∈𝑈𝛼

H
𝑘
dR
(𝑝−1(𝑏)) → 𝑈𝛼 × H

𝑘
dR
(𝐹𝛼 ) .

by

𝜙𝛼 (𝑏, [𝛼]) ≔ (𝑏, (𝜏−1

𝛼 (𝑏, ·))∗ [𝛼]) .

These maps are bijections and the transition maps 𝜙𝛽 ◦𝜙−1

𝛼 : (𝑈𝛼 ∩𝑈𝛽 ) × 𝐹𝛼 → (𝑈𝛼 ∩𝑈𝛽 ) × 𝐹𝛽
satisfy

𝜙𝛽 ◦ 𝜙−1

𝛼 (𝑏, [𝛼]) =
(
𝑏,

(
𝜏𝛼 (𝑏, ·) ◦ 𝜏−1

𝛽
(𝑏, ·)

)∗ [𝛼]) .
Themap𝜓𝛼𝛽 : 𝑈𝛼∩𝑈𝛽 → Hom(H𝑘

dR
(𝐹𝛼 ),H𝑘

dR
(𝐹𝛼 )), 𝑏 ↦→

(
𝜏𝛼 (𝑏, ·)◦𝜏−1

𝛽
(𝑏, ·)

)∗
is locally constant

by the homotopy invariance of de Rham cohomology. Therefore, the𝜙𝛼 define a smooth structure

on H𝑘
dR
(𝑝) which makes 𝑞 into a flat vector bundle. Explicitly, the flat covariant derivative

∇ : Γ(H𝑘
dR
(𝑝)) → Ω1(𝐵,H𝑘

dR
(𝑝)) is defined as follows. Let 𝑠 ∈ Γ(H𝑘

dR
(𝑝)). For 𝑥 ∈ 𝑈𝛼

𝜙𝛼 ◦ 𝑠 (𝑥) = (𝑥, 𝑠𝛼 (𝑥))

for some map 𝑠𝛼 : 𝑈𝛼 → H
𝑘
dR
(𝐹𝛼 ). These are related by

𝑠𝛽 (𝑥) = 𝜓𝛽𝛼𝑠𝛼 (𝑥) .

Since d𝜓𝛽,𝛼 = 0,

d𝑠𝛽 (𝑥) = 𝜓𝛽𝛼 (𝑥)d𝑠𝛼 (𝑥).

Therefore, there is a ∇𝑠 ∈ Ω1(𝑋,H𝑘
dR
(𝑝)) such that for 𝑥 ∈ 𝑈𝛼

𝜙𝛼 ◦ ∇𝑠 (𝑥) = (𝑥, d𝑠𝛼 (𝑥)) .

The covariant derivative defined in this way is the Gauß–Manin connection.

Example 2.53. Let 𝐹 be smooth manifold. Let 𝑓 ∈ Diff (𝐹 ). Denote 𝑋𝑓 the mapping torus of 𝑓 ;
that is:

𝑋𝑓 ≔ ( [0, 1] × 𝐹 )/∼

with denoting the equivalence relation generated by (0, 𝑥) ∼ (1, 𝑓 (𝑥)). 𝑋𝑓 is a smooth manifold

and the projectionmap 𝑝 : 𝑋 → 𝑆1 = R/Z is a fibre bundle. Themonodromy of the Gauß–Manin

connection onH•
dR
(𝑝) is precisely the action of Z on H

•
dR
(𝑋 ) generated by 𝑓 ∗. ♠
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Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝑏0 ∈ 𝐵 and 𝛾 : [0, 1] → 𝐵 be a smooth loop based at 𝑏0.

The pullback 𝛾∗𝑝 : 𝛾∗𝑋 → [0, 1] is isomorphic to a trivial bundle pr[0,1] : [0, 1] × 𝐹 → [0, 1].
The chain of diffeomorphisms

𝑝−1(𝑏0) � (𝛾∗𝑝)−1(0) � 𝐹 � (𝛾∗𝑝)−1(1) � 𝑝−1(𝑏0)

defines a diffeomorphism 𝑓 ∈ Diff (𝑝−1(𝑏0)). The monodromy of the Gauß–Manin connection

around 𝛾 is precisely 𝑓 ∗ ∈ End(H•
dR
(𝑝−1(𝑏0))).

Remark 2.54. A local system on 𝑋 is a vector bundle 𝐸 equipped with a flat connection ∇. For
every local system (Ω•(𝑋, 𝐸), d∇) is the twisted de Rham complex. Its cohomology is

H
𝑘
dR
(𝑋, 𝐸) ≔ ker(d∇ : Ω𝑘 (𝑋, 𝐸) → Ω𝑘+1(𝑋, 𝐸))

im(d∇ : Ω𝑘−1(𝑋, 𝐸) → Ω𝑘 (𝑋, 𝐸))
.

The above shows thatH•
dR
(𝑝) is a local system on 𝐵. Its tempting to ask: what is the relation

between H
•
dR
(𝑋 ) and H

•
dR
(𝐵,H•

dR
(𝑝))? The answer to this question is (an instance of) the Leray–

Serre spectral sequence. It will lead us to do far astray to discuss this in detail. An excellent

reference is [BT82, §14]. ♣

2.8 Graded derivations of the exterior algebra

Our next goal is to understand how the de Rham complex (Ω•(𝑋 ), d) refines if 𝑋 is the total

space of a fibre bundle equipped with an Ehresmann connection. To prepare this task it is

helpful to first ponder graded derivations of Ω•(𝑋 ). [KMS93, §8] contains a more detailed

treatment of the material discussed below.

Definition 2.55. Let 𝑘 ∈ Z. A graded derivation of degree 𝑘 on Ω•(𝑋 ) is an R–linear map

𝛿 : Ω•(𝑋 ) → Ω•+𝑘 (𝑋 ) satisfying the graded Leibniz rule

𝛿 (𝛼 ∧ 𝛽) = (𝛿𝛼) ∧ 𝛽 + (−1)𝑘 ·ℓ𝛼 ∧ (𝛿𝛽)

for every 𝛼 ∈ Ωℓ (𝑋 ), 𝛽 ∈ Ω•(𝑋 ). The graded derivations of Ω•(𝑋 ) form a graded Lie algebra

Der•(Ω•(𝑋 )). •

Exercise 2.56. Verify the last sentence in the above definition.

Example 2.57. The exterior derivative d is a graded derivation of degree 1 of Ω•(𝑋 ). If 𝑣 ∈
Vect(𝑋 ), then 𝑖𝑣 is a graded derivation of degree −1 of Ω•. By Cartan’s formula, their graded

commutator is the Lie derivative

L𝑣 = d𝑖𝑣 + 𝑖𝑣d = [𝑖𝑣, d];

itself a graded derivation of degree 0. ♠

The derivations of 𝐶∞(𝑋 ) are precisely the vector fields on 𝑋 : Der(𝐶∞(𝑋 )) � Vect(𝑋 ). Is
there an analogous result for Der•(Ω•(𝑋 ))?
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Definition 2.58. Let 𝑘 ∈ N0. Denote by 𝑖 · : Ω𝑘+1(𝑋,𝑇𝑋 ) → Der𝑘 (Ω•(𝑋 )) the unique linear
map satisfying

𝑖𝜉⊗𝑣𝛼 = 𝜉 ∧ 𝑖𝑣𝛼 for 𝜉 ∈ Ω𝑘+1(𝑋 ) and 𝑣 ∈ Vect(𝑋 ) .

DefineL· : Ω𝑘 (𝑋,𝑇𝑋 ) → Der𝑘 (Ω•(𝑋 )) by

LΞ ≔ [𝑖Ξ, d] . •

Exercise 2.59. Prove that 𝜄 andL are injective.

Exercise 2.60. For Ξ =
∑
𝑖 𝜉𝑖 ⊗ 𝑣𝑖 ∈ Ω𝑘 (𝑋,𝑇𝑋 ) prove that

LΞ𝛼 =
∑︁
𝑖

𝜉𝑖 ∧L𝑣𝑖𝛼 + (−1)𝑘 (d𝜉𝑖) ∧ 𝑖𝑣𝑖𝛼.

Proposition 2.61. Let 𝑋 be a smooth manifold. Let 𝑘 ∈ Z. The map L + 𝜄 : Ω𝑘 (𝑋,𝑇𝑋 ) ⊕
Ω𝑘+1(𝑋,𝑇𝑋 ) → Der𝑘 (Ω•(𝑋 )) is an isomorphism. Moreover, 𝛿 ∈ imL if and only if [𝛿, d] = 0;
and 𝜀 ∈ imL if and only if 𝜀 (Ω0(𝑋 )) = 0.

Proof. Every 𝛿 ∈ Der𝑘 (Ω•(𝑋 )) is determined by its restriction to Ω0(𝑋 ) ⊕ Ω1(𝑋 ). If 𝑣1, . . . , 𝑣𝑘 ,

then the map

𝑓 ↦→ (𝛿 𝑓 ) (𝑣1, . . . , 𝑣𝑘 )
is a derivation of Ω0(𝑋 ) = 𝐶∞(𝑋 ). Hence, there is a unique vector field Ξ(𝑣1, . . . , 𝑣𝑘 ) such that

(𝛿 𝑓 ) (𝑣1, . . . , 𝑣𝑘 ) = LΞ(𝑣1,...,𝑣𝑘 ) 𝑓 .

A moment’s thought shows that (𝑣1, . . . , 𝑣𝑘 ) ↦→ Ξ(𝑣1, . . . , 𝑣𝑘 ) is tensorial. Therefore, it defines a
Ξ ∈ Ω𝑘 (𝑋,𝑇𝑋 ). The derivation 𝜀 ≔ 𝛿 −LΞ vanishes on Ω0(𝑋 ).

If 𝑓 ∈ 𝐶∞(𝑋 ) and 𝛼 ∈ Ω1(𝑋 ), then

𝜀 (𝑓 𝛼) = 𝑓 · 𝜀𝛼 ;

that is: 𝜀 : Ω1(𝑋 ) → Ω𝑘 (𝑋 ) is tensorial. Therefore, there is a Θ ∈ Ω𝑘 (𝑋,𝑇𝑋 ) with 𝜀 = 𝑖Θ.
By construction, 𝛿 = 𝑖Θ + LΞ on Ω0(𝑋 ) ⊕ Ω1(𝑋 ). This proves the first assertion. The

vanishing criterion for Θ is obvious. A brief computation shows that [LΞ, d] = 0. Since

[𝑖Θ, d] = LΘ,

the final assertion follows. ■

Exercise 2.62. What are Θ and Ξ for 𝛿 = d?

Exercise 2.63. Use Proposition 2.61 to prove Cartan’s formula L𝑣 = d𝑖𝑣 + 𝑖𝑣d.

The identification can be used to define the Lie bracket [·, ·] on Vect(𝑋 ). Since

[[LΘ,LΞ], d] = 0,

one obtains a graded Lie bracket on Ω•(𝑋,𝑇𝑋 ).
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Definition 2.64. The Fröhlicher–Nijenhuis bracket is the map

[·, ·] : Ω•(𝑋,𝑇𝑋 ) ⊗ Ω•(𝑋,𝑇𝑋 ) → Ω•(𝑋,𝑇𝑋 )

characterised by

[LΘ,LΞ] = L[Θ,Ξ] . •
It turns out (somewhat miraculously in my opinion) that Fröhlicher–Nijenhuis bracket

consistently shows up as an obstruction to integrability.

Proposition 2.65. If 𝜃 ∈ Ω1(𝑋,𝑇𝑋 ), then the Nijenhuis tensor

𝑁𝜃 ≔ −1

2

[𝜃, 𝜃 ] ∈ Ω2(𝑋,𝑇𝑋 )

satisfies
𝑁𝜃 (𝑣,𝑤) = −𝜃 (𝜃 ( [𝑣,𝑤])) − [𝜃 (𝑣), 𝜃 (𝑤)] + 𝜃 ( [𝜃 (𝑣),𝑤] + [𝑣, 𝜃 (𝑤)]).

The proof relies in the following

Proposition 2.66. For 𝜃, 𝛼 ∈ Ω1(𝑋,𝑇𝑋 ) and 𝑣,𝑤 ∈ Vect(𝑋 )

(L𝜃𝛼) (𝑣,𝑤) = L𝜃 (𝑣) (𝛼 (𝑤)) −L𝜃 (𝑤 ) (𝛼 (𝑣)) − 𝛼 ( [𝜃 (𝑣),𝑤]) − 𝛼 ( [𝑣, 𝜃 (𝑤)]) + 𝛼 (𝜃 ( [𝑣,𝑤])).

Proof. Let 𝜃, 𝛼 ∈ Ω1(𝑋,𝑇𝑋 ) and 𝑣,𝑤 ∈ Vect(𝑋 ). Since

(d𝛼) (𝑣,𝑤) = L𝑣 (𝛼 (𝑤)) −L𝑤 (𝛼 (𝑣)) − 𝛼 ( [𝑣,𝑤]),

by definition ofL𝜃 ,

(L𝜃𝛼) (𝑣,𝑤) = (𝑖𝜃d𝛼 − d𝑖𝜃𝑎) (𝑣,𝑤)
= L𝜃 (𝑣) (𝛼 (𝑤)) −L𝑤 (𝛼 (𝜃 (𝑣))) − 𝛼 ( [𝜃 (𝑣),𝑤])
+L𝑣 (𝛼 (𝜃 (𝑤))) −L𝜃 (𝑤 ) (𝛼 (𝑣)) − 𝛼 ( [𝑣, 𝜃 (𝑤)])
−L𝑣 (𝛼 (𝜃 (𝑤))) +L𝑤 (𝛼 (𝜃 (𝑣))) + 𝛼 (𝜃 ( [𝑣,𝑤]))

= L𝜃 (𝑣) (𝛼 (𝑤)) − 𝛼 ( [𝜃 (𝑣),𝑤])
−L𝜃 (𝑤 ) (𝛼 (𝑣)) − 𝛼 ( [𝑣, 𝜃 (𝑤)])
+ 𝛼 (𝜃 ( [𝑣,𝑤])) . ■

Proof of Proposition 2.65. 𝑁𝜃 ∈ Ω2(𝑋,𝑇𝑋 ) is determined by the action on Ω0(𝑋 ) = 𝐶∞(𝑋 ). For
𝜃 ∈ Ω𝑘 (𝑇𝑋,𝑋 )

(L𝜃 𝑓 ) (𝑣1, . . . , 𝑣𝑘 ) = L𝜃 (𝑣1,...,𝑣𝑘 ) 𝑓 ;

in particular, (L𝜃 𝑓 ) (𝑣) = L𝜃 (𝑣) 𝑓 . Therefore, using Proposition 2.66,

(L𝜃L𝜃 𝑓 ) (𝑣,𝑤) = L𝜃 (𝑣)L𝜃 (𝑤 ) 𝑓 −L𝜃 ( [𝜃 (𝑣),𝑤 ] ) 𝑓

−L𝜃 (𝑤 )L𝜃 (𝑣) 𝑓 −L𝜃 ( [𝑣,𝜃 (𝑤 ) ] ) 𝑓

+L𝜃 (𝜃 ( [𝑣,𝑤 ] ) ) 𝑓

= L[𝜃 (𝑣),𝜃 (𝑤 ) ] 𝑓 −L𝜃 ( [𝜃 (𝑣),𝑤 ] ) 𝑓

−L𝜃 ( [𝑣,𝜃 (𝑤 ) ] ) 𝑓 +L𝜃 (𝜃 ( [𝑣,𝑤 ] ) ) 𝑓 .

This implies the assertion. ■
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Remark 2.67. If 𝐽 ∈ End(𝑇𝑋 ) is an almost complex structure (that is: 𝐽 2 = −1), then the

vanishing of 𝑁 𝐽 characterises the integrability of 𝐽 . Indeed, the Newlander–Nirenberg theorem

asserts that 𝑁 𝐽 = 0 if and only if 𝑋 admits a holomorphic structure which induces the almost

complex structure 𝐽 . ♣

Exercise 2.68. Let 𝑝 : 𝑋 → 𝐵 be fibre bundle. Let 𝐴 ∈ A(𝑝). Regard the connection 1–form

𝜃𝐴 : Ω1(𝑋,𝑉𝑝) as 𝑇𝑋–valued 1–form. Prove that

𝐹𝐴 = 𝑁𝜃𝐴

Remark 2.69. The graded Jacobi identity implies the Bianchi identity

[𝜃𝐴, 𝐹𝐴] = 0. ♣

Definition 2.70. Let 𝑋,𝑌 be smooth manifolds Let 𝑓 : 𝑋 → 𝑌 be a smooth map.

Θ ∈ Ω𝑘 (𝑋,𝑇𝑋 ) and Ξ ∈ Ω𝑘 (𝑌,𝑇𝑌 ) are 𝑓 –related if for every 𝑥 ∈ 𝑋 , 𝑣1, . . . , 𝑣𝑘 ∈ 𝑇𝑥𝑋

𝑇𝑥 𝑓 (Θ(𝑣1, . . . , 𝑣𝑘 )) = Ξ(𝑇𝑥 𝑓 (𝑣1), . . . ,𝑇𝑥 𝑓 (𝑣𝑘 )) . •

Proposition 2.71. Let 𝑋,𝑌 be smooth manifolds Let 𝑓 : 𝑋 → 𝑌 be a smooth map. Let Θ1,Θ2 ∈
Ω•(𝑋,𝑇𝑋 ) and Ξ1,Ξ2 ∈ Ω•(𝑌,𝑇𝑌 ). If Θ𝑖 and Ξ𝑖 are 𝑓 –related, then [Θ1,Θ2] and [Ξ1,Ξ2] are
𝑓 –related.

Proof. Exercise. ■

2.9 Differential forms on fibre bundles

Definition 2.72. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝐴 ∈ A(𝑝).

(1) For 𝑝, 𝑞 ∈ N0 set

Λ
𝑝,𝑞

𝐴
𝑇 ∗𝑋 ≔ Λ𝑝𝐻 ∗𝐴 ⊗ Λ𝑞𝑉 ∗𝑝 and Ω

𝑝,𝑞

𝐴
(𝑋 ) ≔ Γ(Λ𝑝,𝑞

𝐴
𝑇 ∗𝑋 ) .

These define bi-gradings on Λ•𝑇 ∗𝑋 and Ω•(𝑋 ). (A bigrading is a grading by N0 × N0;

instead of N0.)

(2) For 𝑝, 𝑞 ∈ Z denote by d
𝑝,𝑞

𝐴
the component of d of bidegree (𝑝, 𝑞).

(3) For every 𝑏 ∈ 𝐵 denote by res𝑏 : Ω
𝑝,𝑞

𝐴
(𝑋 ) → Λ𝑝𝑇 ∗

𝑏
𝐵 ⊗ Ω𝑞 (𝑝−1(𝑏)) the composition of the

maps

Ω
𝑝,𝑞

𝐴
(𝑋 ) → Γ(𝑝−1(𝑏),Λ𝑝𝐻 ∗𝐴 ⊗ Λ𝑞𝑉 ∗𝑝 ) � Γ(Λ𝑝𝑇 ∗

𝑏
𝐵 ⊗ Λ𝑞𝑉 ∗𝑝 ) � Λ𝑝𝑇 ∗

𝑏
𝐵 ⊗ Ω𝑞 (𝑝−1(𝑏)) . •

Remark 2.73. Dualizing the exact sequence defining 𝑉𝑝 yields

0→ 𝑝∗𝑇 ∗𝐵 → 𝑇 ∗𝑋 → 𝑉 ∗𝑝 → 0.

The image of 𝑝∗𝑇 ∗𝐵 in 𝑇 ∗𝑋 is 𝑉 0

𝑝 , the annihilator of 𝑉𝑝 . Consequently, Ω
𝑝,0

𝐴
(𝑋 ) is independent

of 𝐴. Indeed: Ω
𝑝,0

𝐴
(𝑋 ) = Ω

𝑝

hor
(𝑋 ). ♣
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Proposition 2.74. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. Let 𝐴 ∈ A(𝑝).

(1) The exterior derivative decomposes into three components of bidegree (1, 0), (0, 1), and
(2,−1):

d = d
1,0

𝐴
+ d

0,1

𝐴
+ d

2,−1

𝐴
.

(2) These components satisfy

d
1,0

𝐴
= Lid𝑇𝑋 −𝜃𝐴 − 2𝑖𝐹𝐴 , d

0,1

𝐴
= L𝜃𝐴 + 𝑖𝐹𝐴 , and d

2,−1

𝐴
= 𝑖𝐹𝐴 .

(3) For every 𝑏 ∈ 𝐵

Ω
𝑝,𝑞

𝐴
(𝑋 ) Ω

𝑝,𝑞+1
𝐴
(𝑋 )

Λ𝑝𝑇 ∗
𝑏
𝐵 ⊗ Ω𝑞 (𝑝−1(𝑏)) Λ𝑝𝑇 ∗

𝑏
𝐵 ⊗ Ω𝑞+1(𝑝−1(𝑏)) .

d
0,1
𝐴

res𝑏 res𝑏

id⊗d

(4) The operators d
1,0

𝐴
, d

0,1

𝐴
, d

2,−1

𝐴
satisfy(

d
1,0

𝐴

)
2 + d

0,1

𝐴
d

2,−1

𝐴
+ d

2,−1

𝐴
d

0,1

𝐴
= 0,(

d
0,1

𝐴

)
2

= 0,(
d

2,−1

𝐴

)
2

= 0,

d
1,0

𝐴
d

0,1

𝐴
+ d

0,1

𝐴
d

1,0

𝐴
= 0, and

d
1,0

𝐴
d

2,−1

𝐴
+ d

2,−1

𝐴
d

1,0

𝐴
= 0.

Proof. The proof has several steps.

Step 7. d
𝑝,𝑞

𝐴
∈ Der𝑝+𝑞 (Ω•(𝑋 )) and vanishes unless (𝑝, 𝑞) ∈ {(2,−1), (0, 1), (1, 0), (2,−1)}.

Since d is a graded derivation of Ω•(𝑋 ), so are its components d
𝑝,𝑞

𝐴
. Evidently, d

𝑝,𝑞

𝐴
= 0

vanishes unless 𝑝 + 𝑞 = 1. A graded derivation of Ω•(𝑋 ) is determined by its restriction to

Ω0(𝑋 ) ⊕ Ω1(𝑋 ). Therefore, d
𝑝,𝑞

𝐴
= 0 unless 𝑝, 𝑞 ⩾ −1.

Step 8. d
−1,2

𝐴
= 0 and d

2,−1

𝐴
= 𝑖𝐹𝐴 .

It suffices to verify these identities on 𝐶∞(𝑋 ) and Ω1(𝑋 ). For 𝑓 ∈ 𝐶∞(𝑋 )

d
−1,2

𝐴
𝑓 = 0 = d

2,−1

𝐴
𝑓

for degree reasons. Similarly, d
−1,2

𝐴
𝛼 = 0 for 𝛼 ∈ Ω1,0

𝐴
(𝑋 ) and d

2,−1

𝐴
𝛼 = 0 = 𝑖𝐹𝐴𝛼 for 𝛼 ∈ Ω0,1

𝐴
(𝑋 ).

For 𝛼 ∈ Ω1,0(𝑋 ) and 𝑣,𝑤 ∈ Vect(𝑋 ), since 𝛼 ◦ 𝜃𝐴 = 0,

(d−1,2

𝐴
𝛼) (𝑣,𝑤) = (d𝛼) (𝜃𝐴 (𝑣), 𝜃𝐴 (𝑤))

= −𝛼 ( [𝜃𝐴 (𝑣), 𝜃𝐴 (𝑤)]) .
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The latter vanishes since [𝜃𝐴 (𝑣), 𝜃𝐴 (𝑤)] is a vertical vector field. For 𝛼 ∈ Ω0,1(𝑋 ) and 𝑣,𝑤 ∈
Vect(𝑋 ), since 𝛼 ◦ 𝜃𝐴 = 𝛼 ,

(d−1,2

𝐴
𝛼) (𝑣,𝑤) = (d𝛼) (𝑣 − 𝜃𝐴 (𝑣), 𝑣 − 𝜃𝐴 (𝑤))

= −𝛼 (𝜃𝐴 [𝑣 − 𝜃𝐴 (𝑣),𝑤 − 𝜃𝐴 (𝑤)])
= (𝑖𝐹𝐴𝛼) (𝑣,𝑤).

C

The next two steps determine explicit formulae for d
1,0

𝐴
and d

0,1

𝐴
. The computations are

longish and not particularly illuminating. Skip the proofs in class.

Step 9. d
1,0

𝐴
= Lid𝑇𝑋 −𝜃𝐴 − 2𝑖𝐹𝐴 .

It suffices to verify the identity on 𝐶∞(𝑋 ) and Ω1(𝑋 ).
For 𝑓 ∈ 𝐶∞(𝑋 )

d
1,0

𝐴
𝑓 = d𝑓 ◦ (id𝑇𝑋 − 𝜃𝐴)
= (Lid𝑇𝑋 −𝜃𝐴 − 2𝑖𝐹𝐴) 𝑓 .

For 𝛼 ∈ Ω1(𝑋 ) and 𝑣,𝑤 ∈ Vect(𝑋 )
(Lid𝑇𝑋 −𝜃𝐴𝛼) (𝑣,𝑤) = L𝑣−𝜃𝐴 (𝑣) (𝛼 (𝑤)) −L𝑤−𝜃𝐴 (𝑤 ) (𝛼 (𝑣))

− 𝛼 ( [𝑣 − 𝜃𝐴 (𝑣),𝑤]) − 𝛼 ( [𝑣,𝑤 − 𝜃𝐴 (𝑤)]) + 𝛼 ( [𝑣,𝑤] − 𝜃𝐴 ( [𝑣,𝑤])).

For 𝛼 ∈ Ω1,0

𝐴
(𝑋 ) and 𝑣,𝑤 ∈ Vect(𝑋 ), since 𝛼 ◦ 𝜃 = 0,

(d1,0

𝐴
𝛼) (𝑣,𝑤) = d𝛼 (𝑣 − 𝜃𝐴 (𝑣),𝑤 − 𝜃𝐴 (𝑤))

= L𝑣−𝜃𝐴 (𝑣) (𝛼 (𝑤)) −L𝑤−𝜃 (𝑤 ) (𝛼 (𝑣)) − 𝛼 ( [𝑣 − 𝜃𝑎 (𝑣),𝑤 − 𝜃𝑎 (𝑤)])
= (Lid𝑇𝑋 −𝜃𝐴𝛼 − 2𝑖𝐹𝐴𝛼) (𝑣,𝑤)
+ 𝛼 ( [𝑣 − 𝜃𝐴 (𝑣),𝑤]) + 𝛼 ( [𝑣,𝑤 − 𝜃𝐴 (𝑤)])
− 𝛼 ( [𝑣,𝑤]) − 𝛼 ( [𝑣 − 𝜃𝑎 (𝑣),𝑤 − 𝜃𝑎 (𝑤)]).

The sum of the last four term vanishes because

[𝑣 − 𝜃𝐴 (𝑣),𝑤] + [𝑣,𝑤 − 𝜃𝐴 (𝑤)] − [𝑣,𝑤] − [𝑣 − 𝜃𝑎 (𝑣),𝑤 − 𝜃𝑎 (𝑤)] = −[𝜃𝐴 (𝑣), 𝜃𝐴 (𝑤)]
is a vertical vector field.

For 𝛼 ∈ Ω0,1

𝐴
(𝑋 ) and 𝑣,𝑤 ∈ Vect(𝑋 ), since 𝛼 ◦ 𝜃 = 𝛼 ,

d
1,0

𝐴
𝛼 (𝑣,𝑤) = d𝛼 (𝜃𝐴 (𝑣),𝑤 − 𝜃𝐴 (𝑤)) + d𝛼 (𝑣 − 𝜃𝐴 (𝑣), 𝜃𝐴 (𝑤))

= L𝑣−𝜃𝐴 (𝑣) (𝛼 (𝑤)) −L𝑤−𝜃𝐴 (𝑤 ) (𝛼 (𝑣))
− 𝛼 ( [𝜃𝑎 (𝑣),𝑤 − 𝜃𝑎 (𝑤)]) − 𝛼 ( [𝑣 − 𝜃𝑎 (𝑣), 𝜃𝑎 (𝑤)])

=
(
Lid𝑇𝑋 −𝜃𝐴𝛼 − 2𝑖𝐹𝐴𝛼

)
(𝑣,𝑤)

+ 𝛼 ( [𝑣 − 𝜃𝐴 (𝑣),𝑤]) + 𝛼 ( [𝑣,𝑤 − 𝜃𝐴 (𝑤)])
− 2𝛼 ( [𝑣 − 𝜃𝐴 (𝑣),𝑤 − 𝜃 (𝑤)]
− 𝛼 ( [𝜃𝑎 (𝑣),𝑤 − 𝜃𝑎 (𝑤)]) − 𝛼 ( [𝑣 − 𝜃𝑎 (𝑣), 𝜃𝑎 (𝑤)]).

The sum of the last five terms vanishes.
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Step 10. d
0,1

𝐴
= L𝜃𝐴 + 𝑖𝐹𝐴 .

For 𝑓 ∈ 𝐶∞(𝑋 )

d
0,1

𝐴
𝑓 = d𝑓 ◦ 𝜃𝐴
= (L𝜃𝐴 + 𝑖𝐹𝐴) 𝑓 .

For 𝛼 ∈ Ω1(𝑋 ) and 𝑣,𝑤 ∈ Vect(𝑋 )

(L𝜃𝐴𝛼) (𝑣,𝑤) = L𝜃𝐴 (𝑣) (𝛼 (𝑤)) −L𝜃𝐴 (𝑤 ) (𝛼 (𝑣))
− 𝛼 ( [𝜃𝐴 (𝑣),𝑤]) − 𝛼 ( [𝑣, 𝜃𝐴 (𝑤)]) + 𝛼 (𝜃𝐴 ( [𝑣,𝑤])).

For 𝛼 ∈ Ω1,0

𝐴
(𝑋 ) and 𝑣,𝑤 ∈ Vect(𝑋 ), since 𝛼 ◦ 𝜃 = 0,

(d0,1

𝐴
𝛼) (𝑣,𝑤) = d𝛼 (𝜃𝐴 (𝑣),𝑤 − 𝜃𝐴 (𝑤)) + d𝛼 (𝑣 − 𝜃𝐴 (𝑣), 𝜃𝐴 (𝑤))

= L𝜃𝐴 (𝑣) (𝛼 (𝑤)) −L𝜃𝐴 (𝑤 ) (𝛼 (𝑣))
− 𝛼 ( [𝜃𝐴 (𝑣),𝑤 − 𝜃𝐴 (𝑤)]) − 𝛼 ( [𝑣 − 𝜃𝐴 (𝑣), 𝜃𝐴 (𝑤)])

= (L𝜃𝐴𝛼 + 𝑖𝐹𝐴𝛼) (𝑣,𝑤)
+ 𝛼 ( [𝜃𝐴 (𝑣),𝑤]) + 𝛼 ( [𝑣, 𝜃𝐴 (𝑤)])
− 𝛼 ( [𝜃𝐴 (𝑣),𝑤 − 𝜃𝐴 (𝑤)]) − 𝛼 ( [𝑣 − 𝜃𝐴 (𝑣), 𝜃𝐴 (𝑤)]).

The sum of the last four term vanishes because

[𝜃𝐴 (𝑣),𝑤] + [𝑣, 𝜃𝐴 (𝑤)] − [𝜃𝐴 (𝑣),𝑤 − 𝜃𝐴 (𝑤)] − [𝑣 − 𝜃𝐴 (𝑣), 𝜃𝐴 (𝑤)] = 2[𝜃𝐴 (𝑣), 𝜃𝐴 (𝑤)]

is a vertical vector field.

For 𝛼 ∈ Ω0,1

𝐴
(𝑋 ) and 𝑣,𝑤 ∈ Vect(𝑋 ), since 𝛼 ◦ 𝜃 = 𝛼 ,

(d0,1

𝐴
𝛼) (𝑣,𝑤) = d𝛼 (𝜃𝐴 (𝑣), 𝜃𝐴 (𝑤))

= L𝜃𝐴 (𝑣) (𝛼 (𝑤)) −L𝜃 (𝑤 ) (𝛼 (𝑣)) − 𝛼 ( [𝜃𝐴 (𝑣), 𝜃𝐴 (𝑤)])
= (L𝜃𝐴𝛼 + 𝑖𝐹𝐴𝛼) (𝑣,𝑤)
+ 𝛼 ( [𝜃𝐴 (𝑣),𝑤]) + 𝛼 ( [𝑣, 𝜃𝐴 (𝑤)]) − 𝛼 ( [𝑣,𝑤])
+ 𝛼 ( [𝑣 − 𝜃𝐴 (𝑣),𝑤 − 𝜃𝐴 (𝑤)]) − 𝛼 ( [𝜃𝐴 (𝑣), 𝜃𝐴 (𝑤)]).

The sum of the last five term vanishes.

C

At this point (1) and (2) are established. (3) is obvious and (4) is a consequence of d
2 = 0 and

degree considerations. ■

It is evident from Proposition 2.74 that

𝐸
𝑝,𝑞

1
≔

ker(d0,1

𝐴
: Ω

𝑝,𝑞

𝐴
(𝑋 ) → Ω

𝑝,𝑞+1
𝐴
(𝑋 ))

im(d0,1

𝐴
: Ω

𝑝,𝑞−1

𝐴
(𝑋 ) → Ω

𝑝,𝑞

𝐴
(𝑋 ))

� Ω𝑝 (𝐵,H𝑞

dR
(𝑝)) .
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Since

d
1,0

𝐴
d

0,1

𝐴
+ d

0,1

𝐴
d

1,0

𝐴
= 0 and (d1,0

𝐴
)2 = −(d0,1

𝐴
d

2,−1

𝐴
+ d

2,−1

𝐴
d

0,1

𝐴
),

d
1,0

𝐴
descends to an operator d

0,1
1

on 𝐸1 ≔
⊕

𝑝,𝑞 𝐸
𝑝,𝑞

1
and satisfies

(
d

0,1
1

)
2

= 0. Indeed, d
1,0
1

corresponds to d∇ onΩ𝑝 (𝐵,H𝑞

dR
(𝑝)) arising from the Gauß–Manin connection. The cohomology

𝐸2 ≔ H(𝐸1, d
1,0
1
) � H

•
dR
(𝐵,H•

dR
(𝑝))

does not typically compute H
•
dR
(𝑋 ). There is a differential d

2,−1

2
on 𝐸2 (whose computation

requires a bunch of work). 𝐸3 ≔ H(𝐸2, d
2,−1

2
) does not typically compute H

•
dR
(𝑋 ) either. This

procedure can be repeated indefinitely, after finitely many steps d
𝑘,𝑘−1

𝑘
= 0, and 𝐸𝑘 = 𝐸𝑘+1 = · · ·

does compute H
•
dR
(𝑋 ). This is called the Leray–Serre spectral sequence. An excellent treatment

for the Leray–Serre spectral sequence can be found in [BT82, §14]. The lecture notes [Bunke]
are also outstanding.

It is tempting to guess that the differential d
2,−1

2
on 𝐸2 corresponds to 𝑖𝐹𝐴 and, therefore, if

𝐴 is flat, then the Leray–Serre spectral sequence terminates at 𝐸2. This is false! If 𝐹𝐴 = 0, then

d = d
0,1

𝐴
+ d

0,1

𝐴
and Ω•(𝑋 ) is a double complex. The cohomology of a double complex typically

does not agree with the iterated cohomology.

Exercise 2.75. Define a double complex by

𝐶𝑝,𝑞 ≔

{
R if (𝑝, 𝑞) ∈ {(0, 1), (0, 2), (1, 0), (1, 1)}
0 otherwise

,

with d
1,0

: 𝐶0,1 → 𝐶1,1
, d

0,1
: 𝐶0,1 → 𝐶0,2

, d
0,1

: 𝐶1,0 → 𝐶1,1
agreeing with idR and with zero

otherwise. Set d ≔ d
1,0 + d

0,1
. Compute

𝐻 (𝐶, d), 𝐻 (𝐻 (𝐶, d1,0), d0,1), and 𝐻 (𝐻 (𝐶, d0,1), d1,0) .

Example 2.76 ([Ban13, §6], [MS74, Appendix C]). PSL2(R) acts on 𝐻 ≔ {𝑧 ∈ C : Im 𝑧 > 0} by
Möbius transformations.

𝜆𝑔 (𝑧) ≔
𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 for 𝑔 =

[
𝑎 𝑏

𝑐 𝑑

]
.

Define 𝑃 : 𝑆𝑇𝐻 → 𝐻 × (R ∪ {∞}) by

𝑃 (𝑧, 𝑣) ≔ lim

𝑡→∞
exp𝑥 (𝑡𝑣) .

Here exp𝑥 is computed with respect to the hyperbolic metric 𝑔−1 on 𝐻 . Draw a picture to
illustrate this. A brief computation reveals that

𝑃 (𝑧, 𝑣) =


∞ if 𝑣 = 𝑖,

0 if 𝑣 = −𝑖,
𝑧 + Im𝑧

Re 𝑣
(1 − 𝑖𝑣) otherwise.

But that is not very helpful. PSL2(R) acts on 𝑆𝑇𝐻 by

Λ𝑔 (𝑧, 𝑣) ≔ (𝜆𝑔 (𝑧),𝑇𝑧𝜆𝑔 (𝑣))
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and on R ∪ {∞} by Möbius transformations:

𝜆∞𝑔 (𝑥) ≔
𝑎𝑥 + 𝑏
𝑐𝑥 + 𝑑 for 𝑔 =

[
𝑎 𝑏

𝑐 𝑑

]
.

A moments thought shows that 𝑃 is PSL2(R)–equivariant; that is:

𝑃 ◦ Λ𝑔 = (𝜆𝑔 × 𝜆∞𝑔 ) ◦ 𝑃 .

Let Σ be a Riemann surface of genus 𝑔 ⩾ 2. By the uniformization theorem there is a

Γ < PSL(2,R) such that Σ = Γ\𝐻 . Evidently, 𝑆𝑇Σ = Γ\𝑆𝑇𝐻 . By the above, 𝑃 induces an fibre

bundle isomorphism

Γ\𝑆𝑇𝐻 � 𝐻 ×Γ (R ∪ {∞})

The latter inherits flat connection.

Using, for example, the Gysin sequence it can be proved that 𝐻 1(𝑆𝑇Σ) � 𝐻 1(Σ). Therefore,
the Leray–Serre spectral sequence can collapse at 𝐸2. ♠

Despite all of the above, it is true that the Leray–Serre spectral sequences terminates at 𝐸2

if 𝑋 is compact and for some Riemannian metric on 𝐹 ≔ 𝑝−1(𝑏0) the monodromy of 𝐴 acts by

Riemannian isometries [Ban13, Theorem 5.2]. (If 𝐴 has finite monodromy group 𝐺 , then this

can be derived from Künneth’s formula and using 𝐺–invariance.)

Exercise 2.77. Prove that the Hopf bundle 𝑝 : 𝑆2𝑛+1 → C𝑃𝑛 does not admit a flat connection.

2.10 Fibre integration

Definition 2.78. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle. A fibre orientation on 𝑝 is a an orientation

on the line bundle det(𝑉𝑝) ≔𝑟 𝑉𝑝 → 𝑋 with 𝑟 ≔ rk𝑉𝑝 . If 𝐵 is oriented, then a fibre orientation

on 𝑝 induces an orientation on 𝑋 via the above isomorphism. •

Proposition 2.79. Let 𝑑 ∈ N0. Let 𝑝 : 𝑋 → 𝐵 be a fibre bundle with compact fibres of dimension 𝑑 .

(1) There is a unique linear map 𝑝∗ : Ω•(𝑋 ) → Ω•−𝑑 (𝐵) such that for every 𝛼 ∈ Ω𝑑+𝑘 (𝑋 ),
𝑏 ∈ 𝐵, and 𝑣1, . . . , 𝑣𝑘 ∈ Γ(𝑇𝑋 |𝑝−1 (𝑏 ) ) lifts of 𝑣1, . . . , 𝑣𝑘 ∈ 𝑇𝑏𝐵

(2.80) (𝑝∗𝛼) (𝑣1, . . . , 𝑣𝑘 ) =
ˆ
𝑝−1 (𝑏 )

𝑖 �̃�𝑘 · · · 𝑖 �̃�1
𝛼 |𝑝−1 (𝑏 ) .

(2) For every 𝛼 ∈ Ω•(𝑋 ) and 𝛽 ∈ Ω•(𝐵)

𝑝∗(𝛼 ∧ 𝑝∗𝛽) = 𝑝∗𝛼 ∧ 𝛽.

(3) Suppose that 𝐵 is oriented. For every 𝛼 ∈ Ω•(𝑋 )
ˆ
𝑋

𝛼 =

ˆ
𝐵

𝑝∗𝛼
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(4) Suppose that 𝜕𝐵 = ∅. Set 𝜕𝑝 ≔ 𝑝 |𝜕𝑋 : 𝜕𝑋 → 𝐵. For every 𝛼 ∈ Ω•(𝑋 )

𝑝∗d𝛼 − (−1)𝑑d𝑝∗𝛼 = 𝜕𝑝∗𝛼.

Proof. The right-hand side of (2.80) is independent of the lifts 𝑣1, . . . , 𝑣𝑘 . To verify that (2.80)

does define the map 𝑝∗ it suffices to it suffices the require smoothness. It is enough to verify

this for pr𝐵 : 𝐵 × 𝐹 → 𝐵. This proves (1).

(2) is evident from the construction. (3) follows from Fubini’s theorem.

(4) is a consequence of Stokes’ theorem; indeed: for every 𝛼 ∈ Ω𝑘+𝑑 (𝑋 ) and 𝛽 ∈ Ω•(𝐵)
ˆ
𝐵

(𝑝∗d𝛼) ∧ 𝛽 =

ˆ
𝐵

𝑝∗(d𝛼 ∧ 𝑝∗𝛽)

=

ˆ
𝑋

d𝛼 ∧ 𝑝∗𝛽

=

ˆ
𝜕𝑋

𝛼 ∧ 𝑝∗𝛽 + (−1)𝑘+𝑑
ˆ
𝑋

𝛼 ∧ 𝑝∗d𝛽

=

ˆ
𝜕𝑋

𝛼 ∧ 𝑝∗𝛽 + (−1)𝑘+𝑑
ˆ
𝐵

(𝑝∗𝛼) ∧ d𝛽

=

ˆ
𝜕𝑋

𝛼 ∧ 𝑝∗𝛽 + (−1)𝑑
ˆ
𝐵

(d𝑝∗𝛼) ∧ 𝛽. ■

Definition 2.81. In the situation of Proposition 2.79, the map 𝑝∗ is the fibre integration. •

If 𝜕𝑋 = 𝜕𝐵 = ∅, then 𝑝∗ descends to de Rham homology 𝑝∗ : H
•
dR
(𝑋 ) → H

•−𝑑
dR
(𝐵). Set

𝐾• ≔ ker𝑝∗ : Ω•(𝑋 ) → Ω•−𝑑 (𝐵). The short exact sequence

0→ 𝐾• → Ω•(𝑋 ) → Ω•−𝑑 (𝐵) → 0

induces a long exact sequence

· · · → H
𝑘 (𝐾•) → H

𝑘
dR
(𝑋 ) → H

𝑘−𝑑
dR
(𝐵) 𝛿−→ H

𝑘+1(𝐾•) · · · .

If 𝑝 is an oriented sphere bundle, then the map 𝑝∗ : H
𝑘 (𝐵) → H

𝑘 (𝐾•) is an isomorphism. The

Bockstein homomorphism 𝛿 arises from taking the wedge product with the Euler class of 𝑝
(more about that later). This instance of the above elong exact sequence is the Gysin sequence.

3 Lie groups

In this section I will introduce (review?) the concept of a Lie group, that is, a group in the

category of manifolds. For the purpose of this course Lie groups will be a tool and a source of

examples of manifolds. The theory of Lie groups is a vast subject and we will not even scrape

the surface. A good reference is Bump [Bum13].
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3.1 Definition

Definition 3.1. A Lie group is a smooth manifold 𝐺 together with a group structure on 𝐺 such

that the maps𝑚 : 𝐺 ×𝐺 → 𝐺 defined by𝑚(𝑔, ℎ) ≔ 𝑔 · ℎ, and 𝑖 : 𝐺 → 𝐺 defined by 𝑖 (𝑔) ≔ 𝑔−1

are smooth. Let 𝐺 and 𝐻 be Lie groups. A Lie group homomorphism from 𝐺 to 𝐻 is a smooth

group homomorphism 𝜌 : 𝐺 → 𝐻 . •

Example 3.2. 𝑆1 = R/Z, GL𝑛 (R), GL𝑛 (C), O(𝑛), U(𝑛), SO(𝑛), SU(𝑛) are Lie groups. ♠

Example 3.3. Let 𝑉 be a vector space. If 𝜔 ∈ Λ2𝑉 ∗ is a non-degenerate 2–form on 𝑉 , then

𝐻 = 𝐻 (𝑉 ,𝜔), the Heisenberg group of (𝑉 ,𝜔), is defined by 𝐻 ≔ U(1) × 𝑉 with the group

operation

(𝑒𝑖𝛼 , 𝑣) · (𝑒𝑖𝛽 ,𝑤) ≔ (𝑒𝑖𝛼+𝑖𝛽+2𝜋𝑖𝜔 (𝑣,𝑤 ) , 𝑣 +𝑤) .

𝐻 is a Lie group. ♠

Theorem 3.4 (reference?). Let𝐺 be a Lie group. Let 𝐻 < 𝐺 be a subgroup. If 𝐻 is closed, then it
is a submanifold; hence: 𝐻 is a Lie group.

Theorem 3.5 (Yamabe [Yam50]; see also Goto [Got69]). Let 𝐺 be a Lie group. Let 𝐻 < 𝐺 be a
subgroup. If 𝐻 is path-connected, then 𝐻 is an immersed submanifold; hence: 𝐻 is a Lie group.

3.2 Lie group actions

Definition 3.6. Let 𝑋 be a smooth manifold. Let 𝐺 be a Lie group.

(1) A (left) action of 𝐺 on 𝑋 is a smooth map 𝐿 : 𝐺 × 𝑋 → 𝑋 satisfying

𝐿(1, ·) = id𝑋 and 𝐿(𝑔, 𝐿(ℎ, ·) = 𝐿(𝑔ℎ, ·).

Define 𝐿𝑔 ∈ Diff (𝑋 ) by 𝐿𝑔 ≔ 𝐿(𝑔, ·) and abbreviate 𝑔 · 𝑥 = 𝐿(𝑔, 𝑥).

(2) The orbit of 𝑥 ∈ 𝑋 is

𝐺 · 𝑥 ≔ {𝑔 · 𝑥 : 𝑔 ∈ 𝐺}.

(3) The stabiliser of 𝑥 ∈ 𝑋 is

𝐺𝑥 ≔ {𝑔 ∈ 𝐺 : 𝑔 · 𝑥 = 𝑥}.

(4) The action of 𝐺 on 𝑋 is free if 𝐺𝑥 = 1 for every 𝑥 ∈ 𝑋 .

(5) The action of 𝐺 on 𝑋 is proper if the map (𝐿, pr𝑋 ) : 𝐺 × 𝑋 → 𝑋 × 𝑋 is proper. •

(6) A right action of 𝐺 on 𝑋 is a smooth map 𝑅 : 𝑋 ×𝐺 → 𝐺 satisfying

𝑅(·, 1) = id𝑋 and 𝑅(𝑅(·, 𝑔), ℎ) = 𝑅(·, 𝑔ℎ) .

Set 𝑅𝑔 (·) ≔ 𝑅(·, 𝑔) and abbreviate 𝑥 · 𝑔 ≔ 𝑅(𝑥,𝑔). If 𝑅 is a right action, then 𝐿(𝑔, 𝑥) ≔
𝑅(𝑥, 𝑔−1) defines a left action. The notions orbit, stabiliser, free, proper carry over to right
actions in the obvious way.
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In this section, actions are assumed to be left actions unless explicitly stated otherwise.

Example 3.7. If𝐺 is a Lie group, then𝐺 acts on itself on the left by left multiplication 𝐿 : 𝐺×𝐺 →
𝐺 ,

𝐿(𝑔, ℎ) ≔ 𝑔 · ℎ.

The same formula also defines the action of 𝐺 on itself on the right by right multiplication

𝑅 : 𝐺 ×𝐺 ,
𝑅(ℎ,𝑔) = ℎ · 𝑔.

These actions commute and 𝐺 acts on itself on the left by conjugation 𝐶 : 𝐺 → 𝐺 → 𝐺 ,

𝐶 (𝑔, ℎ) ≔ 𝑔ℎ𝑔−1. ♠

Exercise 3.8. Let 𝐺 be a Lie group. Let 𝐻 < 𝐺 be a closed subgroup. Prove that the action of 𝐻

on 𝐺 is free and proper.

Example 3.9. U(1) acts on 𝑆2𝑛+1
via 𝑒𝑖𝛼 · 𝑧 = 𝑒𝑖𝛼𝑧. ♠

Example 3.10. Let 𝜃 ∈ R. R acts on 𝑇 2 = R2/Z2
via 𝐿(𝑡, [𝑥,𝑦]) ≔ [𝑥 + 𝑡, 𝑦 + 𝜃𝑡]. ♠

3.3 The slice theorem

Definition 3.11. Let 𝑋 be a manifold. Let 𝐺 be a Lie group acting on 𝑋 . A quotient of 𝑋 by 𝐺

is a smooth manifold 𝑋/𝐺 together with a smooth 𝐺–invariant map 𝑝 : 𝑋 → 𝑋/𝐺 such that

every 𝐺–invariant map 𝑓 : 𝑋 → 𝑌 uniquely factors though 𝑝 . •

𝑋 𝑌

𝑋/𝐺.

𝑝

𝑓

𝐶∞(𝑋/𝐺, ·) � 𝐶∞(𝑋, ·)𝐺

Which actions admit quotients?

Proposition 3.12. Let 𝑋 be a manifold. Let 𝐺 be a Lie group. If 𝐺 acts freely and properly on 𝑋 ,
then it admits a quotient.

Proof assuming that 𝐺 is compact. Denote by𝑋/𝐺 the topological quotient space and by𝑝 : 𝑋 →
𝑋/𝐺 the projection map. 𝑋/𝐺 is paracompact and Hausdorff, and 𝑝 is open. (Exercise!)

Let 𝑥 ∈ 𝑋 . The map 𝐺 → 𝑋,𝑔 ↦→ 𝑔𝑥 is a proper injective immersion. Therefore, the orbit

𝐺 · 𝑥 ⊂ 𝑋 is a submanifold. Choose a 𝐺–invariant metric 𝑔 on 𝑋 . (This is a red herring. The

proof requires no Riemannian geometry, but it psychologically helpful.) Identify

𝑁𝑥 (𝐺 · 𝑥) � 𝑇𝑥 (𝐺 · 𝑥)⊥ ⊂ 𝑇𝑥𝑋

41



For 𝜀 > 0 set 𝑉𝑥 ≔ 𝐵𝜀 (0) ⊂ 𝑁𝑥 (𝐺 · 𝑥) and define 𝚥𝑥 : 𝐺 ×𝑉𝑥 → 𝑋 by

𝚥𝑥 (𝑔, 𝑣) ≔ 𝑔 exp𝑥 (𝑣) .

Provided 𝜀 ≪ 1, 𝚥 is a 𝐺–equivariant embedding. Set 𝑆𝑥 ≔ 𝚥𝑥 ({1} ×𝑉𝑥 ) and𝑈𝑥 ≔ 𝑝 ( ˜𝑈𝑥 ). The
map 𝑝 |𝑆𝑥 : 𝑆𝑥 → 𝑈𝑥 is a homeomorphism. Define 𝜙𝑥 : 𝑈𝑥 → 𝑉𝑥 by

𝜙𝑥 ≔ pr𝑉𝑥
◦ 𝚥−1

𝑥 ◦
(
𝑝 |𝑆𝑥

)−1

.

The task at hand is to prove that the maps 𝜙𝑥 form a smooth atlas. Let 𝑥,𝑦 ∈ 𝑋 . 𝑈𝑥 ∩𝑈𝑦 ≠ ∅
if and only if (𝐺 · 𝑆𝑥 ) ∩ 𝑆𝑦 ≠ ∅. By construction, (𝑔 · 𝑆𝑥 ) ∩ 𝑆𝑥 = ∅ unless 𝑔 = 1. Therefore,

there is a unique map 𝛾
𝑦
𝑥 : (𝐺 · 𝑆𝑥 ) ∩ 𝑆𝑦 → 𝐺 satisfying 𝛾

𝑦
𝑥 (𝑧) · 𝑧 ∈ 𝑆𝑥 or, equivalently,

pr𝐺 ◦ 𝚥−1

𝑦 (𝛾
𝑦
𝑥 (𝑧) · 𝑧) = 1. By the implicit function theorem, 𝛾

𝑦
𝑥 is smooth. A moment’s thought

shows that the transition map 𝜙𝑥 ◦ 𝜙−1

𝑦 satisfies

𝜙𝑥 ◦ 𝜙−1

𝑦 (𝑧) = pr𝑉𝑥
◦ 𝚥𝑥

(
𝛾
𝑦
𝑥 ( 𝚥−1

𝑦 (1, 𝑧)) · 𝚥−1

𝑦 (1, 𝑧)
)
.

Therefore, it is smooth. This finishes the construction of the smooth atlas on 𝑋/𝐺 .
The universal property is evident from the construction. ■

Remark 3.13. For non-compact 𝐺 one first proves that 𝐺 · 𝑥 is a submanifold and then produces

an 𝑆𝑥 in some (quite arbitrary way). ♣

Definition 3.14. A homogeneous space is a smooth manifold 𝑋 together with a transitive𝐺

action. •

Proposition 3.15. If 𝑋 is a homogeneous space, then the map 𝐺/𝐺𝑥0
→ 𝑋 induced by 𝑔 ↦→ 𝑔 · 𝑥0

is a diffeomorphism. ■

Example 3.16. C𝑃𝑛 � 𝑆2𝑛+1/U(1). ♠

Example 3.17. Gr𝑟 (R𝑛) � 𝑂 (𝑛)/(O(𝑟 ) × O(𝑛 − 𝑟 )). ♠

For future versions: One could do a lengthy discussion of the slice theorem
and its consequences here.

3.4 Lie algebra

Proposition 3.18. Let 𝐺 be a Lie group. Denote by

Lie(𝐺) ≔ Vect(𝐺)𝐿 ≔ {𝜉 ∈ Vect(𝐺) : 𝐿∗𝑔𝜉 = 𝜉 for every 𝑔 ∈ 𝐺}.

the space of left-invariant vector fields on 𝐺 .

(1) Lie(𝐺) ⊂ Vect(𝐺) is a Lie subalgebra.

(2) For 𝑔 ∈ 𝐺 and 𝜉 ∈ Lie(𝐺), 𝑅∗𝑔𝜉 ∈ Lie(𝐺).

Proof. (1) is obvious. (2) holds because 𝑅𝑔 and 𝐿𝑔 commute. ■
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Definition 3.19. Let 𝐺 be a Lie group. The Lie algebra of 𝐺 is the Lie algebra of left-invariant

vector fields:

𝔤 = Lie(𝐺) ≔ Vect(𝐺)𝐿 .
The adjoint representation Ad : 𝐺 → End(Lie(𝐺)) is defined by

Ad(𝑔)𝜉 ≔ 𝑅∗𝑔𝜉 .

The adjoint representation ad : Lie(𝐺) → End(Lie(𝐺)) is defined by

ad(𝜉)𝜂 ≔ [𝜉, 𝜂] .

•

Proposition 3.20. Let 𝐺 be a Lie group.

(1) The evaluation map ev1 : Vect(𝐺)𝐿 → 𝑇1𝐺 is an isomorphism.

(2) For 𝑔 ∈ 𝐺 and 𝜉 ∈ Vect(𝐺)𝐿

Ad(𝑔)𝜉 = ev
−1

1 ◦𝑇1𝐶𝑔 ◦ ev1(𝜉) .

(3) For 𝜉, 𝜂 ∈ Vect(𝐺)𝐿
𝑇1 Ad(ev1(𝜉))𝜂 = [𝜉, 𝜂] .

(4) If 𝜌 : 𝐺 → 𝐻 is a Lie group homomorphism, then Lie(𝜌) : Lie(𝐺) → Lie(𝐻 ) defined by

Lie(𝜌) = ev
−1

1 ◦𝑇1𝜌 ◦ ev1

is a Lie algebra homomorphism.

Proof. A left-invariant vector field 𝑣 satisfies

𝑣𝑔 = 𝑇1𝐿𝑔 (𝑣1) .

Therefore, it is determined by 𝑣1. Conversely, the above formula defines a left-invariant vector

field. This proves (1).

To prove (2), compute

ev1(𝑅∗𝑔𝜉) = 𝑇𝑔𝑅𝑔−1 (𝜉𝑔)
= 𝑇𝑔𝑅𝑔−1𝑇1𝐿𝑔 (𝜉1)
= 𝑇1𝐶𝑔 (𝜉1) .

To prove (3), observe that

flow
𝑡
𝜉
(𝑔) = flow

𝑡
𝜉
(𝐿𝑔 (1))

= 𝐿𝑔 (flow
𝑡
𝜉
(1))

= 𝑅
flow

𝑡
𝜉
(1)𝑔.
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Therefore,

𝑇1 Ad(ev1(𝜉))𝜂 =
d

d𝑡

����
𝑡=0

𝑅∗
flow

𝑡
𝜉
(1) (𝜂)

=
d

d𝑡

����
𝑡=0

(flow
𝑡
𝜉
)∗(𝜂)

= [𝜉, 𝜂] .

To prove (4), observe that by (2)

Ad(𝜌 (𝑔)) ◦ Lie(𝜌) (𝜉) = Lie(𝜌) ◦ Ad(𝑔) (𝜉) .

By (3), this implies that Lie(𝜌) is a Lie algebra homomorphism. ■

The following gadget turns out to be important for us later.

Definition 3.21. Let 𝐺 be a Lie group. The Maurer–Cartan form 𝜇 ∈ Ω1(𝐺, Lie(𝐺)) is defined
by

𝜇𝑔 (𝜉) ≔ ev
−1

1 ◦𝑇𝑔𝐿𝑔−1 (𝜉). •

Proposition 3.22. Let 𝐺 be a Lie group.

(1) The Maurer–Cartan form 𝜇 satisfies 𝜇 (𝜉) = 𝜉 for every 𝜉 ∈ Lie(𝐺).

(2) For every 𝑔 ∈ 𝐺
𝑅∗𝑔𝜇 = Ad(𝑔−1) ◦ 𝜇.

(3) The Maurer–Cartan form 𝜇 satisfies the Maurer–Cartan equation

d𝜇 + 1

2
[𝜇 ∧ 𝜇] = 0

Proof. (1) is obvious.
To prove (2), for 𝑔 ∈ 𝐺 and 𝜉 ∈ Lie(𝐺) compute

(𝑅∗𝑔𝜇) (𝜉) = 𝜇 ((𝑅𝑔)∗𝜉) = (𝑅𝑔−1)∗𝜉 = Ad(𝑔−1)𝜉 .

To prove (3), compute(
d𝜇 + 1

2
[𝜇 ∧ 𝜇]

)
(𝜉, 𝜂) = L𝜉 (𝜇 (𝜂)) −L𝜂 (𝜇 (𝜉)) − 𝜇 ( [𝜉, 𝜂])

+ 1

2

( [𝜇 (𝜉), 𝜇 (𝜂)] − [𝜇 (𝜉), 𝜇 (𝜂)])

= 0. ■

Exercise 3.23. Let 𝜌 : 𝐺 → 𝐻 be a Lie group homomorphism. Prove that

𝜌∗𝜇𝐻 = Lie(𝜌) ◦ 𝜇𝐺 .
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3.5 Exponential map

Definition 3.24. Let 𝐺 be a Lie group. The exponential map exp : Lie(𝐺) → 𝐺 is defined by

exp(𝜉) ≔ flow
1

𝜉
(1). •

Exercise 3.25. (1) Prove that exp is well-defined.

(2) Let 𝜌 : 𝐺 → 𝐻 be a Lie group homomorphism. Prove that

𝜌 ◦ exp(𝜉) = exp ◦ Lie(𝜌) (𝜉) .

(3) Prove that

𝐶𝑔 ◦ exp = exp ◦Ad𝑔 .

Definition 3.26. Let𝑋 be smooth manifold. Let𝐺 be a Lie group. Let 𝐿 : 𝐺×𝑋 → 𝑋 be a smooth

left action. The infinitesimal action of Lie(𝐺) on 𝑋 is the map 𝑣 = 𝑣𝐿 : Lie(𝐺) → Vect(𝑋 )
defined by

𝑣𝜉 (𝑥) ≔
d

d𝑡

����
𝑡=0

𝐿exp(𝑡𝜉 ) (𝑥) .

•
Proposition 3.27. Let𝑋 be smooth manifold. Let𝐺 be a Lie group. Let 𝐿 : 𝐺 ×𝑋 → 𝑋 be a smooth
left action. Denote by 𝑣 : Lie(𝐺) → Vect(𝑋 ) the corresponding infinitesimal action.

(1) For every 𝜉 ∈ Lie(𝐺)
𝐿exp(𝑡𝜉 ) = flow

𝑡
𝑣𝜉
.

(2) For every 𝑔 ∈ 𝐺 and 𝜉 ∈ Lie(𝐺)
𝑣Ad(𝑔)𝜉 = 𝐿

∗
𝑔−1
𝑣𝜉

(3) The infinitesimal action 𝑣 is an Lie algebra anti-isomorphism; that is: for every 𝜉, 𝜂 ∈ Lie(𝐺)
𝑣 [𝜉,𝜂 ] = −[𝑣𝜉 , 𝑣𝜂] .

Remark 3.28. If 𝑅 is a right action and 𝐿 is the corresponding left-action, then 𝑣𝑅 = −𝑣𝐿 . In
particular, 𝑣𝑅 is a Lie algebra homomorphism. ♣

Proof. (1) is obvious.
To prove (2), compute

𝑣Ad(𝑔)𝜉 (𝑥) =
d

d𝑡

����
𝑡=0

𝐿𝑔 exp(𝑡𝜉 )𝑔−1 (𝑥)

= 𝑇𝐿𝑔 (𝑥 )𝐿𝑔

(
d

d𝑡

����
𝑡=0

𝐿exp(𝑡𝜉 )𝐿𝑔−1 (𝑥)
)

= 𝑇𝐿𝑔 (𝑥 )𝐿𝑔
(
𝑣𝜉 (𝐿𝑔−1 (𝑥))

)
= (𝐿∗

𝑔−1
𝑣𝜉 ) (𝑥).

To prove (3), differentiate

𝑣Ad(exp(𝑡𝜉 )𝜂 = 𝐿∗
exp(−𝑡𝜉 ) 𝑣𝜂 =

(
flow

𝑡
𝑣𝜉

)∗
𝑣𝜂 . ■
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3.6 Haar volume form

Proposition 3.29. Let 𝐺 be a Lie group. Set 𝑑 ≔ dim𝐺 . There is a unique left-invariant volume
form up to multiplication by a non-zero constant:

dim Ω𝑑 (𝐺)𝐿 ≔ {𝜈 ∈ Ω𝑑 (𝐺) : 𝐿∗𝑔𝜈 = 𝜈} = 1.

Definition 3.30. Let 𝐺 be a Lie group. A Haar volume form on 𝐺 is a left-invariant volume

form 𝜈 on 𝐺 . 𝜈 is normalised if

´
𝐺
𝜈 = 1. •

Proof of Proposition 3.29. If 𝜈 ∈ Ω𝑑 (𝐺) is left-invariant, then
𝜈𝑔 = 𝜈1 ◦ Λ𝑑𝑇𝑔𝐿𝑔−1 .

Therefore, 𝜈 is uniquely determined by 𝜈1 ∈ Λ𝑑𝑇 ∗1𝐺 . Conversely, every 𝜈1 ∈ Λ𝑑𝑇𝐺1 determines a

left-invariant 𝜈 ∈ Ω𝑑 (𝐺). ■

Exercise 3.31. Let 𝐺 be a Lie group. Let 𝜈 be a Haar volume form on 𝐺 . For every 𝑔 ∈ 𝐺 , 𝑅∗𝑔𝜈 is
a Haar volume form. The modular function of 𝐺 is the function Δ ∈ 𝐶∞(𝐺,R×) defined by

Δ(𝑔) ≔
𝑅∗𝑔𝜈

𝜈
.

(1) Prove that Δ = 1 if and only if 𝐺 admits a right-invariant Haar measure. These groups

are unimodular.

(2) Prove that Δ : 𝐺 → R× is a Lie group homomorphism.

(3) Prove that Δ = 1 if 𝐺 is compact.

(4) Define 𝑖 : 𝐺 → 𝐺 by 𝑖 (𝑔) ≔ 𝑔−1
. Prove that 𝑖∗𝜈 = Δ𝜈 .

(5) Consider the Lie group

𝐺 ≔

{(
𝑥 𝑦

0 1

)
: 𝑥 > 0, 𝑦 ∈ R

}
.

Compute modular function of 𝐺 .

3.7 The Killing form

Definition 3.32. Let 𝔤 be a Lie algebra. The Killing form 𝐵 ∈ 𝑆2𝔤∗ is defined by

𝐵(𝜉, 𝜂) ≔ tr(ad(𝜉) ◦ ad(𝜂)) . •
Exercise 3.33. Prove that

𝐵( [𝜉, 𝜂], 𝜁 ) = 𝐵(𝜂, [𝜉, 𝜁 ]) .
Definition 3.34. A Lie algebra is called semisimple if 𝐵 is negative definite. 𝐺 semisimple if
Lie(𝐺) is semisimple. •
Exercise 3.35. Prove that if 𝔤 = 𝔤𝔩(𝑛), then

𝐵(𝜉, 𝜂) = 2𝑛 tr(𝜉𝜂) − 2 tr(𝜉) tr(𝜂) .
Exercise 3.36. Prove that if 𝔤 = 𝔰𝔲(𝑛), then

𝐵(𝜉, 𝜂) = 2𝑛 tr(𝜉𝜂) .
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3.8 de Rham cohomology of manifolds with 𝐺–actions

Let 𝑋 be a manifold. Let 𝐺 be a Lie group. Let 𝐿 : 𝐺 × 𝑋 → 𝑋 be an action. Such an action can

tremendously simplify the computation of H
•
dR
(𝑋 ). To see this define

Ω•(𝑋 )𝐿 ≔ {𝛼 ∈ Ω•(𝑋 ) : 𝐿∗𝑔𝛼 = 𝛼 for every 𝑔 ∈ 𝐺}.

Exercise 3.37. Prove that dΩ•(𝑋 )𝐿 ⊂ Ω•(𝑋 )𝐿 .

We have an inclusion of cochain complexes 𝑖 : Ω•(𝑋 )𝐿 → Ω•(𝑋 ).

Proposition 3.38. If𝐺 is connected and compact, then 𝑖 induces an isomorphism𝐻 •(𝑖) : H
•(Ω•(𝑋 )𝐿) �

H
•
dR
(𝑋 ).

Proof. Let 𝜈 be a normalized Haar volume form on 𝐺 . Define av : Ω•(𝑋 ) → Ω•(𝑋 )𝐿 by

av(𝛼) ≔
ˆ
𝐺

𝐿∗𝑔𝛼 𝜈 (𝑔)

This is a cochain map and

av ◦ 𝑖 = idΩ• (𝑋 )𝐿 ;

hence, 𝐻 •(av) is a left inverse of 𝐻 •(𝑖).
To show that 𝐻 •(av) also is a right inverse we proceed as follows. Denote by

ˆ
𝐺

: Ω•(𝐺 × 𝑋 ) → Ω•−dim𝐺 (𝑋 )

the fibre integration map defined by the property that(ˆ
𝐺

𝛼

)
𝑥

(𝑣1, . . . , 𝑣𝑘 ) =
ˆ
𝑔∈𝐺

𝛼 (𝑔,𝑥 ) (𝑣1, . . . , 𝑣𝑘 , . . .)

for (𝑣1, . . . , 𝑣𝑘 ) ∈ 𝑇𝑥𝑀 .

Exercise 3.39. Verify that this is a chain map.

We can now write 𝑖 ◦ av as the composition

𝑖 ◦ av = av𝜈 ≔

ˆ
𝐺

◦ (𝜈 ∧ ·) ◦ 𝐿∗.

𝐻 •(𝜈 ∧ ·) depends only on [𝜈]; hence, if 𝜂 ∈ Ωdim𝐺 (𝐺) with
´
𝐺
𝜂 = 1, i.e., [𝜇] = [𝜂], then

𝐻 •(𝑖) ◦ 𝐻 •(av) = 𝐻 •(av𝜂).
Heuristically, if we could take 𝜂 to be a 𝛿 volume form at 1 ∈ 𝐺 , then av𝛿 = idΩ• (𝑋 ) ; and as the

induced map on cohomology does not change when as 𝜂 becomes closer and closer to 𝛿 the proof
is complete. It is not terribly difficult to make the above heuristic rigorous, but we will follow

the standard route and chose 𝜂 supported in neighbourhood 𝑈 of 1 ∈ 𝐺 which is smoothly

contractible.

47



If 𝑗 : 𝑈 × 𝑋 → 𝐺 × 𝑋 , then

av𝜂 =

ˆ
𝑈

◦ (𝜂 ∧ ·) ◦ 𝑗∗ ◦ 𝐿∗.

Since 𝑈 is smoothly contractible, on cohomology 𝑗∗ ◦ 𝜌∗ = (𝜌 ◦ 𝑗)∗ is the same as pulling back

via the projection pr𝑋 : 𝑈 × 𝑋 → 𝑋 . However,

ˆ
𝑈

◦ (𝜂 ∧ ·) ◦ pr
∗
𝑋 = idΩ• (𝑋 ) . ■

Remark 3.40. The advantage of not following the heuristic argument, is that one can (at least in

principle) write down a chain homotopy ℎ such that

𝑖 ◦ av − id = d ◦ ℎ + ℎ ◦ d. ♣

Let us now use Proposition 3.38 to compute the de Rham cohomology in a few simple cases.

Example 3.41. 𝐺 = SO(𝑛 + 1) acts transitively on 𝑆𝑛 . The stabilizer of any 𝑥 ∈ 𝑆𝑛 is SO(𝑇𝑥𝑆𝑛) �
SO(𝑛). A moments thought shows that

Ω•(𝑆𝑛)𝐺 = (Λ∗𝑇𝑥𝑆𝑛)SO(𝑇𝑥𝑆𝑛 )

= (Λ∗(R𝑛)∗)SO(𝑛)

= R · 1 ⊕ R · d𝑥1 ∧ . . . ∧ d𝑥𝑛

= R[0] ⊕ R[𝑛] .

The differential necessarily vanishes (for dimension reasons if 𝑛 > 1); hence, this already is

H
•
dR
(𝑆𝑛). The last step in the above computation is a fact from the representation theory of

SO(𝑛). ♠

Example 3.42. 𝐺 = U(𝑛+1) acts transitively onC𝑃𝑛 with stabiliser of anyC·𝑧 ∈ C𝑃𝑛 isomorphic

to U(𝑧⊥) = U(𝑇𝑧C𝑃𝑛) � U(𝑛). We compute

Ω•(C𝑃𝑛)𝑈 (𝑛+1) ⊗ C = (Λ∗(C𝑛)∗)U(𝑛) .

The latter is generated as a C–algebra by the standard symplectic form

𝜔 :=

𝑛∑︁
𝑖=1

𝑖d𝑧𝑖 ∧ d𝑧𝑖

2

;

that is,

(Λ∗(C𝑛)∗)U(𝑛) = C · 1 ⊕ C · 𝜔 ⊕ · · · ⊕ C · 𝜔𝑛

= C[𝜔]/(𝜔𝑛+1) .

Since this complex is supported in even degrees, the differential vanishes and this already is

𝐻 •
dR
(C𝑃𝑛) ⊗ C. ♠
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Example 3.43. Let 𝐺 be a Lie group. Let 𝔤 ≔ Lie(𝐺). If we consider the 𝐿 action of 𝐺 on itself,

then

Ω•(𝐺)𝐿 = Λ∗𝔤∗ = Hom(Λ∗𝔤,R).

The differential, which is usually denoted by 𝛿 , does not vanish. It can be computed to be

(𝛿𝛼) (𝜉1, . . . , 𝑥𝑘+1) =
𝑘+1∑︁
𝑖=1

(−1)𝑖+1𝜉𝑖 · 𝛼 (𝜉1, . . . , 𝜉𝑖 , . . . , 𝜉𝑘+1)

+
𝑘+1∑︁
𝑖< 𝑗=1

(−1)𝑖+𝑗𝛼 ( [𝜉𝑖 , 𝜉 𝑗 ], 𝜉1, . . . , 𝜉𝑖 , . . . , 𝜉 𝑗 , . . . , 𝜉𝑘+1);

in fact, since the Lie algebra acts trivially on R the first term vanishes. (Hom(Λ∗𝔤,R), 𝛿) is the
Chevalley–Eilenberg cochain complex (although it was discovered decades before Chevalley–

Eilenberg by Cartan). It is defined for every Lie algebra 𝔤. Its cohomology

H
•(𝔤) ≔ H

•(𝐶•(𝔤), 𝛿).

is the Lie algebra cohomology of 𝔤.

If 𝑉 is any representation of 𝔤, then 𝛿 as defined above makes Hom(Λ∗𝔤, 𝑀) into a cochain

complex. H
•(𝔤;𝑉 ) ≔ H

•(Hom(Λ∗𝔤,𝑉 )) is called the Lie algebra cohomology of 𝔤 with co-

efficients in 𝑉 . Proposition 3.38 shows that H
•
dR
(𝐺) = H

•(𝔤;R). The notion of Lie algebra

cohomology goes back to Chevalley and Eilenberg [CE48]. ♠

Remark 3.44. Let 𝜌 : 𝐺 → GL(𝑉 ) be a Lie group representation. Consider the trivial vector

bundle pr𝐺 : 𝑉 = 𝐺 ×𝑉 → 𝐺 . 𝐺 acts on 𝑉 by 𝐿 × 𝜌 . This turns 𝑉 into a 𝐺–equivariant vector

bundle. The formula d∇𝑠 ≔ d𝑠 + (Lie(𝜌) ◦ 𝜇)𝑠 defines a 𝐺–equivariant flat connection on 𝑉 . A

moment’s thought shows that H
•
dR
(𝐺,𝑉 ) = H

•(𝔤,𝑉 ). ♣

Example 3.45. Let 𝐺 be a connected compact Lie group. Let 𝐻 < 𝐺 be a connected closed Lie

subgroup. Set 𝔤 ≔ Lie(𝐺) and 𝔥 ≔ Lie(𝐻 ). Set 𝐶•(𝔤) ≔ Hom(Λ•𝔤,R) and define 𝛿 as above.

Denote by 𝐶•(𝔤, 𝔥) the subcomplex of those 𝛼 ∈ 𝐶•(𝔤) with

𝑖𝜉𝛼 = 0 and 𝑖𝜉𝛿𝛼 = 0 for every 𝜉 ∈ 𝔥.

The relative Lie algebra cohomology of 𝔤 ⊃ 𝔥 is

H
•(𝔤, 𝔥) ≔ H

•(𝐶•(𝔤, 𝔥), 𝛿) .

The adjoint action of the Lie algebra 𝔥 on 𝔤 descends to 𝔤/𝔥. Denote by Hom(Λ•𝔤/𝔥,R)𝔥
the corresponding invariant subspace of Hom(Λ•𝔤/𝔥,R). Hom(Λ•𝔤/𝔥,R)𝔥 can be regarded as

a subspace 𝐶•(𝔤). A moment’s thought identifies it as 𝐶•(𝔤, 𝔥). Moreover, Hom(Λ•𝔤/𝔥,R)𝔥 �
Ω•(𝐺/𝐻 )𝐻 and the differentials 𝛿 and d agree. Therefore,

H
•
dR
(𝐺/𝐻 ) � H

•(𝔤, 𝔥) . ♠

Exercise 3.46. Show that H
1(𝔤,R) = (𝔤/[𝔤, 𝔤])∗.
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Example 3.47. Set ˜𝑅(𝑔, ℎ) ≔ ℎ𝑔−1
. If we consider the action 𝐿 × ˜𝑅 of 𝐺 ×𝐺 on 𝐺 , then

Ω•(𝐺)𝐿× ˜𝑅 = (Λ•𝔤∗)Ad.

Here Ad denotes the coadjoint action. Suppose 𝛼 ∈ Ω𝑘 (𝐺)𝐿×�̃� , that is, 𝛼 is left invariant and

right invariant. Since derivative of the map 𝑖 : 𝐺 → 𝐺,𝑔 ↦→ 𝑔−1
is

d𝑔𝑖 = −d𝐿𝑔−1 ◦ d𝑅𝑔−1,

we have

𝑖∗𝛼 = (−1)𝑘𝛼.

It follows that

d𝛼 = (−1)𝑘d𝑖∗𝛼 = (−1)𝑘𝑖∗d𝛼 = −d𝛼 ;

hence, the differential vanishes on Ω•(𝐺)𝐿×�̃� and

H
•
dR
(𝐺) = (Λ∗𝔤∗)Ad.

The formula

𝛾 (𝜉, 𝜂, 𝜁 ) ≔ 𝐵( [𝜉, 𝜂], 𝜁 )

defines an element 𝛾 ∈ (Λ3𝔤∗)Ad
. If 𝐺 is semisimple, then 𝛾 ≠ 0; hence 𝑏3(𝐺) ⩾ 1. ♠

Example 3.48. Let 𝜌 : 𝐺 → GL(𝑉 ) be a representation. Lie(𝜌) : 𝔤→ 𝔤𝔩(𝑉 ) can be regarded as

an element of 𝜃𝜌 ∈ 𝔤∗ ⊗ 𝔤𝔩(𝑉 ). Evidently, 𝜃𝜌 is invariant under the action induces by Ad and 𝜌

and so is 𝜃∧𝑘𝜌 ∈ Λ𝑘𝔤∗ ⊗ 𝔤𝔩(𝑉 ). Therefore, tr(𝜃∧𝑘𝜌 ) ∈ Λ𝑘𝔤∗. ♠

Remark 3.49. The multiplication map𝑚 : 𝐺 ×𝐺 → 𝐺 induces a map Δ : H
•(𝐺) → H

•(𝐺) ⊗
H
•(𝐺). This turns H

•(𝐺) into a Hopf algebra. ♣

4 Principal bundles

4.1 Definition and examples

Definition 4.1. Let 𝐺 be a Lie group. A 𝐺–principal fibre bundle is a smooth map 𝑝 : 𝑃 → 𝐵

together with a right action 𝑅 : 𝑃 ×𝐺 → 𝑃 such that for every 𝑏 ∈ 𝐵 there are an open subset

𝑏 ∈ 𝑈 ⊂ 𝐵, and a 𝐺–equivariant diffeomorphism 𝜏 : 𝑝−1(𝑈 ) → 𝑈 ×𝐺 such that

pr𝑈 ◦ 𝜏 = 𝑝;

that is: the diagram

𝑝−1(𝑈 ) 𝑈 ×𝐺

𝑈

𝜏

𝑝

pr𝑈

commutes. 𝐺 is the structure group of (𝑝, 𝑅). •
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Remark 4.2. In the situation of Definition 4.1, 𝑝 : 𝑃 → 𝐵 is a quotient 𝑃 → 𝑃/𝐺 , 𝑅 is free,

fibre-preserving, and its restriction to any fibre 𝑝−1(𝑏) is transitive. ♣

Example 4.3. The trivial 𝐺–principal bundle over 𝐵 is pr𝐵 : 𝐵 ×𝐺 → 𝐵 with 𝑅((𝑏,𝑔), ℎ) ≔
(𝑏,𝑔ℎ). ♠

Example 4.4. Let 𝐵 be a smooth manifold. Let 𝑉 → 𝐵 be a vector bundle of rank 𝑟 . Denote by

Fr(𝑉 ) ≔ {(𝑏, 𝜙) : 𝑏 ∈ 𝐵, 𝜙 : R𝑟 → 𝑉𝑏 isomorphism}

the frame bundle of 𝑉 . Denote by 𝑝 : Fr(𝑉 ) → 𝐵 the projection map. GL𝑟 (R) acts on the right

of Fr(𝑉 ) via
𝑅((𝑏, 𝜙), 𝜏) ≔ (𝑏, 𝜙 ◦ 𝜏) .

There is a unique smooth structure on Fr(𝑉 ) such that (𝑝, 𝑅) is a GL𝑟 (R)–principal bundle. ♠

Example 4.5. Let 𝑘, 𝑟 ∈ N with 𝑘 < 𝑟 . The Stiefel manifold St
∗
𝑘
(R𝑟 ) is the submanifold

St
∗
𝑘
(R𝑟 ) ≔ {(𝑣1, . . . , 𝑣𝑘 ) ∈ (R𝑟 )𝑘 : 𝑣1, . . . , 𝑣𝑘 linearly independent}

or, equivalently,

St
∗
𝑘
(R𝑟 ) ≔ {𝐴 ∈ Hom(R𝑘 ,R𝑟 ) : 𝐴 is injective}.

GL𝑘 (R) acts on the right of St
∗
𝑘
(R𝑟 ) via 𝑅(𝐴, 𝜏) ≔ 𝐴 ◦ 𝜏 . The map 𝑝 : St

∗
𝑘
(R𝑟 ) → Gr𝑘 (R𝑟 )

defined by

𝑝 (𝐴) ≔ im𝐴

together with 𝑅 is a GL𝑘 (R)–principal bundle. Of course, St
∗
𝑘
(R𝑟 ) is the frame bundle of the

tautological bundle over Gr𝑘 (R𝑟 ). ♠

Proposition 4.6. Let 𝐺 be a compact Lie group. Let 𝑃 be smooth manifold. If 𝑅 : 𝑃 ×𝐺 → 𝑃 is a
free right action, then 𝑝 : 𝑃 → 𝐵 ≔ 𝑃/𝐺 together with 𝑅 is a 𝐺–principal fibre bundle.

Proof. Exercise. ■

Exercise 4.7. TheHopf bundle𝑝 : 𝑆2𝑛+1 → C𝑃𝑛 togetherwith the right action𝑅 : 𝑆2𝑛+1×U(1) →
𝑆2𝑛+1

defined by 𝑅(𝑧, 𝑒𝑖𝛼 ) ≔ 𝑧𝑒𝑖𝛼 is a U(1)–principal bundle.

Exercise 4.8. Let 𝑛 ∈ N. Sp(1) ≔ {𝑞 ∈ H : |𝑞 | = 1} acts on 𝑆4𝑛+3 ⊂ H𝑛+1 by 𝑅 : 𝑆4𝑛+3×Sp(1) →
𝑆4𝑛+3

with

𝑅+(𝑥, 𝑞) ≔ 𝑞−1𝑥 .

The quotient of 𝑅 is the H𝑃𝑛 , the space of H–left modules 𝐿 ⊂ H𝑛+1 of dimension 1. The

projectionmap𝑞 : 𝑆4𝑛+3 → H𝑃𝑛 together with𝑅 is an Sp(1)–principal bundle—the quaternionic
Hopf bundle.

C

51



Definition 4.9. Let (𝑝 : 𝑃 → 𝐵, 𝑅) and (𝑞 : 𝑄 → 𝐵, 𝑆) be𝐺–principal fibre bundles. Amorphism
(𝑝, 𝑅) → (𝑞, 𝑆) is a 𝐺–equivariant smooth map 𝜙 : 𝑃 → 𝑄 satisfying 𝑞 ◦ 𝜙 = 𝑝 . A gauge
transformation of (𝑝, 𝑅) is an isomorphism (𝑝, 𝑅) → (𝑝, 𝑅). The gauge group of (𝑝, 𝑅) is the
group of all gauge transformations of (𝑝, 𝑅) and denoted by

G(𝑝, 𝑅). •

Exercise 4.10. Prove that every morphism of 𝐺–principal bundles is an isomorphism.

Exercise 4.11. Let (𝑝, 𝑅) be a 𝐺–principal bundle. Prove that (𝑝, 𝑅) is isomorphic to the trivial

𝐺–principal bundle if and only if 𝑝 admits a section.

The gauge group plays a very important role. The following concrete description of the

gauge group is quite useful.

Proposition 4.12. Let (𝑝 : 𝑃 → 𝐵, 𝑅) be 𝐺–principal fibre bundles. Denote by 𝐶∞(𝑃,𝐺)𝐶 the
subspace of 𝑢 ∈ 𝐶∞(𝑃,𝐺) satisfying

𝑅∗𝑔𝑢 = 𝐶𝑔−1𝑢, i.e., 𝑢 (𝑥𝑔) = 𝑔−1𝑢 (𝑥)𝑔

for every 𝑔 ∈ 𝐺

(1) For every 𝑢 ∈ 𝐶∞(𝑃,𝐺)𝐶 the map �̃� ∈ 𝐶∞(𝑃, 𝑃) defined by

�̃� (𝑥) = 𝑥 · 𝑢 (𝑥)

is a gauge transformation.

(2) The map ·̃ : 𝐶∞(𝑃,𝐺)𝐶 → G(𝑝, 𝑅) defined by the above is a bijection; in fact, a group
isomorphism.

Proof. To prove (1), it suffices to verify that �̃� is 𝐺–equivariant:

�̃� (𝑥𝑔) = 𝑥𝑔 · 𝑢 (𝑥𝑔) = 𝑥𝑔 · 𝑔−1𝑢 (𝑥)𝑔 = 𝑥𝑢 (𝑥)𝑔 = �̃� (𝑥)𝑔.

Evidently, the map ·̃ : 𝐶∞(𝑃,𝐺)𝐶 → G(𝑝, 𝑅) is injective. To prove that it is surjective,

observe that if �̃� ∈ G(𝑝, 𝑅) then for every 𝑥 ∈ 𝑃 there is a unique 𝑢 (𝑥) ∈ 𝐺 such that

�̃� (𝑥) = 𝑥 · 𝑢 (𝑥). The map 𝑢 ∈ Map(𝑃,𝐺) thus defined is smooth. The 𝐺–equivariance of �̃�

follows from the 𝐺–equivariance of 𝑢.

It remains to prove that ·̃ is a group homomorphism. To see this observe that

𝑣 (�̃� (𝑥)) = 𝑥 · 𝑢 (𝑥) · 𝑣 (𝑥 · 𝑢 (𝑥)) = 𝑥 · 𝑣 (𝑥) · 𝑢 (𝑥) . ■

Definition 4.13. Denote by 𝛾 · : G(𝑝, 𝑅) → 𝐶∞(𝑃,𝐺)𝐶 , 𝑢 ↦→ 𝛾𝑢 the inverse of ·̃ : 𝐶∞(𝑃,𝐺)𝐶 →
G(𝑝, 𝑅). (This notation is not standard and probably a bad choice. I’m not aware
of any standard notation for this map.) •
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Example 4.14. If 𝐺 is an abelian group, then 𝐶∞(𝑃,𝐺)𝐶 consists precisely of the 𝐺–invariant

maps 𝐶∞(𝑃,𝐺)𝐺 � 𝐶∞(𝐵,𝐺). Therefore,G(𝑝, 𝑅) � 𝐶∞(𝐵,𝐺).
Let 𝐺 be an arbitrary Lie group. Denote by 𝑍 (𝐺) ≔ {𝑔 ∈ 𝐺 : 𝑔ℎ = ℎ𝑔 for every ℎ ∈ 𝐺} the

center of 𝐺 . Evidently,

𝐶∞(𝐵, 𝑍 (𝐺)) � 𝐶∞(𝑃, 𝑍 (𝐺))𝐶 ↩→ G(𝑝, 𝑅). ♠

Example 4.15. Let𝑉 → 𝐵 be a vector bundle of rank 𝑟 . Consider the frame bundle (𝑝 : Fr(𝑉 ) →
𝐵, 𝑅). For every 𝜆 ∈ R∗ the map 𝜀 : Fr(𝑉 ) → Fr(𝑉 ) defined by

𝜀 (𝑏, (𝑣1, . . . , 𝑣𝑟 )) ≔ 𝜀 (𝑏, (𝜆𝑣1, . . . , 𝜆𝑣𝑟 ))

is an example of a gauge transformation. ♠

Example 4.16. For the trivial 𝐺–principal bundle (𝑝 : 𝐵 × 𝐺 → 𝐵, 𝑅) the map 𝐶∞(𝐵,𝐺) →
G(𝑝, 𝑅) defined by𝐶∞(𝐵,𝐺) ∋ 𝛾 ↦→ 𝑢𝛾 defined by 𝑢𝛾 (𝑏,𝑔) ≔ (𝑏,𝛾 (𝑏)𝑔) is a group isomorphism.

(Observe that for general 𝐺–principal bundle the left-multiplication is not available.) ♠

Proposition 4.17. Let 𝑝 : 𝑃 → 𝐵 with 𝑅 be a 𝐺–principal bundle. Let 𝑓 : 𝐴 → 𝐵 be a smooth
map. Denote by 𝑓 ∗𝑝 : 𝑓 ∗𝑃 → 𝐴 the pullback of 𝑝 : 𝑃 → 𝐵. Define 𝑓 ∗𝑅 : 𝑓 ∗𝑃 ×𝐺 → 𝑓 ∗𝑃 by

𝑓 ∗𝑅((𝑎, 𝑝), 𝑔) = (𝑎, 𝑅(𝑝,𝑔)) .

(𝑓 ∗𝑝, 𝑓 ∗𝑅) is a 𝐺–principal fibre bundle.

Definition 4.18. The 𝐺–principal bundle (𝑓 ∗𝑝, 𝑓 ∗𝑅) constructed above is the pullback of (𝑝, 𝑅)
via 𝑓 . •

C

Example 4.19. Let 𝐺 be a Lie group. Here is how to construct a fiber bundle 𝑝 : 𝑋 → 𝐵

with fibres diffeomorphic to 𝐺 but which cannot be turned into a 𝐺–principal fibre bundle.

Let 𝜙 ∈ Diff (𝐺). Denote by 𝑋𝜙 ≔ ( [0, 1] × 𝐺)/∼ with ∼ generated by (1, 𝑥) ∼ (0, 𝜙 (𝑥)) the
mapping torus of 𝜙 . The projection 𝑝 : 𝑋𝜙 → 𝑆1

is a fibre bundle whose fibres are diffeomorphic

to 𝐺 .

The right action of 𝐺 on [0, 1] ×𝐺 descends to 𝑋𝜙 if and only if 𝜙 (𝑔) = ℎ𝑔 for some ℎ ∈ 𝐺 .
Therefore, usually, 𝑝 cannot be turned into a𝐺–principal fibre in the obvious way. In fact, often,

𝑝 cannot be turned into a 𝐺–principal at all. To see this, observe that if there is a 𝑔 ∈ 𝐺 such

that 𝑔 and 𝜙 (𝑔) lie in the same connected component of 𝐺 , then 𝑝 admits a section. Therefore,

𝑝 is isomorphic to pr𝑆1 : 𝑆1 ×𝐺 → 𝑆1
. However, this implies that 𝜙 is isotopic to id𝐺 .

To make this concrete consider the orientation reversing diffeomorphism 𝜙 ∈ Diff (U(1))
defined by 𝜙 (𝑒𝑖𝛼 ) ≔ 𝑒−𝑖𝛼 . The mapping torus 𝑇𝜙 is the Klein bottle; hence, not diffeomorphic

to 𝑆1 × U(1). However, the projection 𝑝 : 𝑇𝜙 → 𝑆1
admits a section 𝑠 (𝑏) ≔ [𝑏, 1]. ♠
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4.2 𝐺–principal connections

Proposition 4.20. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 × 𝐺 → 𝑃) be a 𝐺–principal fibre bundle. The map
𝜅 : 𝑃 × 𝔤→ 𝑉𝑝 defined by

𝜅 (𝑝, 𝜉) ≔ d

d𝑡

����
𝑡=0

𝑅(𝑝, exp(𝑡𝜉)) = 𝑇1𝑅𝑝 ◦ ev1(𝜉) .

is an isomorphism. ■

The isomorphism𝜅 simplifies the theory of connections (or at least it makes it more concrete).

Definition 4.21. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ×𝐺 → 𝑃) be a𝐺–principal fibre bundle. For 𝜉 ∈ 𝔤 define

𝑣𝜉 ∈ Γ(𝑉𝑝) by
𝑣𝜉 (𝑝) ≔ 𝜅 (𝑝, 𝜉) . •

Exercise 4.22. Prove that 𝔤→ Vect(𝑃), 𝜉 ↦→ 𝑣𝜉 is a Lie algebra homomorphism.

Exercise 4.23. Construct a fibre bundle 𝑝 : 𝑋 → 𝐵 whose fibres are diffeomorphic to 𝑆1
but

which cannot be equipped with a 𝑆1
action 𝑅 making (𝑝, 𝑅) into an 𝑆1

–principal bundle.

Definition 4.24. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ×𝐺 → 𝑃) be a 𝐺–principal fibre bundle. A𝐺–principal
connection is an Ehresmann connection 𝐴 : 𝑇𝑃 → 𝑉𝑝 ⊕ 𝑝∗𝑇𝐵 satisfying

𝐴 ◦𝑇𝑅𝑔 = (𝑇𝑅𝑔 ⊕ id𝑝∗𝑇𝐵) ◦𝐴.

The 𝐺–principal connection 1–form of 𝐴 is the 1–form 𝜃𝐴 ∈ Ω1(𝑃, 𝔤) defined by

𝜃𝐴 ≔ pr𝔤 ◦ 𝜅−1 ◦ pr𝑉𝑝
◦𝐴.

The space of connections on (𝑝, 𝑅) is denoted byA(𝑝, 𝑅). •

Proposition 4.25. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ×𝐺 → 𝑃) be a 𝐺–principal fibre bundle.

(1) An Ehresmann connection 𝐴 on 𝑝 is a 𝐺–principal connection if and only if for every 𝑔 ∈ 𝑅

𝑇𝑅𝑔 (𝐻𝐴) = 𝐻𝐴 .

(2) An Ehresmann connection 𝐴 on 𝑝 is a 𝐺–principal connection if and only if the 1–form

𝜃𝐴 ≔ pr𝔤 ◦ 𝜅−1 ◦ pr𝑉𝑝
◦𝐴.

satisfies
𝑅∗𝑔𝜃𝐴 = Ad(𝑔−1) ◦ 𝜃𝐴

for every 𝑔 ∈ 𝐺 . ■

Proposition 4.26. Every 𝐺–principal connection is complete.

Proof. Exercise. ■
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Definition 4.27. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 × 𝐺 → 𝑃) be a 𝐺–principal fibre bundle. Let 𝑉 be

a finite-dimensional vector space. Let 𝜌 : 𝐺 → GL(𝑉 ) be a representation of 𝐺 . 𝐺 acts on

Ω•(𝑃,𝑉 ) via
𝑔 · 𝛼 ≔ 𝜌 (𝑔) ◦ 𝑅∗𝑔𝛼.

Set

Ω•
hor
(𝑃,𝑉 )𝐺 = Ω•

hor
(𝑃,𝑉 )𝜌 ≔ {𝛼 ∈ Ω•

hor
(𝑃,𝑉 ) : 𝑔 · 𝛼 = 𝛼 for every 𝑔 ∈ 𝐺}. •

Remark 4.28. The above construction is particularly important for the adjoint representation

𝜌 : 𝐺 → GL(Lie(𝐺)). ♣

Proposition 4.29. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ×𝐺 → 𝑃) be a 𝐺–principal fibre bundle. A(𝑝, 𝑅) is an
affine space modelled on Ω1

hor
(𝑃, Lie(𝐺))Ad.

Proof. Exercise; cf. Proposition 2.29. ■

Proposition 4.30. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃×𝐺 → 𝑃) be a𝐺–principal fibre bundle. Let𝐴 ∈ A(𝑝, 𝑅).
Denote by 𝜎𝐴 : 𝑇𝑃 → 𝐻𝐴 the projection onto 𝐻𝐴. Let 𝑉 be a finite-dimensional vector space. Let
𝜌 : 𝐺 → GL(𝑉 ) be a representation of 𝐺 . Define d𝐴 : Ω•

hor
(𝑃,𝑉 ) → Ω•+1

hor
(𝑃,𝑉 ) by

(d𝐴𝛼) (𝑣1, . . . , 𝑣𝑘 ) ≔ (d𝛼) (𝜎𝐴 (𝑣1), . . . , 𝜎𝐴 (𝑣𝑘 )) .

(This is essentially the map d
1,0

𝐴
from Proposition 2.74.)

(1) Let 𝛼 ∈ Ω•
hor
(𝑃,𝑉 ). If 𝛼 is 𝐺–invariant, then so is d𝐴𝛼 . Therefore, d𝐴 induces a map

d𝐴 : Ω•
hor
(𝑃,𝑉 )𝜌 → Ω•+1

hor
(𝑃,𝑉 )𝜌 .

(2) The map d𝐴 : Ω•
hor
(𝑃,𝑉 )𝜌 → Ω•+1

hor
(𝑃,𝑉 )𝜌 satisfies

d𝐴𝛼 = d𝛼 + (Lie(𝜌)𝜃𝐴) ∧ 𝛼.

Proof. To prove (1), observe that 𝜎𝐴 ◦𝑇𝑅𝑔 = 𝑇𝑅𝑔 ◦ 𝜎𝐴 and compute

𝜌 (𝑔)𝑅∗𝑔d𝐴𝛼 (𝑣1, . . . , 𝑣𝑘 ) = 𝜌 (𝑔)d𝛼 (𝜎𝐴 ◦𝑇𝑅𝑔 (𝑣1), . . . , 𝜎𝐴 ◦𝑇𝑅𝑔 (𝑣𝑘 ))
= 𝜌 (𝑔)d𝛼 (𝑇𝑅𝑔 ◦ 𝜎𝐴 (𝑣1), . . . ,𝑇𝑅𝑔 ◦ 𝜎𝐴 (𝑣𝑘 ))
= (𝜌 (𝑔)𝑅∗𝑔d𝛼) (𝜎𝐴 (𝑣1), . . . ,𝑇𝑅𝑔 ◦ 𝜎𝐴 (𝑣𝑘 )) .

The assertion follows since

𝑅∗𝑔d𝛼 = d𝑅∗𝑔𝛼 = 𝜌 (𝑔−1)d𝛼.

One can deduce (2) more or less directly from Proposition 2.74 (2) (but we didn’t prove that

in class). Instead let us verify this directly. It suffices to verify the formula on 𝑣0, . . . , 𝑣𝑘 which

are each either vertical or horizontal. If they are all horizontal, then second term on the RHS

vanishes and the formula hold. If at least two are vertical, then both sides vanish. Therefore,
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without loss of generality, 𝑣0 is vertical and 𝑣1, . . . , 𝑣𝑘 are horizontal. Extend the 𝑣 𝑗 to local

𝐺–invariant vector fields with 𝑣0 = 𝑣𝜉 and 𝑣2, . . . , 𝑣𝑘+1 horizontal. In this case,

d𝛼 (𝑣𝜉 , 𝑣1 . . . , 𝑣𝑘 ) = L𝑣𝜉 (𝛼 (𝑣1, . . . , 𝑣𝑘 ))

=
d

d𝑡

����
𝑡=0

(𝑅∗
exp(𝑡𝜉 )𝛼) (𝑣1, . . . , 𝑣𝑘 ))

=
d

d𝑡

����
𝑡=0

𝜌 (exp(−𝑡𝜉)) ◦ 𝛼 (𝑣1, . . . , 𝑣𝑘 ))

= − Lie(𝜌) (𝜉) ◦ 𝛼 (𝑣1, . . . , 𝑣𝑘 )
= −(Lie(𝜌) (𝜃𝐴) ∧ 𝛼) (𝑣𝜉 , 𝑣1, . . . , 𝑣𝑘 ). ■

Remark 4.31. The maps d𝐴 : Ω•
hor
(𝑃,𝑉 )𝜌 → Ω•+1

hor
(𝑃,𝑉 )𝜌 are compatible with the usual opera-

tions on representations, in particular, ⊗ and ⊕. One consequence of this is that Ω•
hor
(𝑃,𝑉 ) is a

(left-)module over Ω•
hor
(𝑃)𝐺 � Ω•(𝐵) and d𝐴 satisfies the corresponding Leibniz rule. ♣

C

Proposition 4.32. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ×𝐺 → 𝑃) be a𝐺–principal fibre bundle. Let𝐴 ∈ A(𝑝, 𝑅).

(1) There is a unique 𝐺–invariant horizontal 2–form 𝐹𝐴 ∈ Ω2

hor
(𝑃, 𝔤)Ad such that for every

𝑣,𝑤 ∈ Γ(𝐻𝐴)
𝐹𝐴 (𝑣,𝑤) = −𝜃𝐴 ( [𝑣,𝑤]) .

𝐹𝐴 is the curvature of 𝐴.

(2) 𝐹𝐴 can be computed as

𝐹𝐴 = d𝜃𝐴 +
1

2

[𝜃𝐴 ∧ 𝜃𝐴]

(3) 𝐹𝐴 satisfies the Bianchi identity
d𝐴𝐹𝐴 = 0.

(4) If 𝜌 : 𝐺 → GL(𝑉 ) is a finite-dimensional representation of 𝐺 , then d𝐴 : Ω•
hor
(𝑃,𝑉 )𝜌 →

Ω•+1
hor
(𝑃,𝑉 )𝜌 satisfies

d𝐴 ◦ d𝐴 = (Lie(𝜌) ◦ 𝐹𝐴) ∧ ·.

Remark 4.33. One sometimes sees the formula 𝐹𝐴 = d𝐴𝜃𝐴. This is correct, but it easily leads

to confusion. The issue is that one is tempted to forget the original definition of d𝐴 and use

Proposition 4.30 (2) instead; however: 𝜃𝐴 is (not at all) horizontal and this formula obviously

does not hold for 𝜃𝐴. ♣

Proof of Proposition 4.32. Define 𝐹𝐴 ≔ d𝜃𝐴 + 1

2
[𝜃𝐴 ∧ 𝜃𝐴] and compute

𝐹𝐴 (𝑣,𝑤) = L𝑣𝜃𝐴 (𝑤) −L𝑤𝜃𝐴 (𝑣) − 𝜃𝐴 ( [𝑣,𝑤]) + [𝜃𝐴 (𝑣), 𝜃𝐴 (𝑤)] .

This matches −𝜃𝐴 (𝑣,𝑤) for 𝑣,𝑤 ∈ Γ(𝐻𝐴).
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If 𝜉 ∈ 𝔤 and𝑤 ∈ Γ(𝐻𝐴) is 𝐺–invariant, then

𝐹𝐴 (𝑣𝜉 ,𝑤) = L𝑤𝜉 − 𝜃𝐴 ( [𝑣𝜉 ,𝑤]) = 0.

The first term vanishes because 𝜉 is constant. The second term vanishes because 𝑤 is 𝐺–

invariant.

For 𝜉, 𝜂 ∈ 𝔤
𝐹𝐴 (𝑣,𝑤) = L𝑣𝜉𝜂 −L𝑣𝜂𝜉 − 𝜃𝐴 ( [𝑣𝜉 , 𝑣𝜂]) + [𝜉, 𝜂] .

The first two term vanish because 𝜉 ,𝜂 are constant. The last two terms cancel because 𝜉 ↦→ 𝑣𝜉 is

a Lie algebra homomorphism. (This is, of course, essentially the proof of the Maurer–Cartan

equation.)

The 𝐺–invariance of 𝐹𝐴 follows from the 𝐺–invariance of 𝜃𝐴. Thus (1) and (2) are proved.

d𝐴𝐹𝐴 = (d + [𝜃𝐴 ∧ ·])(d𝜃𝐴 +
1

2

[𝜃𝐴 ∧ 𝜃𝐴])

=
1

2

( [d𝜃𝐴 ∧ 𝜃𝐴] − [𝜃𝐴 ∧ d𝜃𝐴]) + [𝜃𝐴 ∧ d𝜃𝐴] +
1

2

[𝜃𝐴 ∧ [𝜃𝐴 ∧ 𝜃𝐴]]

= 0

because the first three term cancel and the last term vanishes by the Jacobi identity.

(4) follows by direct computation. ■

C

Proposition 4.34. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ×𝐺 → 𝑃) be a𝐺–principal fibre bundle. Let𝐴 ∈ A(𝑝, 𝑅).
Let 𝛾 : [0, 1] → 𝐵 be a piecewise smooth path. The parallel transport tra

𝐴
𝛾 is 𝐺–equivariant; that

is: for every 𝑥 ∈ 𝑝−1(𝛾 (0)) and 𝑔 ∈ 𝐺

tra
𝐴
𝛾 (𝑥) · 𝑔 = tra

𝐴
𝛾 (𝑥 · 𝑔) .

Proof. This is a consequence of 𝐴 being 𝐺–invariant. ■

Remark 4.35. Let 𝑥0 ∈ 𝑝−1(𝑏0). There is a 𝑔 ∈ 𝐺 such that tra
𝐴
𝛾 (𝑥0) = 𝑥0 · 𝑔. Every element of

𝑝−1(𝑏0) is of the form 𝑥0 · ℎ for some ℎ ∈ 𝐺 . Since tra
𝛾

𝐴
is 𝐺–invariant,

tra
𝐴
𝛾 (𝑥0ℎ) = tra

𝐴
𝛾 (𝑥0)ℎ = 𝑥0 · 𝑔ℎ. ♣

Definition 4.36. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ×𝐺 → 𝑃) be a𝐺–principal fibre bundle. Let𝐴 ∈ A(𝑝, 𝑅).
Let𝑏0 ∈ 𝐵 and 𝑥0 ∈ 𝑝−1(𝑏0). The holonomy group of𝐴 based at 𝑥0 is the subgroupHol𝑥0

(𝐴) < 𝐺
defined by

Hol𝑥0
(𝐴) ≔ {𝑔 ∈ 𝐺 : (★)}

with (★) meaning that there is a piecewise smooth loop 𝛾 : [0, 1] → 𝐵 based at 𝑏0 with

tra
𝐴
𝛾 (𝑥0) = 𝑥0 ·𝑔. The restricted holonomy group of𝐴 based at 𝑥0 is the subgroup Hol

0

𝑥0

(𝐴) < 𝐺
defined by

Hol
0

𝑥0

(𝐴) ≔ {𝑔 ∈ 𝐺 : (†)}
with (†) meaning that there is a null-homotopic piecewise smooth loop 𝛾 : [0, 1] → 𝐵 based at

𝑏0 with tra
𝐴
𝛾 (𝑥0) = 𝑥0 · 𝑔. •
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Proposition 4.37. The holonomy group and the restricted holonomy group are Lie subgroups of 𝐺 .

Proof sketch. Hol
0

𝑥0

(𝐴) is path-connected and therefore a Lie subgroup of 𝐺 . Parallel transport

defines a group homomorphism 𝜋1(𝐵,𝑏0) → Hol𝑥0
(𝐴)/Hol

0

𝑥0

(𝐴). With Γ denoting its image

Hol𝑥0
(𝐴) =

∐
𝛾 ∈Γ

𝑔 · Hol
0

𝑥0

(𝐴).

Use this to construct a smooth structure on Hol𝑥0
(𝐴). ■

Remark 4.38. The above underlines that 𝐺–principal connections are really much simpler

than general Ehresmann connections. The holonomy group of an Ehresmann connection is a

subgroup ofDiff (𝑝−1(𝑏0)), a possibly wild infinite-dimensional beast; while that of a𝐺–principal

connection sits inside a fixed finite dimensional Lie group. ♣
One could discuss the relation between 𝐹𝐴 and Hol here, but it is probably

better to do this later in a section on Ambrose–Singer..

C

Proposition 4.39. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ×𝐺 → 𝑃) be a𝐺–principal fibre bundle. Let𝐴 ∈ A(𝑝, 𝑅).
Let 𝑢 ∈ G(𝑝, 𝑅). There is a unique 𝑢∗𝐴 ∈ A(𝑝, 𝑅) such that

𝜃𝑢∗𝐴 = 𝑢∗𝜃𝐴 .

Moreover, the following hold:

(1) The connection 1–form 𝜃𝑢∗𝐴 can be written as

𝜃𝑢∗𝐴 = Ad(𝛾−1

𝑢 ) ◦ 𝜃𝐴 + 𝛾∗𝑢𝜇

with 𝜇 ∈ Ω1(𝐺, 𝔤) denoting the Maurer–Cartan form.

(2) The horizontal subspaces of 𝐴 and 𝑢∗𝐴 are related by

𝐻𝑢∗𝐴 = 𝑇𝑢−1(𝐻𝐴) .

(3) The pullback via the gauge transformation 𝑢 preserves Ω•(𝑃,𝑉 )𝜌 and

d𝑢∗𝐴 = 𝑢∗ ◦ d𝐴 ◦ (𝑢−1)∗.

(4) The curvatures of 𝐴 and 𝑢∗𝐴 are related by

𝐹𝑢∗𝐴 = Ad(𝛾−1

𝑢 )𝐹𝐴 .

(5) The parallel transports of 𝐴 and 𝑢∗𝐴 are related by

tra
𝑢∗𝐴
𝛾 = 𝑢−1 ◦ tra

𝐴
𝛾 ◦ 𝑢.
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The above defines a right action ofG(𝑝, 𝑅) onA(𝑝, 𝑅).

Proposition 4.39. Since 𝑢 is 𝐺–equivariant, 𝜃𝑢∗𝐴 ≔ 𝑢∗𝜃𝐴 is the connection 1–form of a 𝐺–

principal connection 𝑢∗𝐴. Evidently, 𝐻𝑢∗𝐴 = 𝑇𝑢−1(𝐻𝐴).
Since

d

d𝑡

����
𝑡=0

𝑅𝑔 exp(𝑡𝜉 )𝑥 =
d

d𝑡

����
𝑡=0

𝑅exp(𝑡𝜉 )𝑅𝑔 (𝑥)

= 𝑣𝜉 (𝑅𝑔 (𝑥)),

the derivative of the map 𝑥 ↦→ 𝑅𝛾𝑢 (𝑥 ) (𝑦) is

𝑣𝛾∗𝑢𝜇 (𝑅𝛾𝑢 (𝑥 ) (𝑦)) .

Since 𝑢 (𝑥) = 𝑅𝛾𝑢 (𝑥 ) (𝑥),

𝑇𝑥𝑢 (𝑥) = 𝑇𝑥𝑅𝛾𝑢 (𝑥 ) (𝑥) + 𝑣 (𝛾∗𝑢𝜇 ) (𝑥 ) (𝑅𝛾𝑢 (𝑥 ) (𝑥)) .

Therefore,

𝜃𝑢∗𝐴 = 𝑢∗𝜃𝐴

= Ad(𝛾−1

𝑢 ) ◦ 𝜃𝐴 + 𝛾∗𝑢𝜇. ■

4.3 The tangent group

The following is a preparation for the study of associate fibre bundles, but it is also a interesting

observation by itself.

Proposition 4.40. Let𝐺 be a Lie group with multiplication𝑚 : 𝐺 ×𝐺 → 𝐺 , inversion 𝑖 : 𝐺 → 𝐺 ,
and unit 1. Set 𝔤 ≔ Lie(𝐺).

(1) The tangent bundle𝑇𝐺 together with𝑇𝑚 : 𝑇𝐺×𝑇𝐺 → 𝑇𝐺 ,𝑇𝑖 : 𝑇𝐺 → 𝑇𝐺 , and (1, 0) ∈ 𝑇𝐺
is a Lie group.

(2) Denote by 𝐺 ⋉ 𝔤 = 𝐺 ⋉Ad 𝔤 the Lie group 𝐺 × 𝔤 with group multiplication

(𝑔, 𝜉) (ℎ, 𝜂) ≔ (𝑔ℎ, 𝜉 + Ad(𝑔)𝜂).

The map 𝐺 ⋉ 𝔤→ 𝑇𝐺 defined by

(𝑔, 𝜉) ↦→ (𝑔,𝑇𝑅𝑔 (ev1(𝜉))

is a Lie group isomorphism.

Proof. To prove (1) formulate the group conditions as commutative diagrams and apply the

tangent functor. (2) follows from a computation. ■

Definition 4.41. 𝑇𝐺 is the tangent group associated with 𝐺 . •
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Proposition 4.42. Let 𝐺 be a Lie group. Let 𝑋 be a smooth manifold.

(1) If 𝑅 : 𝑋 ×𝐺 → 𝑋 is a right action, then 𝑇𝑅 : 𝑇𝑋 ×𝑇𝐺 → 𝑇𝐺 is a right action.

(2) With respect to the isomorphism 𝐺 ⋉ 𝔤 � 𝑇𝐺 , 𝑇𝑅 is given by

(𝑥, 𝑣) · (𝑔, 𝜉) = (𝑅𝑔𝑥,𝑇𝑅𝑔 (𝑣 + 𝑣𝜉 (𝑥))).

Proof. To prove (1), Write the condition for 𝑅 to be a right action as a commutative diagram and

apply the tangent functor.

To prove (2) compute. ■

Proposition 4.43. Let 𝐺 be a Lie group. If (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 × 𝐺 → 𝑃) is a 𝐺–principal fibre
bundle, then (𝑇𝑝 : 𝑇𝑃 → 𝑇𝐵,𝑇𝑅 : 𝑇𝑃 ×𝑇𝐺 → 𝑇𝑃) is a 𝑇𝐺–principal fibre bundle.

Proof. Exercise. Hint: apply the tangent functor to the local trivialisations. ■

Remark 4.44. The above exhibits 𝑇𝑝 : 𝑇𝑃 → 𝑇𝐵 as a quotient 𝑇𝑃 → 𝑇𝑃/𝑇𝐺 . For every 𝑏 ∈ 𝐵
and 𝑥 ∈ 𝑝−1(𝑏) the linear map

𝑇𝑥𝑃/𝔤→ 𝑇𝑝−1(𝑏)/𝑇𝐺 → 𝑇𝑏𝐵

is an isomorphism. ♣

4.4 Associated fibre bundles

The following construction gives a way to “replace” the fibres of a principal bundle with a

manifold 𝐹 equipped with a 𝐺–action.

Proposition 4.45. Let 𝐺 be a Lie group. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ×𝐺 → 𝑃) be a 𝐺–principal fibre
bundle. Let 𝐹 be a smooth manifold. Let 𝐿 : 𝐺 × 𝐹 → 𝐹 be a left action. Define a right action
𝑆 : (𝑃 × 𝐹 ) ×𝐺 → 𝑃 × 𝐹 by

𝑆 ((𝑥, 𝑓 ), 𝑔) ≔ (𝑥𝑔,𝑔−1 𝑓 ) .

(1) The action 𝑆 admits a quotient

𝑞 : 𝑃 × 𝐹 → (𝑃 × 𝐹 )/𝐺 ≕ 𝑃 ×𝐿 𝐹 = 𝑃 ×𝐺 𝐹 .

(2) The pair (𝑞 : 𝑃 × 𝐹 → 𝑃 ×𝐿 𝐹, 𝑆) is a 𝐺–principal fibre bundle.

(3) The map 𝑟 : 𝑃 ×𝐺 𝐹 → 𝐵 induced by 𝑝 ◦ pr𝑃 : 𝑃 × 𝐹 → 𝐵 is a fibre bundle. This is the fibre
bundle associated with (𝑝, 𝑅) and 𝐿.

(4) The map 𝜏−1
: 𝑃 × 𝐹 → 𝑝∗(𝑃 ×𝐿 𝐹 ) defined by

𝜏−1(𝑥, 𝑓 ) ≔ (𝑥, [𝑥, 𝑓 ]) .

is an isomorphism 𝜙 : pr𝑃 → 𝑝∗𝑟 from the trivial bundle pr𝑃 to 𝑝∗𝑟 . Denote the inverse of
𝜏−1 by 𝜏 .
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(5) Consider the 𝐺–equivariant maps

𝐶∞(𝑃, 𝐹 )𝐿 ≔ {𝑠 ∈ 𝐶∞(𝑃, 𝐹 ) : 𝑠 (𝑥𝑔) = 𝑔−1𝑠 (𝑥)}

and
Γ(𝑟 ) ≔ {𝑠 ∈ 𝐶∞(𝐵, 𝑃 ×𝐿 𝐹 ) : 𝑟 ◦ 𝑠 = id𝐵}.

If 𝑠 ∈ Γ(𝑟 ), then 𝑠 ≔ pr𝐹 ◦ 𝑝∗𝑠 ∈ 𝐶∞(𝑃, 𝐹 )𝐿 . This defines a bijection

·̂ : Γ(𝑟 ) → 𝐶∞(𝑃, 𝐹 )𝐿 .

Here is a diagram summarising the above

𝑃 × 𝐹 𝑃 ×𝐿 𝐹

𝑃 𝐵.

pr𝑃

𝑞

𝑟

𝑝

Proof. For the trivial𝐺–principal bundle (pr𝐵 : 𝑃 ≔ 𝐵 ×𝐺, 𝑅) the quotient is 𝑟 = (pr𝐵, 𝐿) : 𝐵 ×
𝐺 × 𝐹 → 𝐵 × 𝐹 . (Verify this!)

Denote by 𝑟 : 𝑃 × 𝐹 → (𝑃 × 𝐹 )/𝐺 ≕ 𝑃 ×𝐺 𝐹 the topological quotient. The map 𝑝 ◦ pr𝑃 is

𝐺–invariant and thus descends to a continuous map 𝑞 : 𝑃 ×𝐺 𝐺 → 𝐵. For 𝑏 ∈ 𝐵 let 𝑈𝑏 and

𝜏𝑏 : 𝑝−1(𝑈𝑏) → 𝑈𝑏×𝐺 as in Definition 4.1. For𝑏1, 𝑏2 ∈ 𝐵 there is a smoothmap𝜙
𝑏1

𝑏2

: 𝑈𝑏1
∩𝑈𝑏2

→
𝐺 such that

𝜏𝑏2
◦ 𝜏−1

𝑏1

(𝑏,𝑔) = (𝑏, 𝜙𝑏1

𝑏2

(𝑏) · 𝑔).

By the trivial case 𝑞−1(𝑈𝑏𝑖 ) is canonically homeomorphic to𝑈𝑏𝑖 ×𝑋 and the transition between

these homemorphisms is given by

(𝑏, 𝑓 ) ↦→ (𝑏, 𝜙𝑏1

𝑏2

(𝑏) · 𝑓 ) .

This endows 𝑃 ×𝐺 𝑋 with the structure of a smooth manifold and exhibits 𝑞 : 𝑃 ×𝐺 𝑋 → 𝐵 as a

fibre bundle. This proves (1), (2), and (3).

(4) and (5) are exercises. ■

Example 4.46. Let𝑉 → 𝐵 be a real (complex) vector bundle of rank 𝑟 . Denote by (𝑝 : Fr(𝑉 ) →
𝐵, 𝑅) the frame bundle of 𝑉 → 𝐵. GL𝑟 (R) (GL𝑟 (C)) acts on R𝑃𝑛 (C𝑃𝑛) The associated fibre

bundle Fr(𝑉 ) ×GL𝑟 (R) R𝑃
𝑛
(Fr(𝑉 ) ×GL𝑟 (R) C𝑃

𝑛
) is the projectivisation of 𝑉 and denoted by

P(𝑉 ) → 𝐵. ♠

Example 4.47. Let 𝑛 ∈ Z. The Hirzebruch surface Σ𝑛 is

Σ𝑛 ≔ P(OP1 ⊕ OP1 (𝑛)) . ♠

Proposition 4.48. Assume the situation of Proposition 4.45. Let 𝐴 ∈ A(𝑝, 𝑅).
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(1) The 𝑉𝑟 fits into the following diagram of exact sequences:

(𝑃 × 𝐹 ) × 𝔤 (𝑃 × 𝐹 ) × 𝔤

𝑉𝑝 ×𝑇𝐹 𝑇𝑃 ×𝑇𝐹 𝑝∗𝑇𝐵

𝑞∗𝑉𝑟 𝑞∗𝑇 (𝑃 ×𝐿 𝐹 ) 𝑞∗𝑟 ∗𝑇𝐵.

𝑇𝑞

𝑇 (𝑝◦pr𝑃 )

𝑇𝑞

𝑞∗𝑇𝑟

Here (𝑃 × 𝐹 ) × 𝔤→ 𝑇𝑃 ×𝑇𝐹 is defined by

((𝑥, 𝑓 ), 𝜉) ↦→ d

d𝑡

����
𝑡=0

𝑆 ((𝑥, 𝑓 ), exp(𝑡𝜉)) = (𝑣𝑅
𝜉
(𝑥),−𝑣𝐿

𝜉
(𝑓 )).

(2) There is a unique Ehresmann connection ˜𝐴 on 𝑟 : 𝑃 ×𝐿 𝐹 → 𝐵 such that

𝐻�̃� = 𝑇𝑞(pr
∗
𝑃𝐻𝐴) and 𝑞∗𝜃�̃� = pr

∗
𝑃 (𝜅 ◦ 𝜃𝐴) ⊕ id𝑇𝐹 .

This is the Ehresmann connection induced by 𝐴.

(3) Let 𝑠 ∈ 𝐶∞(𝑃, 𝐹 )𝐿 . The corresponding section 𝑠 ∈ Γ(𝑟 ) is ˜𝐴–horizontal if and only if
𝑇𝑠 |𝑉𝑝×𝑇𝐹 = 0.

(4) The parallel transports of 𝐴 and �̃� are related by

tra
�̃�
𝛾 (𝑞(𝑥, 𝑓 )) = 𝑞(tra𝐴𝛾 (𝑥), 𝑓 ).

(5) The curvatures of 𝐴 and ˜𝐴 are related by

𝐹�̃� (𝑇𝑥𝑞(𝑣),𝑇𝑥𝑞(𝑤)) = 𝑇𝑞(𝜅 ◦ 𝐹𝐴 (𝑣,𝑤) ⊕ 0) = 𝑇𝑞(0 ⊕ 𝑣𝐿
𝐹𝐴 (𝑣,𝑤 ) ).

Proof. (1) is an exercise.

Since 𝐻𝐴 is 𝑅–invariant, pr
∗
𝑃
𝐻𝐴 is 𝑆–invariant. Therefore, it descends to a distribution

𝐻�̃� ⊂ 𝑇 (𝑃 ×𝐿 𝐹 ). Evidently, 𝑇𝑟 : 𝐻�̃� → 𝑟 ∗𝑇𝐵 is an isomorphism. Therefore, 𝐻�̃� defines an

Ehresmann connection
˜𝐴 on 𝑞 : 𝑃 ×𝐿 𝐹 → 𝐵. Similarly, pr

∗
𝑝 (𝜅 ◦𝜃𝐴) ⊕ id𝑇𝐹 is 𝑆–invariant; hence

it descends to 𝜃 ˜𝐴. By construction, ker𝜃�̃� = 𝐻�̃�. This proves (2).

(3) holds by construction. This in turn implies (4).

To prove the fist formula in (5) choose lifts and compute on 𝑃 × 𝐹 . The second formula

follows from (1). ■

Proposition 4.49. Let 𝐺 be a Lie group. Let (𝑝 : 𝑃 → 𝐵, 𝑅 : 𝑃 ×𝐺 → 𝑃) be a 𝐺–principal fibre
bundle. Let 𝜌 : 𝐺 → GL(𝑉 ) be a finite-dimensional representation. 𝑟 : 𝑃 ×𝜌 𝑉 → 𝐵.

(1) There are unique vector space structure on the fibres of 𝑟 such that 𝑟 becomes a vector bundle
and the map 𝜏 : 𝑝∗(𝑃 ×𝜌𝑉 ) → 𝑃 ×𝑉 is an isomorphism of vector bundles. This is the vector
bundle associated with (𝑝, 𝑅) and 𝜌 .
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(2) If 𝛼 ∈ Ω•(𝐵, 𝑃 ×𝜌 𝑉 ), then 𝛼 ≔ pr𝑉𝑝
∗𝛼 ∈ Ω•

hor
(𝑃,𝑉 )𝜌 . This defines a bijection

·̂ : Ω•(𝐵, 𝑃 ×𝜌 𝑉 ) → Ω•
hor
(𝑃,𝑉 )𝜌 .

(3) There is a unique covariant derivative corresponding d𝐴 on 𝑃 ×𝜌 𝑉 such that

Ω•(𝐵, 𝑃 ×𝜌 𝑉 ) Ω•+1(𝐵, 𝑃 ×𝜌 𝑉 )

Ω•
hor
(𝑃,𝑉 )𝜌 Ω•+1

hor
(𝑃,𝑉 )𝜌 .

d𝐴

·̂ ·̂
d𝐴

Moreover, if𝐺 = GL(𝑉 ) and 𝜌 = id, then every covariant derivative on 𝑃 ×𝜌 𝑉 arises from a
unique GL(𝑉 )–principal connection 𝐴.

Proof. It suffices to prove (1) for the trivial bundle pr𝐵 : 𝐵 × 𝐺 → 𝐵. In this case the map

𝑞 : (𝐵 × 𝐺) × 𝑉 → 𝐵 × 𝑉 defined by ((𝑏,𝑔), 𝑣) ↦→ (𝑏, 𝜌 (𝑔)𝑣) is 𝐺–invariant and every 𝐺–

invariant map from (𝐵 ×𝐺) ×𝑉 factors through 𝑞. Therefore, (𝐵 ×𝐺) ×𝜌 𝑉 is (isomorphic) to

𝐵 ×𝑉 .
(2) is an exercise.

The first part of (3) follows from the fact that d𝐴 is compatible with tensor products. It suffices

to verify the second part for the trivial bundle. In this case 𝑃 = 𝐵 × GL(𝑉 ) and the quotient

map 𝑞 : 𝑃 ×𝑉 → 𝑃 ×𝜌 𝑉 = 𝐵 ×𝑉 is 𝑞(𝑏,𝑔, 𝑣) ≔ (𝑏, 𝜌 (𝑔)𝑣). The map 𝑟 : 𝑃 ×𝜌 𝑉 = 𝐵 ×𝑉 → 𝐵 is

𝑟 = pr𝐵 . The product connection gives rise to the covariant derivative d : 𝐶∞(𝐵,𝑉 ) → Ω1(𝐵,𝑉 ).
Any other covariant derivative is of the form d + 𝑎 with 𝑎 ∈ Ω1(𝐵, 𝔤𝔩(𝑉 )). Denote by 𝜃0 the

connection 1–form of the trivial connection. Then 𝜃0 + Ad(pr𝐺 )−1 · 𝑟 ∗𝑎 is a connection 1–form

and induces d + 𝑎. ■

Example 4.50. Let 𝑋 be a smooth manifold of dimension 𝑛. Denote by 𝑝 : Fr(𝑇𝑋 ) → 𝑋 the

frame bundle of𝑇𝑋 . The orientation double cover of 𝑋 is the fibre bundle associated with (𝑝, 𝑅)
and the action of GL𝑛 (𝑅) on {±1} induced by the group homomorphism GL𝑛 (R) → {±1} given
by

𝜙 ↦→ det𝜙

|det𝜙 | . ♠

Example 4.51. Let 𝑠 ⩾ 0 and 𝑛 ∈ N0. A 𝑠–density on R𝑛 is a map 𝜇 : (R𝑛)×𝑛 → R such that for

every 𝐴 ∈ GL𝑛 (R) and 𝑣1, . . . , 𝑣𝑛 ∈ R𝑛

𝜇 (𝜙 (𝑣1), . . . , 𝜙 (𝑣𝑛)) = |det𝜙 |𝜇 (𝑣1, . . . , 𝑣𝑛).

The set of 𝑠–densities is a 1–dimensional vector space: 𝐷𝑠 (R𝑛).
Let 𝑋 be a smooth manifold of dimension 𝑛. Denote by 𝑝 : Fr(𝑇𝑋 ) → 𝑋 the frame bundle

of 𝑇𝑋 . The bundle of 𝑠–densities on 𝑋 is

𝐷𝑠 (𝑇𝑋 ) ≔ Fr(𝑇𝑋 ) ×GL𝑛 (𝑅) 𝐷
𝑠 (R𝑛) .

A density is a 1–density and 𝐷 (𝑇𝑋 ) ≔ 𝐷1(𝑇𝑋 ). ♠
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Exercise 4.52. Let 𝑋 be a closed smooth manifold (possibly not oriented). Construct a linear

map ˆ
𝑋

: 𝐷 (𝑇𝑋 ) → R

(worthy of its notation).

Example 4.53. Let 𝑉 → 𝐵 be a vector bundle rank 𝑟 . Denote the corresponding frame bundle

by Fr(𝑉 ) of isomorphisms 𝜙 : R𝑟 → 𝑉𝑥 . The map ev : Fr(𝑉 ) × R𝑟 → 𝑉 defined by

((𝑥, 𝜙), 𝑣) ≔ (𝑥, 𝜙 (𝑣))

is𝐺–invariant and exhibits 𝑉 as (isomorphic to) Fr(𝑉 ) ×𝜌 R𝑟 with 𝜌 ≔ id : GL𝑟 (R) → GL𝑟 (R).
♠

Remark 4.54. The frame bundle formalism is a convenient way to carry linear algebra construc-

tions over to vector bundles:

(1) Denote by 𝜌∗ : GL𝑟 (R) → GL((R𝑟 )∗) the contragredient representation defined by

𝜌∗(𝑔)𝜆 ≔ 𝜆 ◦ 𝜌 (𝑔−1) .

Fr(𝑉 ) ×𝜌∗ (R𝑟 )∗ � 𝑉 ∗.

(2) Denote by Λ𝑘𝜌 : GL𝑟 𝑟 (R) → GL(Λ𝑘 (R𝑟 )) the representation defined by

(Λ𝑘𝜌) (𝑔)𝛼 ≔ Λ𝑘 (𝜌 (𝑔))𝛼.

Fr(𝑉 ) ×Λ𝑘𝜌 Λ
𝑘R𝑟 � Λ𝑘𝑉 . ♣

4.5 Extension and reduction of the structure group

Proposition 4.55. Let 𝐺,𝐻 be Lie groups. Let 𝜌 : 𝐺 → 𝐻 be a Lie group homomorphism. If
(𝑝 : 𝑃 → 𝐵, 𝑅) is a 𝐺–principal bundle, then (𝑞 : 𝑃 ×𝜌 𝐻, 𝑆) with 𝑆 ( [𝑥, ℎ], 𝑔) ≔ [𝑥, ℎ𝜌 (𝑔)] is a
𝐻–principal bundle. ■

Definition 4.56. 𝑃 ×𝜌 𝐻 is called an extension of 𝑃 . •

This raises the question of when one can undo this construction.

Definition 4.57. Let𝐺 be a Lie group. Let (𝑝 : 𝑃 → 𝐵, 𝑅) be𝐺–principal bundle, Let𝐻 < 𝐺 be an

immersed Lie subgroup. An 𝐻–principal bundle (𝑞 : 𝑄 → 𝐵, 𝑅) together with a 𝐻–equivariant

fibre-preserving smooth map 𝑖 : 𝑄 → 𝑃 is called a reduction of (𝑝, 𝑅). We say that the structure

group of (𝑝, 𝑅) is reducible to 𝐻 . •

Remark 4.58. In the situation of Definition 4.57, the map

𝑄 ×𝐻 𝐺 → 𝑃, [𝑞,𝑔] ↦→ 𝑖 (𝑞)𝑔

is an isomorphism of 𝐺–principal bundles. ♣
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Example 4.59. A trivialization is a reduction to the trivial group. ♠

Example 4.60. Let (𝑉 ,𝑔) be a Euclidean vector bundle over 𝐵. Denote by 𝑝 : Fr(𝑉 ) → 𝐵 and

𝑞 : FrO(𝑉 ) → 𝐵 the frame bundle and the orthogonal frame bundle. The inclusion FrO(𝑉 ) →
Fr(𝑉 ) is a reduction. ♠

Proposition 4.61. Let 𝐺 be a Lie group. Let (𝑝 : 𝑃 → 𝐵, 𝑅) be 𝐺–principal bundle. Let 𝐻 < 𝐺 be
a closed Lie subgroup. The set of isomorphism classes of reductions of (𝑝, 𝑅) to 𝐻 is bijective to the
set of sections of 𝑃 ×𝐺 𝐺/𝐻 .

Proof. A section 𝑠 of 𝑃 ×𝐺 𝐺/𝐻 is equivalent to a 𝐺–equivariant map 𝑠 : 𝑃 → 𝐺/𝐻 . Define

𝑄 ≔ {𝑝 ∈ 𝑃 : 𝑠 (𝑝) = 1𝐻 }.

Since 𝑝 is 𝐺–equivariant, if 𝑝 ∈ 𝑄 and ℎ ∈ 𝐻 , then

𝑠 (𝑝ℎ) = ℎ−1𝑠 (𝑝) = ℎ−11𝐻 = 1𝐻 ;

that is, 𝑝ℎ ∈ 𝑄 ; hence, 𝐻 acts on 𝑄 . Suppose 𝑝, 𝑝𝑔 ∈ 𝑄 . Then

1𝐻 = 𝑠 (𝑝𝑔) = 𝑔−11𝐻.

To see that 𝑄 is a principal 𝐻–bundle, what is left is to provide local trivialisations. For this we

can assume that 𝑃 itself is trivial, i.e., 𝑃 = 𝐵 ×𝐺 . Then clearly 𝑄 = 𝐵𝑥 × 𝐻 .
Now suppose 𝑄 is a reduction of 𝑃 . Then 𝑃 � 𝑄 ×𝐻 𝐺 and 𝑠 : 𝑃 → 𝐺/𝐻 defined by

(𝑞,𝑔) ↦→ 𝑔−1𝐻 is the desired section. ■

Remark 4.62. The proposition also holds (morally) if 𝐻 is just immersed, even-though 𝐺/𝑚𝑖𝑔ℎ𝑡
H not be a smooth manifold. In this case one has to interpret Γ(𝑃 ×𝐺 𝐺/𝐻 ) = 𝐶∞(𝑃,𝐺/𝐻 )𝐺 as

the set of maps Map(𝑃,𝐺/𝐻 )𝐺 which locally can be lifted to smooth maps 𝑃 → 𝐺 . Below we

will use the result in this form.

♣

Example 4.63. Let 𝑉 be a real vector bundle over 𝐵 of rank 𝑛. Denote by Fr(𝑉 ) → 𝐵 its frame

bundle.

(1) A reduction of Fr(𝑉 ) toGL(C𝑛/2) corresponds to a section of Fr(𝑉 )×GL(R𝑛 )GL(R𝑛)/GL(C𝑛/2).
The latter correspond precisely to the almost complex structures on 𝑉 .

(2) A reduction of Fr(𝑉 ) toGL
+(𝑛) corresponds to a section of Fr(𝑉 )×GL(R𝑛 )GL(R𝑛)/GL

+(R𝑛).
The latter correspond precisely to the orientations on 𝑉 .

(3) A reduction of Fr(𝑉 ) to O(𝑛) corresponds to a section of Fr(𝑉 ) ×GL(R𝑛 ) GL(R𝑛)/O(𝑛).
The latter correspond precisely to Euclidean inner products on 𝑉 . ♠

It is a natural question to ask: given a 𝐺–principal bundle, what is the smallest possible

reduction? This question is quite difficult. But if the reduction is required to be compatible with

a connection, it becomes easy.
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Theorem 4.64 (Reduction to the holonomy group). Let (𝑝 : 𝑃 → 𝐵, 𝑅) be a 𝐺–principal bundle.
Let 𝐴 ∈ A(𝑝, 𝑅). Suppose 𝐵 is connected. Let 𝑥 ∈ 𝑃 . Define

𝑃𝐴,𝑥 ≔ {𝑦 ∈ 𝑃 : there is a 𝐴–horizontal path from 𝑥 to 𝑦}.

The following hold:

(1) 𝑃𝐴,𝑥 ⊂ 𝑃 is an immersed submanifold and (𝑞 : 𝑃𝐴,𝑥 → 𝐵, 𝑆) with 𝑞 ≔ 𝑝 |𝑃𝐴,𝑥
and 𝑆 ≔

𝑅 |𝑃𝐴,𝑥×Hol𝑥 (𝐴) a Hol𝑝 (𝐴)–principal bundle.

(2) There is a unique connection ˜𝐴 ∈ A(𝑞, 𝑆) with 𝐻�̃�,𝑦 = 𝐻𝐴,𝑦 for every 𝑦 ∈ 𝑃𝐴,𝑥

(3) 𝑃𝐴,𝑥
·𝑔
−→ 𝑃𝐴,𝑥𝑔 is a isomorphism of principal bundles.

Proof. Set 𝐻 ≔ Hol𝑝 (𝐴). Define a map 𝑠 : 𝑃 → 𝐺/𝐻 as follows. For every 𝑦 ∈ 𝑃 , pick a path

𝛾 : [0, 1] → 𝐵 from 𝑝 (𝑥) to 𝑝 (𝑦). Let 𝛾 : [0, 1] → 𝑃 be a horizontal lift starting at 𝑦. Then there

is a unique 𝑔 ∈ 𝐺 such that 𝑦 = 𝛾 (1) · 𝑔. Define 𝑠 (𝑦) = 𝑔𝐻 . This is a smooth𝐺–equivariant map.

By Proposition 4.61 there is an associated structure reduction to 𝐻 and inspection of the proof

of Proposition 4.61 this reduction is exactly 𝑃𝐴,𝑥 . This proves (1).

Suppose 𝑦 ∈ 𝑃𝐴,𝑥 and 𝑣 ∈ 𝐻𝐴,𝑦 . Let 𝛾 be a horizontal curve starting in 𝑞 with ¤𝛾 (0) = 𝑣 .

We can extend 𝛾 to a horizontal curve passing though 𝑝 for some 𝑡 < 0. This shows that

𝐻𝐴,𝑦 ⊂ 𝑇𝑦𝑃𝐴,𝑥 . Thus 𝐴 induces a connection on 𝑃𝐴,𝑥 .

The last assertion is clear. ■

Remark 4.65. 𝑃𝐴,𝑥 is the minimal reduction of 𝑃 compatible with 𝐴. ♣

Definition 4.66. We say that 𝐴 is irreducible if 𝑃𝐴,𝑝 = 𝑃 . We say that 𝐴 is reducible if it is not
irreducible. •

4.6 Ambrose–Singer Theorem

Definition 4.67. The holonomy Lie algebra 𝔥𝔬𝔩𝑥 (𝐴) based at 𝑥 ∈ 𝑃 is the Lie algebra of the Lie

group Hol𝑥 (𝐴). •

Theorem 4.68 (Ambrose and Singer [AS53]). The holonomy Lie algebra satisfies

𝔥𝔬𝔩𝑥 (𝐴) = ⟨{𝐹𝐴 (𝑢, 𝑣) : 𝑦 ∈ 𝑃𝐴,𝑥 , 𝑢, 𝑣 ∈ 𝑇𝑦𝑃}⟩.

Proof. Without loss of generality Hol𝑝 (𝐴) = 𝐺 and 𝑃𝐴,𝑥 = 𝑃 . Set

𝔣 ≔ ⟨{𝐹𝐴 (𝑢, 𝑣) : 𝑥 ∈ 𝑃,𝑢, 𝑣 ∈ 𝑇𝑦𝑃}⟩

and define 𝐸 ⊂ 𝑇𝑃 by

𝐸𝑦 ≔ 𝐻𝐴,𝑦 ⊕ 𝔣 · 𝑦.

This clearly is a distribution on 𝑇𝑃 . If we can show that 𝐸 = 𝑇𝑃 , we are done.
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Next we show that 𝐸 is involutive. By definition of curvature [𝐻𝐴,𝑦, 𝐻𝐴,𝑦] ⊂ 𝔣 · 𝑦. Because
the distribution 𝐻𝐴 is 𝐺–invariant, [𝐻𝐴,𝑦, 𝔣 · 𝑦] ⊂ 𝐻𝐴,𝑦 . Finally if 𝜉 ∈ 𝔣, then

[𝐹𝐴 (𝑢, 𝑣), 𝜉] =
d

d𝑡

����
𝑡=0

Ad(exp(−𝑡𝜉))𝐹𝑝 (𝑢, 𝑣)

=
d

d𝑡

����
𝑡=0

𝐹𝐴 (d𝑅exp(𝑡𝜉 )𝑢, d𝑅exp(𝑡𝜉 )𝑣) ∈ 𝔣.

Let𝑄 be the maximal connected integral submanifold through 𝑥 . We show that𝑄 = 𝑃 . Since

𝑦 ∈ 𝑄 if and only if there is a path 𝛾 from 𝑥 to 𝑦 with ¤𝛾 ∈ 𝐸, clearly 𝑃𝐴,𝑥 ⊂ 𝑄 . But 𝑃𝐴,𝑦 = 𝑃 .

This proves that 𝐸 = 𝑇𝑃 and consequently 𝔣 = 𝔥𝔬𝔩𝑥 (𝐴). ■

Exercise 4.69. Give an example of a connection with 𝔥𝔬𝔩𝑥 (𝐴) is not spanned by the curvature

at 𝑥 itself.

4.7 The cocycle perspective

Definition 4.70. Let 𝑋 be a topological space. LetU = {𝑈𝑖 : 𝑖 ∈ 𝐼 } be an open cover of 𝑋 . For

𝑘 ∈ N0 set

𝑋𝑘 (U) ≔
∐

𝑖0,...,𝑖𝑘 ∈𝐼
𝑈𝑖0 × · · · ×𝑈𝑖𝑘 .

For 𝑘 ∈ N0 and ℓ ∈ {0, . . . , 𝑘} denote by 𝚥ℓ : 𝑋𝑘+1(U) → 𝑋𝑘 (U) the map induced by the

inclusions 𝑈𝑖0 × · · · × 𝑈𝑖𝑘 ⊂ 𝑈𝑖0 × · · · × 𝑈𝑖ℓ × · · · × 𝑈𝑖𝑘 . Denote by 𝚥 : 𝑋 0(U) → 𝑋 the map

induced by the inclusion𝑈𝑖 ⊂ 𝑋 . •

Let (𝑝 : 𝑃 → 𝐵, 𝑅) be a 𝐺–principal bundle. There is an open coverU = {𝑈𝑖 : 𝑖 ∈ 𝐼 } such
that the pullback of (𝑝, 𝑅) to 𝐵0(U) via 𝚥 is trivial. Since 𝚥 ◦ 𝚥0 = 𝜄 ◦ 𝚥1, there is a canonical
identification

𝚥∗
0
𝚥∗(𝑝, 𝑅) = 𝚥∗

1
𝚥∗(𝑝, 𝑅).

Suppose that𝜏 : 𝜄∗(𝑝, 𝑅) → (pr𝐵0 (U) , 𝑆) is a trivialisation. Then 𝜄∗𝑘𝜏 : 𝜄∗(𝑝, 𝑅) → 𝚥∗
𝑘
(pr𝐵1 (U) , 𝑆) =

(pr𝐵1 (U) ,𝑇 ) are trivialisations. Therefore,

𝜙 ≔ ( 𝚥∗
0
𝜏) ◦ ( 𝚥∗

1
𝜏)−1 ∈ G(pr𝐵1 (U) ,𝑇 ).

A moment’s thought shows that the cocycle condition

𝚥∗
0
𝜙 ◦ 𝚥∗

2
𝜙 = 𝚥∗

1
𝜙

holds.

Given 𝜙 ∈ G(pr𝐵1 (U) ,𝑇 ) satisfying the cocycle condition, define an equivalence relation on

𝐵0(U) ×𝐺 by

(𝑖, 𝑏, 𝑔) ∼ ( 𝑗, 𝑏′, 𝑔′) ⇐⇒ 𝚥 (𝑏) = 𝚥 (𝑏′), 𝑔′ = 𝜙 | (𝑖, 𝑗 )×(𝑈𝑖∩𝑈 𝑗 ) (𝑏)𝑔.

The quotient 𝑃 ≔ (𝐵0(U) ×𝐺)/∼ is a smooth manifold and the total space of a 𝐺–principal

bundle (𝑝 : 𝑃 → 𝐵, 𝑅) with 𝑝 induced by 𝚥 ◦ pr𝐵0 (U) : 𝐵
0(U) ×𝐺 → 𝐵 and 𝑅 induced by the
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right action on 𝐵0(U) ×𝐺 . Evidently, 𝚥∗(𝑝, 𝑅) is has a canonical trivialisation and the above

construction recovers 𝜙 .

The gauge transformation 𝜙 ∈ G(pr𝐵1 (U) ,𝑇 ) determines (𝑝, 𝑅) and the trivialisation 𝜏 up
to isomorphism. We don’t care about 𝜏 . So let’s figure out how to forget it. Suppose that

𝜎 : 𝜄∗(𝑝, 𝑅) → (pr𝐵1 (U) ,𝑇 ) is a further trivialisation and dives rise to𝜓 ∈ G(pr𝐵1 (U) ,𝑇 ). Then

𝛿 ≔ 𝜎 ◦ 𝜏−1 ∈ G(pr𝐵0 (U) , 𝑆)

and, evidently,

𝜓 = ( 𝚥∗
0
𝛿) ◦ 𝜙 ◦ ( 𝚥∗

1
𝛿)−1.

This formula defines an action ofG(pr𝐵0 (U) , 𝑆) onG(pr𝐵1 (U) ,𝑇 ). The above shows that (𝑝, 𝑅),
up to isomorphism, is determined by [𝜙] ∈ G(pr𝐵1 (U) ,𝑇 )/G(pr𝐵0 (U) , 𝑆) satisfying the cocycle

condition.

Definition 4.71. Let 𝐺 be a Lie group. Let 𝐵 be a smooth manifold. LetU = {𝑈𝑖 : 𝑖 ∈ 𝐼 } be an
open cover of 𝐵.

(1) For 𝑖1, . . . , 𝑖𝑘 ∈ 𝐼 set𝑈𝑖1,...,𝑖𝑘 ≔ 𝑈𝑖1 ∩ · · · ∩𝑈𝑖𝑘 . A 𝑘–cochain onU with values in the sheaf

𝐶∞(·,𝐺) is an 𝐼𝑘–tuple 𝜙 = (𝜙𝑖1 · · ·𝑖𝑘 ∈ 𝐶∞(𝑈𝑖1 · · ·𝑖𝑘 ,𝐺) : 𝑖1, . . . , 𝑖𝑘 ∈ 𝐼 ). Denote the set of
𝑘–cochains by ˇ𝐶𝑘 (U,𝐺).

(2) Define 𝜏 :
ˇ𝐶0(U,𝐺) → Bij( ˇ𝐶1(U,𝐺)) by

𝜏 (𝜓 ) (𝜙)𝑖 𝑗 ≔ 𝜓 𝑗𝜙𝑖 𝑗𝜓
−1

𝑖 .

(3) Define 𝛿 : 𝐶1(U,𝐺) → ˇ𝐶2(U,𝐺) by

(𝛿𝜙)𝑖 𝑗𝑘 (𝑏) ≔ 𝜙𝑖𝑘 (𝑏)−1𝜙𝑖 𝑗 (𝑏)𝜙 𝑗𝑘 (𝑏)

for every 𝑏 ∈ 𝑈𝑖 𝑗𝑘 . Set

(4) Set

ˇ𝑍 1(U,𝐺) ≔ ker𝛿.

and

Ȟ
1(U,𝐺) ≔ 𝑍 1(U,𝐺)/𝜏 (𝐶0(U,𝐺)) and Ȟ

1(𝐵,𝐺) ≔ lim←−−
U

Ȟ
1(U,𝐺) .

The latter is the first Čech cohomology of 𝐵 with values in 𝐶∞(·,𝐺). •

Remark 4.72. In practice, passing to the limit can be avoided by working with a cover by

contractible sets. ♣
The above exhibits the set of equivalence classes of 𝐺–principal bundles as Ȟ

1(𝐵,𝐺).
Going back to the previous discussion, let 𝑢 ∈ G(𝑝, 𝑅). The pullback 𝜏∗ 𝚥∗𝑢 is a gauge

transformation of 𝜐 ∈ G(pr𝐵0 (U) , 𝑆) satisfying

𝜙 = ( 𝚥∗
0
𝜐)𝜙 ◦ ( 𝚥∗

1
𝜐)−1
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Therefore,

G(𝑝, 𝑅) � {𝜐 ∈ ˇ𝐶0(U,𝐺) : 𝜏 (𝜐)𝜙 = 𝜙}.

Finally, let us discuss connections from this point of view. Let 𝐴 ∈ A(𝑝, 𝑅). Then �̃� ≔

𝜏∗ 𝚥∗𝐴 ∈ A(pr𝐵0 (U) , 𝑆) is a connection and satisfies

𝚥∗
0

˜𝐴 = 𝜙∗( 𝚥∗
1

˜𝐴).

The latter is also the condition for a connection
˜𝐴 on (pr𝐵0 (U) , 𝑆) to descend to (𝑝, 𝑅)

If
˜𝐴 is regarded as a connection 1–form

(𝜃𝑖) ∈
∐
𝑖∈𝐼

Ω1(𝑈𝑖 , 𝔤)

and 𝜙 as an element

(𝜙𝑖 𝑗 ) ∈
∐
𝑖∈𝐼

𝐶∞(𝑈𝑖 𝑗 ,𝐺),

then the above conditions amounts to

𝜃 𝑗 = Ad(𝜙−1

𝑗𝑖 )𝜃𝑖 + 𝜙∗𝑗𝑖𝜇.

Exercise 4.73. Work out how associated bundles work in the above context.

4.8 Chern–Weil theory

The following notion is very useful to distinguish 𝐺–principal bundles.

Definition 4.74. Let H
•
be a cohomology theory, e.g., H

• = H
•
dR
. A characteristic class is an

assignment of any 𝐺–principal bundle (𝑝 : 𝑃 → 𝐵, 𝑅) to a cohomology class 𝑐 (𝑝, 𝑅) ∈ H
•(𝐵)

such that if 𝑓 : 𝐴→ 𝐵, then 𝑐 (𝑓 ∗(𝑝, 𝑅)) = 𝑓 ∗𝑐 (𝑝, 𝑅). •

Remark 4.75. An excellent reference for the theory of characteristic classes is Milnor and

Stasheff [MS74]. A systematic approach uses the classifying space 𝐵𝐺 . This is a topological
space together with a𝐺–principal bundle (𝑝 : 𝐸𝐺 → 𝐵𝐺, 𝑅) such that up to isomorphism every

𝐺–principal bundle arises as 𝑓 ∗(𝑝, 𝑅) for some 𝑓 : 𝐵 → 𝐵𝐺 . This exhibits a bijection between

the set of isomorphism classes of 𝐺–princpal bundles over 𝐵 and

[𝐵, 𝐵𝐺],

the set of homotopy classes of continuous maps 𝐵 → 𝐵𝐺 . Knowing this a characteristic class

is simply a cohomology class 𝑐 ∈ H
•(𝐵𝐺). For 𝐺 = U(1), 𝐵U(1) = C𝑃∞, 𝐸U(1) = 𝑆∞, and

𝑝 : 𝐸U(1) → 𝐵U(1) is a (version of the) Hopf fibration. Unfortunately, 𝐵𝐺 is not a (finite

dimensional) smooth manifold. 𝐵𝐺 can be approximated by smooth manifolds (or be regarded

as a smooth stack 𝐵𝐺 = [∗/𝐺]). ♣
The above approach still doesn’t give us concrete characteristic classes.
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C

Let 𝑉 be a vector space. A polynomial of degree 𝑘 is a linear map 𝑝 ∈ Hom(𝑆𝑘𝑉 ,R). Here
𝑆𝑘𝑉 denotes the 𝑘–th symmetric product. If 𝑉 = R𝑛 , then

𝑒
𝑘1

1
⊙ · · · ⊙ 𝑒𝑘𝑛𝑛

with

∑
𝑘𝑖 = 𝑘 form a basis of 𝑆𝑘𝑉 . This gives us a polynomial 𝑃 ∈ R[𝑥1, . . . , 𝑥𝑘 ] of degree 𝑘 by

𝑃 ≔
∑︁

𝑘1+...+𝑘𝑛=𝑘
𝑝 (𝑒𝑘1

1
⊙ · · · ⊙ 𝑒𝑘𝑛𝑛 ) · 𝑥

𝑘1

1
· · · 𝑥𝑘𝑛𝑛 .

A formal power series on 𝑉 is an element of

Hom(𝑆•𝑉 ,R) = Hom(
∞⊕
𝑘=0

𝑆𝑘𝑉 ,R) =
∞∏
𝑘=0

Hom(𝑆𝑘𝑉 ,R) .

If 𝑉 = 𝔤 ≔ Lie(𝐺), then 𝐺 acts on Hom(𝑆•𝔤,R) via 𝑔 ↦→ 𝑆• Ad𝑔. Denote the Ad–invariant
polynomials/formal power series by

Hom(𝑆•𝔤,R)Ad.

(This space is very computable using Lie theory, and as we will see concretely later.)

Example 4.76. If 𝔤 = 𝔲(𝑛), then 𝑝 (𝐴) = tr(𝐴), 𝑞(𝐴, 𝐵) = tr(𝐴𝐵), 𝑟 (𝐴, 𝐵,𝐶) = tr(𝐴𝐵𝐶 + 𝐵𝐴𝐶 +
𝐴𝐶𝐵) are Ad–invariant polynomials of degree 1, 2, 3. ♠

Let 𝑠𝑘 ∈ Hom(𝑆𝑘𝔤,R)Ad
. Let (𝑝 : 𝑃 → 𝐵, 𝑅) be a 𝐺–principal bundle. Let 𝐴 ∈ A(𝑝, 𝑅).

Since 𝐹𝐴 ∈ Ω2

hor
(𝑃, 𝔤)Ad

,

𝐹∧𝑘𝐴 ≔ 𝐹𝐴 ∧ . . . ∧ 𝐹𝐴︸          ︷︷          ︸
𝑘 times

∈ Ω2𝑘
hor
(𝑃, 𝑆𝑘𝔤)Ad

and

𝑠𝑘 (𝐹∧𝑘𝐴 ) ∈ Ω
2𝑘
hor
(𝑃)𝐺 .

Since the latter is horizontal and 𝐺–invariant, there is a unique



𝑠𝑘 (𝐹∧𝑘𝐴 ) ∈ Ω
2𝑘 (𝐵) with 𝑝∗ [ 

𝑠𝑘 (𝐹∧𝑘𝐴 )] = 𝑠𝑘 (𝐹
∧𝑘
𝐴 ) .

q− is the inverse of the map −̂ from Proposition 4.49 corresponding to the trivial representation

of 𝐺 on R. Observe that, on Ω•
hor
(𝑃)𝐺 , d𝐴 = d.

Proposition 4.77. Let (𝑝 : 𝑃 → 𝐵, 𝑅) be a 𝐺–principal bundle. Let 𝑠 ∈ Hom(𝑆•𝔤,R). Let
𝐴 ∈ A(𝑝, 𝑅).

(1) The differential form
𝛾𝑝,𝑅;𝐴 (𝑠) ≔ 𝑠 (𝐹∧•

𝐴
) ∈ Ω•(𝐵)

is closed.
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(2) The de Rham cohomology class

𝛾𝑝,𝑅 (𝑠) ≔ [𝛾𝑝,𝑅;𝐴 (𝑠)] ∈ 𝐻 •
dR
(𝐵)

is independent of 𝐴. In fact, for every 𝐴0, 𝐴1 ∈ A(𝑝, 𝑅), there is a transgression form
𝜏 = 𝜏 (𝐴0, 𝐴1) ∈ Ω•−1(𝐵) satisfying

𝛾𝑝,𝑅;𝐴1
(𝑠) = 𝛾𝑝,𝑅;𝐴0

(𝑠) + d𝜏 .

(3) If 𝑓 : 𝐴→ 𝐵 is smooth, then

𝛾𝑓 ∗ (𝑝,𝑅) (𝑠) = 𝑓 ∗𝛾𝑝,𝑅 (𝑠) .

(4) If 𝑠, 𝑡 ∈ Hom(𝑆•𝔤,R), then

𝛾𝑝,𝑅 (𝑠 · 𝑡) = 𝛾𝑝,𝑅 (𝑠) ∪ 𝛾𝑝,𝑅 (𝑡) .

Definition 4.78. The homomorphism of graded algebras 𝛾𝑝,𝑅 : Hom(𝑆•𝔤,R) → H
•
dR
(𝐵) defined

by Proposition 4.77 is called the Chern–Weil homomorphism. •

Proof of Proposition 4.77. Suppose that 𝑠 ∈ Hom(𝑆𝑘𝔤,R). To prove (1), use the Bianchi identity

and to compute

d𝐴𝑠 (𝐹∧𝑘𝐴 ) = 𝑠 (d𝐴 (𝐹
𝑘
𝐴)) = 0.

To prove (2), set

𝑎 ≔ 𝐴1 −𝐴0 ∈ Ω1

hor
(𝑃, 𝔤) and 𝐴𝑡 ≔ 𝐴0 + 𝑡𝑎.

Since

d

d𝑡
𝐹𝐴𝑡

= d𝐴𝑡
𝑎

and using the

𝑠 (𝐹∧𝑘𝐴1

) − 𝑠 (𝐹∧𝑘𝐴0

) =
ˆ

1

0

d

d𝑡
𝑠 (𝐹∧𝑘𝐴𝑡

) d𝑡

= 𝑘

ˆ
1

0

𝑠 (d𝐴𝑡
𝑎 ∧ 𝐹∧𝑘−1

𝐴𝑡
) d𝑡

= d𝜏 (𝐴0, 𝐴1)

with

𝜏 (𝐴0, 𝐴1) ≔ 𝑘

ˆ
1

0

𝑠 (𝑎 ∧ 𝐹∧𝑘−1

𝐴𝑡
) d𝑡 .

Assertions (3) and (4) are obvious. ■

The following theorem asserts that the Chern–Weil homomorphism constructs all charac-

teristic classes (up to torsion).
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Theorem 4.79. Hom(𝑆𝑘𝔤,R)Ad = H
𝑘 (𝐵𝐺,R).

Sadly, the proof is outside of the scope of this course.

C

Let us consider the case 𝐺 = GL𝑛 (C). For convenience of notation we use the obvious

adaptation of the Chern–Weil homomorphism to C (instead of R).

Proposition 4.80. The restriction

resΔ : Hom(𝑆•𝔤𝔩𝑛 (C),C)Ad → C[[𝑥1, . . . , 𝑥𝑛]]𝑆𝑛

to diagonal matrices in 𝔲(𝑛), is an isomorphism.

Proof. Diagonalizable matrices are dense in 𝔤𝔩(C𝑛), Therefore, any 𝑠 ∈ Hom(𝑆•𝔤𝔩𝑛 (C),C)GL𝑛 (R)

is determined by its values on diagonal matrices. The space of diagonal matrices is C𝑛 and the

stabiliser of this subspace is 𝑆𝑛 ⊂ GL(C𝑛). ■

Remark 4.81. This is a special case of Chevalley’s restriction theorem: If𝐺 is a complex connected

semi-simple Lie group, 𝔱 ⊂ 𝔤 is a Cartan subalgebra and𝑊 is the Weyl group, then

res : Hom(𝑆•𝔤,C)Ad → Hom(𝑆•𝔱,C)𝑊

is an isomorphism. ♣
For 𝑋 ∈ 𝔤𝔩𝑛 (C) consider the characteristic polynomial

det

(
1 + 𝜆 𝑖𝑋

2𝜋

)
=

𝑛∑︁
𝑘=0

𝑝𝑘 (𝑋 )𝜆𝑘 .

Clearly, 𝑠𝑘 ∈ Hom(𝑆𝑘𝔤𝔩𝑛 (C),R)Ad
. In terms of Proposition 4.80 we have

resΔ (𝑠𝑘 ) =
(
𝑖

2𝜋

)𝑘 ∑︁
1⩽𝑖1<...<𝑖𝑘⩽𝑛

𝑥𝑖1 · · · 𝑥𝑖𝑘 .

Up to the prefactor these are the elementary symmetric polynomials of degree 𝑘 in 𝑛–variables.

It is not too difficult to see that these generate C[[𝑥1, . . . , 𝑥𝑛]]𝑆𝑛 .

Definition 4.82. The 𝑘–th Chern class of 𝑃 is the characteristic class defined by

𝑐𝑘 (𝑝, 𝑅) ≔ 𝛾𝑝,𝑅 (𝑠𝑘 ) ∈ 𝐻 2𝑘
dR
(𝐵;C)

The total Chern class is

𝑐 (𝑝, 𝑅) ≔
∞∑︁
𝑘=0

𝑐𝑘 (𝑝, 𝑅) .

If 𝐸 is a complex vector bundle of rank 𝑛, we also call the Chern classes of FrGL𝑛 (C) (𝐸) the
Chern classes of 𝐸. •
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Exercise 4.83. Write a explicit formulae for 𝑐0(𝑝, 𝑅), 𝑐1(𝑝, 𝑅) and 𝑐2(𝑝, 𝑅) in terms of a connection

on (𝑝, 𝑅).

Exercise 4.84. Compute 𝑐 (𝑇C𝑃1).

Remark 4.85. The normalization
𝑖

2𝜋
might seem strange at this point. It ensures that 𝑐𝑘 (𝑃) is

integral, i.e.,
𝑐𝑘 (𝑝, 𝑅) ∈ im(H2𝑘 (𝐵;Z) → H

2𝑘 (𝐵;C))

and also is needed to make 𝑐𝑘 agree with other definitions of the Chern class. ♣

Exercise 4.86. Prove that if 𝐸 is a complex rank 𝑟 vector bundles, then 𝑐𝑘 (𝐸) = 0 for 𝑘 > 𝑟 .

Exercise 4.87. Prove that 𝐸1 and 𝐸2 are complex vector bundles, then

𝑐 (𝐸1 ⊕ 𝐸2) = 𝑐 (𝐸1) ∪ 𝑐 (𝐸2) .

For 𝑋 ∈ 𝔤𝔩𝑛 (C) consider

tr exp

(
𝜆
𝑖𝑋

2𝜋

)
=

∞∑︁
𝜆=1

𝑡𝑘 (𝑋 )𝜆𝑘 .

In terms of Proposition 4.80 we have

resΔ (𝑡𝑘 ) =
(
𝑖

2𝜋

)𝑘 𝑛∑︁
𝑖=1

𝑥𝑘𝑖

𝑘!

.

These too, like the 𝑠𝑘 , generate all of Hom(𝑆•𝔤𝔩𝑛 (C),C)Ad
. Expressions of the form

∑𝑛
𝑖=1
𝑥𝑘𝑖 are

called power sums.

Definition 4.88. The 𝑘–th Chern character of 𝑃 is the characteristic class defined by

ch𝑘 (𝑝, 𝑅) ≔ 𝛾𝑝,𝑅 (𝑡𝑘 ) ∈ 𝐻 2𝑘
dR
(𝑀 ;C)

The total Chern character is

ch(𝑃) ≔
∞∑︁
𝑘=0

ch𝑘 (𝑝, 𝑅) .

If 𝐸 is a complex vector bundle, then we also call the Chern characters of FrGL𝑛 (C) (𝐸) the Chern
characters of 𝐸. •

Exercise 4.89. Show that

ch(𝐸1 ⊕ 𝐸2) = ch(𝐸1) + ch(𝐸2)

and

ch(𝐸1 ⊗ 𝐸2) = ch(𝐸1) ∪ ch(𝐸2) .

Since both the 𝑝𝑘 and the 𝑞𝑘 generate C[𝔤]𝐺 , it follows from Proposition 4.80 that the 𝑐𝑘
can be expressed as a function of the 𝑐ℎ𝑘 . The following formulae are used often.
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Proposition 4.90. If 𝐸 is a complex vector bundle, then

ch1(𝐸) = 𝑐1(𝐸),

ch2(𝐸) =
1

2

(𝑐1(𝐸)2 − 2𝑐2(𝐸)) and

ch3(𝐸) =
1

6

(𝑐1(𝐸)3 − 3𝑐1(𝐸)𝑐2(𝐸) + 3𝑐3(𝐸)) .

Proof. The first is obvious since 𝑝1 = 𝑞1. For the second note that

𝑛∑︁
𝑖=1

𝑥2

𝑖 =

(
𝑛∑︁
𝑖=1

𝑥𝑖

)
2

− 2

∑︁
1⩽𝑖< 𝑗⩽𝑛

𝑥𝑖𝑥 𝑗 .

I leave the last identity as an exercise. ■

Remark 4.91. Underlying the above proposition are certain combinatorial identities know as the

Newton identities. ♣

C

Complexification induces an inclusion

𝜄 : GL𝑛 (R) ↩→ GL𝑛 (C)

Therefore, the characteristic classes for GL𝑛 (C) induce characteristic classes for GL𝑛 (R):

Hom(𝑆•𝔤𝔩𝑛 (C),C)Ad
𝜄∗−→ Hom(𝑆•𝔤𝔩𝑛 (R),C)Ad.

Definition 4.92. The 𝑘–th Pontryagin class of a real vector bundle 𝐸 → 𝐵 is

𝑝𝑘 (𝐸) = (−1)𝑘𝑐2𝑘 (𝐸 ⊗R C) ∈ H
4𝑘
dR
(𝐵;C) . •

Exercise 4.93. Show that 𝑐2𝑘+1(𝐸 ⊗R C) = 0.

Exercise 4.94. Suppose 𝐵 is a Riemannian closed 4–manifold. Let 𝐺 be a semi-simple Lie group

and 𝑃 a principal 𝐺–bundle. Then minus the Killing form is a metric on 𝔤𝑃 ≔ 𝑃 ×Ad 𝔤. Show

that there are constants 𝑐1 > 0 and 𝑐2 ∈ R such that for any 𝐴 ∈ A(𝑃)

YM(𝐴) = 𝑐1

ˆ
𝑋

|𝐹𝐴 + ∗𝐹𝐴 |2 + 𝑐2

ˆ
𝑋

𝑝1(𝔤𝑃 ) .

Since the second term on the right-hand side depends only on 𝑃 , this shows, in particular, that

anti-self-dual instantons are absolute minima of YM (and not just critical points).

Finally, let me introduce the Euler class. This requires some linear algebra.
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Proposition 4.95. If 𝑋 ∈ 𝔬(𝑛), then there exists a 𝑔 ∈ SO(𝑛) such that 𝑔𝑋𝑔−1 is block diagonal
with blocks of the form (

0 𝜆𝑖
−𝜆𝑖 0

)
The stabilizer of the space of block diagonal matrices is 𝑆𝑚 .

Remark 4.96. If 𝑋 ∈ 𝔬(2𝑚 + 1), an analogous result holds but one needs to allow for one block

of the form (0). ♣

Definition 4.97. The Pfaffian is a SO(2𝑚)–invariant degree𝑚 polynomial on 𝔬(2𝑚) defined by

Pf (𝐴) =
𝑛∏
𝑖=1

𝜆𝑖 . •

Remark 4.98. It is clear from the definition that Pf (𝐴)2 = det(𝐴); ♣

Exercise 4.99. If 𝑋 ∈ 𝔬(2𝑚) and 𝜔 ≔
∑
𝑖< 𝑗 𝑋𝑖 𝑗𝑒𝑖 ∧ 𝑒 𝑗 , then

Pf (𝑋 ) · 𝑒1 ∧ · · · ∧ 𝑒2𝑛 =
𝜔𝑛

𝑛!

.

Definition 4.100. If (𝑝, 𝑅) is a principal SO(2𝑚)–bundle, then its Euler class is

𝑒 (𝑝, 𝑅) ≔ 𝛾𝑝,𝑅

(
Pf

(2𝜋)𝑛

)
.

Define the Euler class of an oriented (Euclidean) vector bundle of rank 2𝑚 by as the Euler class

of its SO(2𝑚) frame bundle. •

Remark 4.101. Here is a warning: the Pfaffian really is attached to SO(2𝑚) and not GL
+(2𝑚).

Therefore, a GL
+(2𝑚)–principal bundle might very well admit a flat connection, but a reduction

of structure group to SO(2𝑚) does not have a trivial Euler class! ♣

Exercise 4.102. If (𝑝 : 𝑃 → 𝐵, 𝑅) is a U(𝑛)–principal bundle and (𝑞 : 𝑄 ≔ 𝑃 ×U(𝑛) SO(2𝑛), 𝑆) is
its associated SO(2𝑛)–principal bundle, then

𝑒 (𝑞, 𝑆) = 𝑐𝑛 (𝑝, 𝑅) .

Example 4.103. Let (Σ, 𝑔) be an Riemann surface. If (𝑒1, 𝑒2) is a local orthonormal frame and

(𝑒1, 𝑒2) is the dual coframe, then 𝑅𝑔 is of the form

𝑅𝑔 = 𝐾𝑔 ·
(

0 1

−1 0

)
⊗ 𝑒1 ∧ 𝑒2

for some function 𝐾𝑔. A moments thought shows that 𝐾𝑔 does not depend on the choice of local

frame and, hence, defines a function 𝐾𝑔 ∈ 𝐶∞(𝑀). 𝐾𝑔 is called the Gauss curvature of 𝑔. In an

arbitrary basis (𝑒1, 𝑒2) we have

𝐾𝑔 ≔ −
⟨𝑅𝑔 (𝑒1, 𝑒2)𝑒1, 𝑒2⟩
|𝑒1 |2 |𝑒2 |2 − ⟨𝑒1, 𝑒2⟩2

.
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If Σ is oriented, then we can define 𝑒 (𝑇Σ) and the above shows that

𝑒 (𝑇Σ) = 1

2𝜋
[𝐾𝑔 · vol𝑔] . ♠

See my Riemannian geometry notes from last semester for a discussion of the Chern–Gauß–

Bonnet theorem.

4.9 𝐺–structures on smooth manifolds

Definition 4.104. Let 𝜌 : 𝐺 → GL𝑛 (R) be a Lie group homomorphism Let 𝑋 be a smooth

manifold of dimension 𝑛. A𝐺–structure on 𝑋 is a 𝜌 reduction of Fr(𝑇𝑋 ); that is: a𝐺–principal
bundle (𝑝 : 𝑃 → 𝑋, 𝑅) together with an isomorphism

𝑃 ×𝜌 GL𝑛 (R) � Fr(𝑇𝑋 ) .

•

Example 4.105. A GL
+
𝑛 (R)–structure on 𝑋 is equivalent to an orientation of 𝑋 . ♠

Example 4.106. An O(𝑛)–structure on 𝑋 is equivalent to a Riemannian metric on 𝑋 . ♠

Example 4.107. An GL𝑛/2(C)–structure on 𝑋 is equivalent to an almost complex structure. ♠

Example 4.108. An U(𝑛/2)–structure on 𝑋 is equivalent to an almost Hermitian structure. ♠

Example 4.109. For 𝑛 ⩾ 3, 𝜋1(SO(𝑛), 1) � Z/2Z. The universal cover of SO(𝑛) is a Lie group,
Spin(𝑛), and comes with the covering map is a Lie group homomorphism: 𝜌 : Spin(𝑛) → SO(𝑛).
A spin structure on a Riemannian manifold (𝑋,𝑔) is a 𝜌–reduction of FrSO(𝑇𝑋,𝑔). The above
description of Spin(𝑛), unfortunately, is not that useful. Spin(𝑛) has more representations than

SO(𝑛) and to understand those one needs (either) a more concrete description of Spin(𝑛) (or
some knowledge of Lie theory). We will learn more about spin geometry in the context of

Seiberg–Witten theory next semester. ♠

For an affine connection, that is: a covariant derivative ∇ on𝑇𝑋 , there is a notion of torsion

𝑇∇ ∈ Ω2(𝑋,𝑇𝑋 ) defined by

𝑇∇ (𝑣,𝑤) ≔ ∇𝑣𝑤 − ∇𝑤𝑣 − [𝑣,𝑤]

for 𝑣,𝑤 ∈ Vect(𝑋 ). In the context of 𝐺–structures this can be formulated using the solder form.

Definition 4.110. Let (𝑝 : 𝑃 → 𝑋, 𝑅) be a 𝐺–principal bundle. Let 𝜌 : 𝐺 → GL(𝑉 ) be a

finite-dimensional representation. A (𝜌–)solder form 𝜎 on (𝑝, 𝑅) is a horizontal𝐺–equivariant
1–form

𝜎 ∈ Ω1

hor
(𝑃,𝑉 )𝜌

such that the map 𝑇𝑋 → 𝑃 ×𝜌 𝑉 , defined by

(𝑝 (𝑥), 𝑣) ↦→ [𝑥, 𝜎 (𝑣)]

with 𝑣 denoting any lift of 𝑣 , is an isomorphism. •

76



Example 4.111. Let (𝑝 : Fr(𝑇𝑋 ) → 𝑋, 𝑅) be the frame bundle of𝑇𝑋 . The canonical solder form

𝜎 on (𝑝, 𝑅) is defined as follows. For 𝑥 ∈ 𝑋 and 𝜙 : R𝑛 → 𝑇𝑥𝑋 a frame define

𝜎 (𝑥,𝜙 ) (𝑣) ≔ 𝜙−1 ◦𝑇(𝑥,𝜙 )𝑝 (𝑣) .

By restriction this induces a solder form for every 𝐺–structure on 𝑋 . ♠

Remark 4.112. If (𝑝, 𝑅) admits a solder form 𝜎 , then that induces an isomorphism 𝑃 ×𝐺 GL(𝑉 ) �
Fr(𝑇𝑋 ) such that 𝜎 is the restriction of the canonical solder form. Therefore, it is convenient to

regard a 𝐺–structure as a 𝐺–principal bundle (𝑝, 𝑅) together with a solder form. ♣

Proposition 4.113. Let 𝐴 be a GL𝑛 (R)–principal connection on (𝑝 : Fr(𝑇𝑋 ) → 𝑋, 𝑅). Denote by
∇ the corresponding affine connection. Denote by 𝜎 the canonical solder form. The isomorphism
Ω2(𝑋,𝑇𝑋 ) � Ω2

hor
(Fr(𝑇𝑋 ),R𝑛)GL𝑛 (R) maps the torsion 𝑇∇ of ∇ to

d𝐴𝜎 = d𝜎 + [𝜃𝐴 ∧ 𝜎] .

Proof. Let 𝑣,𝑤 ∈ Vect(𝑋 ). Let

𝑣, �̂� ∈ 𝐶∞(Fr(𝑇𝑋 ),R𝑛)GL𝑛 (R)

be the lifts to maps. Denote by 𝑣, �̃� ∈ Vect(𝑃) (arbitrary) lifts to vector fields. The solder form

relates these by

𝜎 (𝑣) = 𝑣 and 𝜎 (�̃�) = �̂� .

According to Proposition 4.49, ∇𝑣,∇𝑤 ∈ Ω1(𝑋,𝑇𝑋 ) lift to

d𝐴𝑣, d𝐴�̂� ∈ Ω1

hor
(Fr(𝑇𝑋 ),R𝑛)GL𝑛 (R) .

Therefore, 𝑇∇ (𝑣,𝑤) lifts to

d𝐴𝑣 (�̃�) − d𝐴�̂� (𝑣) − 𝜎 ( [𝑣, �̃�]) ∈ 𝐶∞(Fr(𝑇𝑋 ),R𝑛)GL𝑛 (R) .

This is precisely (d𝐴𝜎) (𝑣, �̃�). ■

We know that 𝑋 always admits a torsion-free affine connection, even one compatible with

a choice of Riemannian metric, i.e. a O(𝑛)–structure. What about other 𝐺–structures?

Definition 4.114. Let (𝑝, 𝑅) be 𝐺–principal bundle on 𝑋 together with a solder form 𝜎 . Let

𝐴 ∈ A(𝑝, 𝑅). The torsion of 𝐴 is d𝐴𝜎 . If 𝐴
′
is another 𝐺–principal connection, then 𝐴′ = 𝐴 + 𝑎

with 𝑎 ∈ Ω1

hor
(𝑃, 𝔤) and

d𝐴′𝜎 = d𝐴𝜎 + 𝜌 (𝑎) ∧ 𝜎.

The intrinsic torsion of (𝑝, 𝑅;𝜎) is defined by

𝑇 (𝑝, 𝑅;𝜎) ≔ [d𝐴𝜎] ∈ coker

[
𝜌 (−) ∧ 𝜎 : Ω1

hor
(𝑃, 𝔤)Ad → Ω2

hor
(𝑃,𝑉 )𝜌

]
.

If 𝑇 (𝑝, 𝑅;𝜎) = 0, then (𝑝, 𝑅;𝜎) is torsion-free. •
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Obviously:

Proposition 4.115. (𝑝, 𝑅) admits a torsion-free connection if and only if the intrinsic torsion
vanishes. Moreover, in this case, the space of torsion-free connection is an affine space modelled on

ker

[
𝜌 (−) ∧ 𝜎 : Ω1

hor
(𝑃, 𝔤)Ad → Ω2

hor
(𝑃,𝑉 )𝜌

]
.

■

Exercise 4.116. Prove that the map

𝜌 (−) ∧ 𝜎 : Ω1

hor
(𝑃,𝔬(𝑛))Ad → Ω2

hor
(𝑃,R𝑛)O(𝑛)

is an isomorphism. (This algebraic fact implies the fundamental theorem of Riemannian geome-

try: the existence and uniqueness of the Levi–Civita connection.)

Exercise 4.117. Let𝑋 be a smoothmanifold of dimension 2𝑛. Let 𝐼 be an almost complex structure

on 𝑇𝑋 . Prove that the corresponding GL𝑛 (C)–structure has vanishing intrinsic torsion if and

only if the Nijenhuis tensor 𝑁𝐼 vanishes.

5 Aspects of Yang–Mills theory

5.1 The Yang–Mills functional

Let (𝑋,𝑔) be an oriented pseudo-Riemannian manifold. Let 𝐺 be a Lie group. Set 𝔤 ≔ Lie(𝐺)

Definition 5.1. Let (𝑝 : 𝑃 → 𝑋, 𝑅) be a𝐺–principal bundle. The adjoint bundle associated with
(𝑝, 𝑅) is the vector bundle

Ad(𝑃) ≔ 𝑃 ×Ad 𝔤→ 𝑋 . •

Ad(𝑃) plays an important role because

Ω𝑘
hor
(𝑃, 𝔤)Ad � Ω𝑘 (𝑋,Ad(𝑃)) .

Therefore, A(𝑝, 𝑅) can be regarded as an affine spaces modelled on Ω1(𝑋,Ad(𝑃)), and the

curvature 𝐹𝐴 of a connection 𝐴 can and (mostly) will be regarded as an Ad(𝑃)–valued 2–form.

Every Ad–invariant bilinear form 𝐵 ∈ Hom(𝑆2𝔤,R)Ad
induces a bilinear form on Ad(𝑃). If

𝐺 is a matrix group; that is: 𝐺 < GL𝑛 (R), then a natural choice is

𝐵(𝜉, 𝜂) ≔ tr(𝜉𝜂) .

In fact, there always is a canonical choice.

Definition 5.2. The Killing form is the Ad–invariant bilinear form 𝐵 ∈ Hom(𝑆2𝔤,R)Ad
defined

by

𝐵(𝜉, 𝜂) ≔ tr(ad(𝜉) ◦ ad(𝜂)) . •
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Choose a 𝐵 ∈ Hom(𝑆2𝔤,R)Ad
. Define

|𝐹𝐴 |2 ∈ 𝐶∞(𝑋,R)

using 𝐵 and the pseudo-Riemannian metric 𝑔.

Definition 5.3. The Yang–Mills functional YM : A(𝑝, 𝑅) → R is defined by

YM(𝐴) ≔ 1

2

ˆ
𝑋

|𝐹𝐴 |2 vol𝑔 . •

If 𝑢 ∈ G(𝑝, 𝑅), then
YM(𝑢∗𝐴) = YM(𝐴) .

(Prove this!) Therefore, YM descends to a map

YM : A(𝑝, 𝑅)/G(𝑝, 𝑅) → R.

The Yang–Mills functional should be regarded as an energy functional. (At this stage, despite

the notation, |𝐹𝐴 |2 need not be non-negative. This should not deter us.)

Suppose that 𝐵 is non-degenerate. The covariant derivative

d𝐴 : Ω•(𝑋,Ad(𝑃)) → Ω•+1(𝑋,Ad(𝑃))

has a formal adjoint

d
∗
𝐴 : Ω•(𝑋,Ad(𝑃)) → Ω•−1(𝑋,Ad(𝑃))

with respect to 𝐵 and 𝑔.

Proposition 5.4. For 𝐴 ∈ A(𝑝, 𝑅) and 𝑎 ∈ Ω1(𝑋,Ad(𝑃))

d

d𝑡

����
𝑡=0

YM(𝐴 + 𝑡𝑎) =
ˆ
𝑋

⟨d∗𝐴𝐹𝐴, 𝑎⟩ vol𝑔

Proof. This is a consequence of

𝐹𝐴+𝑡𝑎 = 𝐹𝐴 + 𝑡d𝐴𝑎 +
1

2

𝑡2 [𝑎 ∧ 𝑎] .

Indeed,

YM(𝐴 + 𝑡𝑎) = 1

2

ˆ
𝑋

|𝐹𝐴 + 𝑡d𝐴𝑎 |2 vol𝑔 +𝑂 (𝑡2)

= YM(𝐴) + 𝑡
ˆ
𝑋

⟨𝐹𝐴, d𝐴𝑎⟩ vol𝑔 +𝑂 (𝑡2)

= YM(𝐴) + 𝑡
ˆ
𝑋

⟨d∗𝐴𝐹𝐴, 𝑎⟩ vol𝑔 +𝑂 (𝑡2) . ■

Definition 5.5. The Yang–Mills equation is

d
∗
𝐴𝐹𝐴 = 0. •
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Remark 5.6. The Yang–Mills equation should be understood as a second order equation on the

connection 𝐴. ♣
The Yang–Mills equation stands at the interface of physics and geometry, similar to (the

vacuum) Einstein equations. Mysteriously, its study has had remarkable impact on mathematics:

ranging across representation theory, algebraic geometry, partial differential equations, and

topology.

5.2 Maxwell’s equations

Maxwell’s equations (without charges and currents) governing electro-magnetism are an in-

stance of the Yang–Mills equation. In Maxwell’s theory, there are two fields: the electric field

𝐸 = (𝐸1, 𝐸2, 𝐸3) and the magnetic field 𝐵 = (𝐵1, 𝐵2, 𝐵3) satisfying

∇ · 𝐵 = 0, ∇ × 𝐸 + 𝜕𝑡𝐵 = 0, ∇ · 𝐸 = 0, and ∇ × 𝐵 − 𝜕𝑡𝐸 = 0.

In the presence of charges and currents, the last two equations are modified. The first two

equations imply that there are 𝜙 , the electric potential, andA = (𝐴1, 𝐴2, 𝐴3), the vector potential,
such that

𝐸 = ∇𝜙 − 𝜕𝑡A and 𝐵 = ∇ × A.
Of course, A and 𝜙 are not uniquely determined by 𝐸 and 𝐵.

It is convenient to package A and 𝜙 together as

𝐴 ≔ 𝑖

3∑︁
𝑎=1

𝐴𝑎d𝑥𝑎 + 𝜙d𝑡 ∈ Ω1(R4, 𝔲(1)) .

This can be regarded as a U(1)–principal connection on the trivial U(1)–principal bundle over
R4

. Its curvature is

𝐹𝐴 = d𝐴 =
𝑖

2

3∑︁
𝑎,𝑏=1

(𝜕𝑎𝐴𝑏 − 𝜕𝑏𝐴𝑎︸         ︷︷         ︸
𝐵𝑐

) d𝑥𝑎 ∧ d𝑥𝑏 + 𝑖
3∑︁
𝑎=1

(𝜕𝑎𝜙 − 𝜕𝑡𝐴𝑎︸       ︷︷       ︸
𝐸𝑎

) d𝑥𝑎 ∧ d𝑡 .

The Bianchi equation d𝐴𝐹𝐴 = 0 encodes precisely the first two of Maxwell’s equations. The

ambiguity in choosing A and 𝜙 corresponds the possibly gauge transformations 𝑢∗𝐴 of 𝐴 which

(because U(1) is abelian) have the same curvature 𝐹𝑢∗𝐴 = 𝐹𝐴.

To obtain the last two of Maxwell’s equations, equip R4
with the Minkowski metric

𝑔 = d𝑥1 ⊙ d𝑥1 + d𝑥2 ⊙ d𝑥2 + d𝑥3 ⊙ d𝑥3 − d𝑡 ⊙ d𝑡 .

Denote by 𝜀𝑎𝑏𝑐 the Levi–Civita symbol. A brief computation reveals that

d
∗
𝐴𝐹𝐴 = 𝑖 (𝜕2𝐵3 − 𝜕3𝐵2 − 𝜕𝑡𝐸1)d𝑥1 + 𝑖 (𝜕3𝐵1 − 𝜕1𝐵3 − 𝜕𝑡𝐸2)d𝑥2

+ 𝑖 (𝜕1𝐵2 − 𝜕2𝐵1 − 𝜕𝑡𝐸3)d𝑥3 − 𝑖
3∑︁
𝑎=1

𝜕𝑎𝐸𝑎 d𝑡 .

Therefore, d
∗
𝐴
𝐹𝐴 = 0 is equivalent to the last two of Maxwell’s equations.
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5.3 Anti-self-duality

Let (𝑋,𝑔) be an oriented Riemannian manifold. Let 𝐵 be an Euclidean inner product on 𝔤.

Flat connections trivially satisfy the Yang–Mills equation. Indeed, they are absolute minima

of the Yang–Mills functional. Moreover, the condition to be flat is a first order equation on the

metric, while the Yang–Mills equation is a second order equation. Chern–Weil theory gives rise

to numerous obstructions for 𝐺–principal bundles to admit flat connections.

Suppose that

dim𝑋 = 4.

The miracle of anti-self-duality appears:

∗ : Ω2(𝑋 ) → Ω2(𝑋 ) and ∗ ∗ = id.

Therefore, ∗ has two eigenvalues +1 and −1. By the Bianchi identity,

∗𝐹𝐴 = ±𝐹𝐴 =⇒ d
∗
𝐴𝐹𝐴 = 0.

Definition 5.7. A connection 𝐴 ∈ A(𝑝, 𝑅) is anti-self-dual (ASD) if

∗𝐹𝐴 = −𝐹𝐴 . •

Remark 5.8. Initially, whether one studies the anti-self-duality equation ∗𝐹𝐴 = −𝐹𝐴 or the

(possibly more natural seeming) self-duality equation ∗𝐹𝐴 = 𝐹𝐴 seems to not matter. After all,

one is free to flip the orientation on 𝑋 and that exchanges these notions. It turns out, however,

that for Kähler 4–manifolds, the complex structure selects a preferred orientation and for that

orientation the anti-self-duality equation interacts well with the theory of holomorphic vector

bundles. ♣
Remark 5.9. There are versions of anti-self-duality in higher dimension, but these all require𝑋 to

have special geometry; e.g., it must be Kähler manifold, a 𝐺2–manifold, or a Spin(7)–manifold,

etc. ♣

Example 5.10. Flat connections are ASD. ♠

Example 5.11. If 𝐺 = U(1), then 𝐹𝐴 ∈ Ω2(𝑋, 𝑖R). By the Bianchi identity, d𝐹𝐴 = d𝐴𝐹𝐴 = 0.

Therefore [𝐹𝐴] ∈ H
2

dR
(𝑋, 𝑖R). If [Ω] ∈ im(H2(𝑋,Z) → H

2

dR
(𝑋,R)), then there always is a U(1)–

principal bundle with a connection 𝐴 such that 𝐹𝐴 = −2𝜋𝑖Ω. Therefore, U(1) ASD connections

(up to gauge transformations) are essentially classified by the anti-self-dual harmonic 2–forms

in im(H2(𝑋,Z) → H
2

dR
(𝑋,R) �H2(𝑋,𝑔)) ♠

Proposition 5.12. Suppose that𝐺 is semi-simple and −𝐵 is the Killing form. For every𝐴 ∈ A(𝑝, 𝑅)

YM(𝐴) = ∓4𝜋2

ˆ
𝑋

𝑝1(Ad(𝑃)) + 1

4

ˆ
𝑋

|𝐹𝐴 ± ∗𝐹𝐴 |2 vol𝑔

In particular, (anti-)self-dual connections are absolute minima of the Yang–Mills functional.
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Proof. By definition,

𝑝1(Ad(𝑃)) = −𝑐2(Ad(𝑃) ⊗ C).

Since

𝑐2 = −ch2 +
1

2

ch
2

1
, ch𝑘 (Ad(𝑃) ⊗ C) =

[
tr

1

𝑘!

(
𝑖

2𝜋
ad ◦𝐹𝐴

)∧𝑘 ]
,

and tr vanishes on 𝔬(𝑛),

𝑝1(Ad(𝑃)) = − 1

8𝜋2
[tr(ad ◦𝐹𝐴 ∧ ad ◦𝐹𝐴)]

=
1

8𝜋2
⟨𝐹𝐴 ∧ 𝐹𝐴⟩.

Therefore,

1

4

ˆ
𝑋

|𝐹𝐴 ± ∗𝐹𝐴 |2 vol𝑔 =
1

4

ˆ
𝑋

⟨(𝐹𝐴 ± ∗𝐹𝐴) ∧ (∗𝐹𝐴 ± 𝐹𝐴)⟩

=
1

2

ˆ
𝑋

|𝐹𝐴 |2 ±
1

2

⟨𝐹𝐴 ∧ 𝐹𝐴⟩

= YM(𝐴) ± 4𝜋2𝑝1(Ad(𝑃)) . ■

Remark 5.13. In dimension 4, YM depends on the conformal class of𝑔 only; that is: 𝑌𝑀 computed

with respect to 𝑔 is identical to YM computed with respect to 𝑒2𝑓 𝑔. Moreover, ∗ : Λ2𝑇 ∗𝑋 →
Λ2𝑇 ∗𝑋 also depends only on the conformal class of 𝑔. Even more is true: ∗ determines the

conformal structure. More precisely: the wedge product defines an symmetric bilinear form of

signature (3, 3) on Λ2(R4)∗. If Λ+ ⊂ Λ2(R4)∗ is a maximal positive definite subspace, then there

is a unique conformal class [𝑔] such that Λ+ is the +1–eigenspace of ∗ : Λ2(R4)∗ → Λ2(R4)∗. ♣

5.4 The BPST instanton

The BPST instanton is an important example of an anti-self-dual connection on the trivial SU(2)–
principal bundle over R4

discovered by Belavin, Polyakov, Schwartz, and Tyupkin [BPST75].

Much of the following discussion stems from Atiyah’s wonderful book [Ati79].

To understand Belavin, Polyakov, Schwartz, and Tyupkin [BPST75]’s construction it is

useful to use the quaternions H = R⟨1, 𝑖, 𝑗, 𝑘⟩. Denote by 𝑞 ∈ 𝐶∞(H,H) the identity map and

define 𝑞0, 𝑞1, 𝑞2, 𝑞3 ∈ 𝐶∞(H) by

𝑞 ≕ 𝑞0 + 𝑞1𝑖 + 𝑞2 𝑗 + 𝑞3𝑘.

Denote by 𝑞 the conjugate; that is:

𝑞 = 𝑞0 − 𝑞1𝑖 − 𝑞2 𝑗 − 𝑞3𝑘.

Define

− ∧ − : Ω•(𝑋,H) ⊗ Ω•(𝑋,H) → Ω•(𝑋,H)
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as the composition of the − ∧ − : Ω•(𝑋,H) ⊗ Ω•(𝑋,H) → Ω•(𝑋,H) ⊗ Ω•(𝑋,H ⊗ H) and
multiplication H ⊗ H → H. Since H is not commutative, − ∧ − is not graded commutative.

Indeed,

d𝑞 ∧ d𝑞 = −2(d𝑞0 ∧ d𝑞1 + d𝑞2 ∧ d𝑞3) ⊗ 𝑖
− 2(d𝑞0 ∧ d𝑞2 + d𝑞3 ∧ d𝑞1) ⊗ 𝑗
− 2(d𝑞0 ∧ d𝑞3 + d𝑞1 ∧ d𝑞2) ⊗ 𝑘

but

d𝑞 ∧ d𝑞 = 2(d𝑞0 ∧ d𝑞1 − d𝑞2 ∧ d𝑞3) ⊗ 𝑖
+ 2(d𝑞0 ∧ d𝑞2 − d𝑞3 ∧ d𝑞1) ⊗ 𝑗
+ 2(d𝑞0 ∧ d𝑞3 − d𝑞1 ∧ d𝑞2) ⊗ 𝑘.

Observe that the coefficients of d𝑞 ∧ d𝑞 are a basis of Λ+H∗ and the coefficients of d𝑞 ∧ d𝑞 span

Λ−H∗.
The Lie group Sp(1) ≔ {𝑞 ∈ H : 𝑞𝑞 = 1} is isomorphic to SU(2) (H = C ⊕ C 𝑗 ). Observe that

𝔰𝔭(1) ≔ Lie(Sp(1)) = ImH.

Therefore, a Sp(1)–connection on the trivial Sp(1)–bundle over H can be regarded as a 1–form

𝐴 ∈ Ω1(H, ImH). Sp(1) acts on H by

𝑅(𝑔)𝑥 ≔ 𝑥𝑔∗

and on ImH by

Ad(𝑔)𝜉 = 𝑔𝜉𝑔∗.

If 𝐴 is required to satisfy the invariance condition

[𝑅(𝑞)]∗𝐴 = Ad(𝑞)𝐴,

then it must be of the form

𝐴 = 2𝑓 ( |𝑞 |2) Im(𝑞d𝑞) = 𝑓 ( |𝑞 |2) (𝑞d𝑞 − d𝑞𝑞)

To facilitate the computation of 𝐹𝐴, observe that

2 Im(𝑞d𝑞) = 2𝑞d𝑞 − d|𝑞 |2 = −2d𝑞𝑞 + d|𝑞 |2.

Hence,

4 Im(𝑞d𝑞) ∧ Im(𝑞d𝑞) = (−2d𝑞𝑞 + d|𝑞 |2) ∧ (2𝑞d𝑞 − d|𝑞 |2)
= −4|𝑞 |2d𝑞 ∧ d𝑞 + 2d|𝑞 |2 ∧ (𝑞d𝑞 − d𝑞𝑞)
= −4|𝑞 |2d𝑞 ∧ d𝑞 + d|𝑞 |2 ∧ 4 Im(𝑞d𝑞).
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Therefore, the curvature of 𝐴 can be computed to be

𝐹𝐴 =

[
2𝑓

(
|𝑞 |2

)
− 4|𝑞 |2 𝑓

(
|𝑞 |2

)
2

]
d𝑞 ∧ d𝑞 +

[
𝑓 ′

(
|𝑞 |2

)
+ 2𝑓

(
|𝑞 |2

)
2

]
d|𝑞 |2 ∧ 2 Im(𝑞d𝑞) .

The first term is anti-self-dual. To make the second term vanish, one needs to solve the ODE

𝑓 ′ + 2𝑓 2 = 0:

𝑓 ( |𝑞 |2) = 1

2

𝜇2

𝜇2 |𝑞 |2 + 1

with 𝜇 > 0. Therefore, we arrive at

𝐴𝜇 =
Im(𝜇2𝑞d𝑞)
𝜇2 |𝑞 |2 + 1

.

The above computation singles out the origin in H. The BPST instanton of scale 𝜇 and center 𝑏

is

𝐴𝜇,𝑏 ≔
Im(𝜇2(𝑞 − ¯𝑏)d𝑞)
𝜇2 |𝑞 − 𝑏 |2 + 1

.

𝐴 without any indices shall always refer to 𝐴1,0.

Observe that

𝐹𝐴𝜇,𝑏
=

𝜇2
d𝑞 ∧ d𝑞

(𝜇2 |𝑞 − 𝑏 |2 + 1)2 .

Here are plots of 1/(|𝑞 |2 + 1/𝜇2)2 for 𝜇2 ∈ {0.9, 1, 1.1}.

0 1 2 3 4 5

0

0.5

1

1.5

|𝑞 |

Let us compute YM(𝐴).
𝐹𝐴 =

d𝑞 ∧ d𝑞

( |𝑞 |2 + 1)2 .

To compute the norm of 𝑖 , 𝑗 , 𝑘 with respect to the the negative of the Killing form observe that

ad(𝜉) vanishes on 𝜉 and acts as 2𝜉 on 𝜉⊥. Therefore,

−𝐵(𝑖, 𝑖) = −𝐵( 𝑗, 𝑗) = −𝐵(𝑘, 𝑘) = 8.
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Consequently,

|d𝑞 ∧ d𝑞 |2 = 3 · 8 · 8 = 192.

Therefore,

YM(𝐴) = 96 · vol(𝑆3)
ˆ ∞

0

𝑟 3

(𝑟 2 + 1)4 d𝑟 = 16𝜋2.

This uses vol(𝑆3) = 2𝜋2
and evaluates the integral to 1/12.

Exercise 5.14. Compute YM(𝐴)!

Exercise 5.15. Prove that the parameters 𝜇, 𝑏 are determined by |𝐹𝐴𝜇,𝑏
| and, hence, the gauge

equivalence class of 𝐴𝜇,𝑏 .

Remark 5.16. Sp(1) also acts on H via 𝐿(𝑔)𝑥 ≔ 𝑔𝑥 . This leads to a similar expression with 𝑞 and

𝑞 exchanged. The corresponding connection has self-dual curvature. ♣

5.4.1 The BPST instanton on 𝑆4

Here is another perspective on the BPST instanton. Sp(1) acts on the right of

𝑆7 ≔ {(𝑞1, 𝑞2) ∈ H2
: |𝑞1 |2 + |𝑞2 |2 = 1}

via

𝑅((𝑞1, 𝑞2), 𝑞) ≔ (𝑞1𝑞, 𝑞2𝑞).

The quotient

H𝑃1 ≔ 𝑆7/Sp(1)

parametrizes rank 1 right H–submodules ℓ ⊂ H2
. Denote by 𝑝 : 𝑆7 → H𝑃1

the canonical

projection. Define 𝜃𝐴 ∈ Ω1(𝑆7, 𝔰𝔭(1)) by

𝜃𝐴 ≔ Im(𝑞1d𝑞1 + 𝑞2d𝑞2).

A moment’s thought shows that 𝜃𝐴 is a Sp(1)–principal connection 1–form. Denote the corre-

sponding Sp(1)–principal connection by 𝐴.

Define 𝜄± : H→ H𝑃1
by 𝜄+(𝑞) ≔ (𝑞, 1) and 𝜄− (𝑞) ≔ (1, 𝑞). The map 𝑠± : H→ 𝑆7

defined by

𝑠+(𝑞) ≔
(𝑞, 1)√︁
|𝑞 |2 + 1

and 𝑠− (𝑞) ≔
(1, 𝑞)√︁
|𝑞 |2 + 1

defines a trivialisation of 𝜄∗±(𝑝, 𝑅). Moreover, a short computation reveals that

𝑠∗±𝜃𝐴 =
Im(𝑞d𝑞)
|𝑞 |2 + 1

.

Remark 5.17. The above discussion shows the BPST instanton 𝐴 ≔ 𝐴1,0 on H can be extended

to the conformal compactifications H𝑃1
. Uhlenbeck’s removable singularities theorem [Uhl82b]

says that this can always be done provided YM(𝐴) < ∞. ♣
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Remark 5.18. Since YM(𝐴) = 16𝜋2
, 𝑝1(Ad(𝑃)) = −4. This is consistent with the fact that the

underlying rank 2 complex bundle 𝐸 has 𝑐1(𝐸) = 0 and 𝑐2(𝐸) = 1. Let 𝐸 be a Hermitian vector

bundle of rank 𝑛. Denote by 𝑃 the corresponding PU(𝑛)–principal bundle. The complexifica-

tion of Ad(𝑃) is End0(𝐸) with the subscript meaning trace-free. A simple computation using

Exercise 4.89 and Proposition 4.90 shows that

𝑝1(Ad(𝑃)) = 𝑟 (𝑐1(𝐸)2 − 2𝑐2(𝐸)) = −2𝑟

(
𝑐2(𝐸) −

1

2

𝑐1(𝐸)2
)
. ♣

Remark 5.19. The orientation preserving conformal inversion 𝚥 of H× defined by 𝑓 (𝑞) ≔ 𝑞−1

lifts to 𝑆7
(H𝑃1

) as (𝑞1, 𝑞2) ↦→ (𝑞2, 𝑞1) ([𝑞1 : 𝑞2] ↦→ [𝑞2 : 𝑞1]). Obviously, 𝜃𝐴 is invariant under

this inversion. This shows that 𝚥∗𝐴 is gauge equivalent to 𝐴. Indeed, the gauge transformation

is 𝑞 ↦→ 𝑢 (𝑞) = 𝑞/|𝑞 |. This can also be verified by direct computation. ♣
Set

𝑆4 ≔ {(𝑞, 𝑡) ∈ H ⊕ R : |𝑞 |2 + 𝑡2 = 1}.
Define the stereographic projections 𝜎± : 𝑈± ≔ 𝑆4\{(0,∓1)} → H by

𝜎±(𝑞, 𝑡) ≔
𝑞

1 ∓ 𝑡 .

The map 𝜙 : 𝑆4 → H𝑃1
defined by

𝜙 (𝑞, 𝑡) ≔
{
𝜄+(𝜎+(𝑞, 𝑡)) if (𝑞, 𝑡) ∈ 𝑈 +,
𝜄− (𝜎− (𝑞, 𝑡)) if (𝑞, 𝑡) ∈ 𝑈 −

is a diffeomorphism. Since 𝜎± are conformal, 𝜙∗𝐴 is an anti-self-dual connection on 𝜙∗(𝑝, 𝑅)
defined over 𝑆4

.

Remark 5.20. H𝑃1
carries a natural metric 𝑔FS, the Fubini–Study metric. The standard metric

on 𝑆7 ⊂ H2
descends along 𝑝 because it is Sp(1)–invariant. To obtain a formula proceed as

follows. Denote by 𝑝 : H2\{0} → H𝑃1
the canonical projection. The Riemannian metric 𝑔FS is

characterised by the condition that

(𝑝∗𝑔FS)𝑥 (𝑣,𝑤) = |𝑥 |−2⟨𝑣,𝑤⟩ = |𝑥 |−2
Re(𝑤∗𝑣)

whenever 𝑣,𝑤 ⊥ 𝑥 · H, that is: 𝑥∗𝑣 = 𝑥∗𝑤 = 0. Since 𝑣 ↦→ 𝑣 − 𝑥𝑥∗𝑣/|𝑥 |2 is the projection to

(𝑥 · H)⊥,

(𝑝∗𝑔FS)𝑥 (𝑣,𝑤) = |𝑥 |−2
Re[(𝑤 − 𝑥𝑥∗𝑤/|𝑥 |2)∗(𝑣 − 𝑥𝑥∗𝑣/|𝑥 |2)]

= |𝑥 |−2
Re[(𝑤∗ −𝑤∗𝑥𝑥∗/|𝑥 |2)∗(𝑣 − 𝑥𝑥∗𝑣/|𝑥 |2)]

=
Re(𝑤∗𝑣)
|𝑥 |2 − Re((𝑤∗𝑥) (𝑥∗𝑣))

|𝑥 |4 .

Therefore,

(𝜄∗+𝑔FS)𝑞 (𝑣,𝑤) =
Re(𝑤∗𝑣)
1 + |𝑞 |2 −

|𝑞 |2 Re(𝑤∗𝑣)
(1 + |𝑞 |2)2 =

Re(𝑤∗𝑣)
(1 + |𝑞 |2)2 .

This reveals that: 4𝑔FS = 𝑔𝑆4 . Moreover, it shows that with respect to this metric |𝐹𝐴1,0
| is

constant! ♣
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Set

SL2(H) ≔
{(
𝑎 𝑏

𝑐 𝑑

)
∈ 𝑀2(H) : 𝑎𝑑 − 𝑏𝑐 = 1

}
,

Sp(2) ≔
{(
𝑎 𝑏

𝑐 𝑑

)
∈ 𝑀2(H) : |𝑎 |2 + |𝑐 |2 = |𝑏 |2 + |𝑑 |2 = 1, 𝑎𝑏 + 𝑐𝑑 = 0.

}
,

PSL2(H) ≔ SL2(H){±1}, and

PSp(2) ≔ Sp(2)/{±1}.
PSL2(H) acts on H𝑃1

via [
𝑎 𝑏

𝑐 𝑑

]
[𝑞1 : 𝑞2] = [𝑎𝑞1 + 𝑏𝑞2, 𝑐𝑞1 + 𝑑𝑞2] .

In fact, PSL2(H) is the orientation-preserving conformal group of H𝑃1
. This action does not

lift to 𝑆7
, but the underlying action of SL2(H) does. The best way to see this is to observe that

SL2(H) acts on H2\{0} and to identify 𝑆7 = (H2\{0})/R+.
Remark 5.21. PSp(2) acts on

𝑉 ≔

{(
𝑡 𝑞

𝑞 −𝑡

)
: 𝑡 ∈ R, 𝑞 ∈ H

}
� H ⊕ R,

the quaternionic self-adjoint matrices, via conjugation. The latter have an natural inner product

and, obviously, this action orthogonal (and orientation preserving). This exhibits an isomorphism

PSp(2) � SO(𝑉 ) = SO(5) and Sp(2) = Spin(5). However, the diffeomorphism 𝜙 : 𝑆4 → H𝑃1

is not SO(5)–equivariant. There is another inclusion SO(5) = Isom(𝑆4) = Isom(H𝑃1) ↩→
PSL2(H). ♣

An simple computation shows that Sp(2) < SL2(H) preserves 𝜃𝐴. Via 𝜄+ : H → H𝑃1
this

gives the partially defined action[
𝑎 𝑏

𝑐 𝑑

]
𝑞 = (𝑎𝑞 + 𝑏) (𝑐𝑞 + 𝑑)−1

by Möbius transformations. The map 𝑞 ↦→ 𝜇 (𝑞 + 𝑏) lifts to[√
𝜇
√
𝜇𝑏

0 1/√𝜇

]
=

[√
𝜇 0

0 1/√𝜇

] [
1 𝑏

0 1

]
.

Every element of 𝑔 ∈ PSL2(H) can be written uniquely as 𝑔 = 𝑛𝑎𝑘 with

𝑛 =

[
1 𝑏

0 1

]
, 𝑎 =

[√
𝜇 0

0 1/√𝜇

]
and 𝑔 ∈ PSp(2). (This is an Iwasawa decomposition of PSL2(H).) Let us compute(√

𝜇
√
𝜇𝑏

0 1/√𝜇

)∗
𝜃𝐴 =

Im[𝜇2(𝑞1 − 𝑞2

¯𝑏)d𝑞1 + (𝜇2𝑞1 + 𝑞2)d𝑞2]
𝜇2 |𝑞1 + 𝑏𝑞2 |2 + |𝑞2 |2

.

Obviously this yields 𝐴𝜇,𝑏 (by construction). This shows that the BPST instantons all arise from

the actions of SL2(H) on 𝑆7
and H𝑃1

. Therefore, the space of BPST instantons is

SL2(H)/Sp(2) = PSL2(H)/PSp(2) � H × R+.
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5.4.2 The BPST instanton on R × 𝑆3

Consider the conformal diffeomorphism 𝜙 : R × Sp(1) → H× defined by 𝜙 (𝑡, 𝑔) ≔ 𝑒𝑡𝑔. A brief

computation shows that

𝐴cyl ≔ 𝜙∗𝐴 =
𝑔−1

d𝑔

1 + 𝑒−2𝑡
=

𝜇Sp(1)

1 + 𝑒−2𝑡

with 𝜇 denoting the Maurer–Cartan form on Sp(1). As 𝑡 → −∞, 𝜙∗𝐴 tends to the trivial

connection 𝜃0. As 𝑡 → +∞, 𝜙∗𝐴 tends to 𝑢∗𝜃𝑎 with 𝑢 = idSp(1) : Sp(1) → Sp(1).
Observe that

𝜕𝑡𝐴
cyl(𝑡,−) =

2𝑒−2𝑡𝜇Sp(1)

(1 + 𝑒−2𝑡 )2

and

𝐹𝐴cyl (𝑡,−) =
d𝜇

1 + 𝑒−2𝑡
+ [𝜇 ∧ 𝜇]

2(1 + 𝑒−2𝑡 )2

=

(
− 1

2(1 + 𝑒−2𝑡 ) +
1

2(1 + 𝑒−2𝑡 )2

)
[𝜇 ∧ 𝜇]

= − 𝑒−2𝑡

2(1 + 𝑒−2𝑡 )2 [𝜇 ∧ 𝜇] .

Since [𝜇 ∧ 𝜇] = 4 ∗ 𝜇, this shows that

𝜕𝑡𝐴
cyl(𝑡,−) = −𝐹𝐴cyl (𝑡,−) .

Here is a plot of
𝑒−4𝑡

2(1+𝑒−2𝑡 )4 .

−10 −5 0 5 10

0

2

4

6

·10
−2

𝑡

Exercise 5.22. What is the effect of the scale parameter 𝜇 in this perspective?

88



5.5 Hyperkähler manifolds and hyperkähler reduction

Atiyah, Drinfeld, Hitchin, and Manin [ADHM78] managed to construct every ASD instanton

over H with finite Yang–Mills energy and 𝐺 = SU(𝑟 ) using “linear algebra”. This was one

of the early major achievements in mathematical gauge theory. The proper context for their

construction are hyperkähler manifolds and hyperkähler reduction.

Definition 5.23. Let 𝑋 be a smooth manifold of dimension 4𝑛. A hyperkähler structure on 𝑋
consists of a Riemannian metric 𝑔 and a triple of almost complex structures 𝐼𝑎 (𝑎 = 1, 2, 3) such

that

𝑔(𝐼𝑎−, 𝐼𝑎−) = 𝑔, 𝐼1𝐼2 = 𝐼3, and ∇𝐼𝑎 = 0.

(This is equivalent to a torsion-free Sp(𝑛)–structure.) A hyperkähler manifold is a manifold

with a hyperkähler structure.

Observe that 𝜔𝑎 ≔ 𝑔(𝐼𝑎−,−) ∈ Ω2(𝑋 ) defines a symplectic (or Kähler) form on 𝑋 . It is often

convenient to encode 𝐼𝑎 and 𝜔𝑎 (𝑎 = 1, 2, 3) as a hypercomplex structure and a hyperkähler
form

I ≔ 𝑖∗ ⊗ 𝐼1 + 𝑗∗ ⊗ 𝐼2 + 𝑘∗ ⊗ 𝐼3 ∈ (ImH)∗ ⊗ Γ(End(𝑋 )) and

𝝎 ≔ 𝑖∗ ⊗ 𝜔1 + 𝑗∗ ⊗ 𝜔2 + 𝑘∗ ⊗ 𝜔3 ∈ (ImH)∗ ⊗ Ω2(𝑋 ). •

It is a mildly non-trivial fact, that 𝝎 determines I and 𝑔.

Remark 5.24. The hypercomplex structure I equips every tangent space 𝑇𝑥𝑋 with the structure

of an H left-module: for 𝑞 = 𝑡 + 𝜉 with 𝑡 ∈ R and 𝜉 ∈ ImH

𝑞 · 𝑣 ≔ 𝑡𝑣 + 𝐼𝜉𝑣 with 𝐼𝜉 ≔ ⟨I, 𝜉⟩. ♣

Example 5.25. For every 𝑛 ∈ N, H𝑛 is a hyperkähler manifold with 𝑔 denoting the standard

inner product, 𝐼1 = 𝑖 , 𝐼2 = 𝑗 , 𝐼3 = 𝑘 . In this case,

𝝎 =

𝑛∑︁
𝑎=1

d𝑞𝑎 ∧ d𝑞𝑎 .

If Λ ⊂ H𝑛 is a lattice, then H𝑛/Λ is a hyperkähler manifold. ♠

Non-flat compact hyperkähler manifolds are notoriously difficult to construct. The first

example is the 𝐾3 surface and the construction of the hyperkähler structure requires the use of

Yau’s solution of the Calabi conjecture. For mysterious(?) reasons, non-compact hyperkähler

manifolds habitually emerge as moduli spaces in gauge theory. (More about that later.)

If 𝑆 is a hyperkähler manifold and 𝐺 acts on 𝑆 , then 𝑆/𝐺 (if the quotient exists) is typically

not hyperkähler.

Definition 5.26. Let 𝑆 by a hyperkähler manifold with hyperkähler form 𝝎. Let𝐺 be a compact,

connected Lie group. Set 𝔤 ≔ Lie(𝐺) A hypersymplectic action of 𝐺 on 𝑋 is a smooth action

𝜆 : 𝐺 → Diff (𝑆) such that for every 𝑔 ∈ 𝐺

𝜆(𝑔)∗𝝎 = 𝝎 .
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For 𝜉 ∈ 𝔤 set

𝑣𝜉 ≔ Lie(𝜆) (𝜉) ∈ Vect(𝑆) .

A hyperkähler moment map for 𝜆 is a 𝐺–equivariant smooth map 𝜇 : 𝑆 → (ImH)∗ ⊗ 𝔤∗ such
that for every 𝑥 ∈ 𝑆 and 𝜉 ∈ 𝔤

•(5.27) ⟨𝑇𝑥𝜇, 𝜉⟩ = 𝑖𝑣𝜉 (𝑥 )𝝎 .

Definition 5.28. (1) A quaternionic Hermitian vector space is a left H–module 𝑆 together

with an inner product ⟨·, ·⟩ such that 𝑖, 𝑗, 𝑘 acts by isometries.

(2) The unitary symplectic group Sp(𝑆) is the subgroup of GLH(𝑆) preserving ⟨·, ·⟩. A

quaternionic representation of a Lie group 𝐺 is a Lie group homomorphism 𝜆 : 𝐺 →
Sp(𝑆).

(3) The distinguished hyperkähler moment map of 𝜆 is the map 𝜇 : 𝑆 → (ImH)∗ ⊗ 𝔤∗

defined by

⟨𝜇 (𝑥), 𝑞 ⊗ 𝜉⟩ ≔ 1

2

⟨𝑞 · Lie(𝜌) (𝜉)𝑥, 𝑥⟩. •

Exercise 5.29. H2
is a quaternionic Hermitian vector space. Consider the quaternionic repre-

sentation 𝜆 : U(1) → Sp(H2) defined by

𝜆(𝑒𝑖𝛼 ) (𝑞1, 𝑞2) ≔ (𝑞1𝑒
𝑖𝛼 , 𝑞2𝑒

𝑖𝛼 ).

Compute 𝜇.

Example 5.30. Let 𝐺 be a compact, connected Lie group. H ⊗ 𝔤 is a quaternionic Hermitian

vector space. Consider the quaternionic representation 𝜆 : 𝐺 → Sp(H ⊗ 𝔤) defined by

𝜆(𝑔) ≔ 1 ⊗ Ad𝑔 .

Identifying (ImH)∗ = ImH and 𝔤∗ = 𝔤,

𝜇 (𝜉) = 1

2

[𝜉, 𝜉]

= ( [𝜉2, 𝜉3] + [𝜉0, 𝜉1]) ⊗ 𝑖 + ([𝜉3, 𝜉1] + [𝜉0, 𝜉2]) ⊗ 𝑗 + ([𝜉1, 𝜉2] + [𝜉0, 𝜉3]) ⊗ 𝑘

for 𝜉 = 𝜉0 ⊗ 1 + 𝜉1 ⊗ 𝑖 + 𝜉2 ⊗ 𝑗 + 𝜉3 ⊗ 𝑘 ∈ H ⊗ 𝔤. A computation shows that

|𝜇 |2 = 1

2

4∑︁
𝑎,𝑏=0

| [𝜉𝑎, 𝜉𝑏] |2.

Therefore, 𝜇 (𝜉) = 0 if and only if the components of 𝜉 are in an abelian subalgebra of 𝔤. ♠

The following is a direct consequence of (5.27):
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Proposition 5.31. In the above situation, 𝑥 ∈ 𝑆 is a regular point of 𝜇 if and only if the stabilizer
𝐺𝑥 is discrete; indeed:

𝑇1𝐺𝑥 = {𝜉 ∈ 𝔤 : 𝑣𝜉 (𝑥) = 0} = {𝜉 ∈ 𝔤 : ⟨𝑇𝑥𝜇, 𝜉⟩ = 0}.

■

Proposition 5.32. Let 𝑥 ∈ 𝑆 . Set

𝑉𝑥 ≔ {𝑣𝜉 (𝑥) : 𝜉 ∈ 𝔤} and 𝐻𝑥 ≔ ker𝑇𝑥𝜇 ∩𝑉⊥𝑥 .

𝐻𝑥 and 𝑉𝑥 ⊕ (ker𝑇𝑥𝜇)⊥ are perpendicular H–submodules of 𝑇𝑥𝑆 . Moreover,

𝑉𝑥 ⊕ (ker𝑇𝑥𝜇)⊥ = H ·𝑉𝑥 ,

Proof. By (5.27), ker𝑇𝑥𝜇 = (ImH ·𝑉𝑥 )⊥. Therefore, 𝐻𝑥 = (H ·𝑉𝑥 )⊥; hence: it is an H–submodule.

Since H ·𝑉𝑥 = 𝐻⊥𝑥 = 𝑉𝑥 ⊕ (ker𝑇𝑥𝜇)⊥, the latter is an H–submodule. ■

Since 𝐺 is compact,

𝔤 = [𝔤, 𝔤] ⊕ 𝔷 with 𝔷 ≔ ker(ad : 𝔤→ End(𝔤)).

Define

𝔷∗ ≔ [𝔤, 𝔤]0 ⊂ 𝔤∗,

the annihilator of [𝔤, 𝔤]. One can identify 𝔷∗ with the dual of 𝔷. (This justifies the notation.) The

importance of 𝔷∗ is that its elements are𝐺–invariant. Since 𝜇 is𝐺–invariant, for 𝜁 ∈ (ImH)∗⊗𝔷∗,
𝐺 acts on 𝜇−1(𝜁 ). Denote by

Δ

the interior of the set of regular value of 𝜇 in (ImH)∗ ⊗ 𝔷∗.

Proposition 5.33. For 𝜁 ∈ Δ set

𝑃𝜁 ≔ 𝜇−1(𝜁 ) and 𝑋𝜁 ≔ 𝜇−1(𝜁 )/𝐺.

(1) For 𝑥 ∈ 𝑃𝜁 , 𝐺𝑥 is finite. Therefore, 𝑋𝜁 is an orbifold and

𝑝𝜁 : 𝑃𝜁 → 𝑋𝜁

is an orbifold principal 𝐺–bundle. (If you don’t know what an orbifold is, then just assume
that 𝐺𝑥 is trivial.)

(2) For 𝑥 ∈ 𝑃𝜁 , 𝑉𝑥 = ker𝑇𝑥𝑝𝜁 .

(3) 𝐻𝜁 ≔
∐
𝑥∈𝑃𝜁 𝐻𝑥 ⊂ 𝑇𝑃𝜁 defines a principal 𝐺–connection 𝐴𝜁 on 𝑃𝜁 .

(4) The 2–form 𝝎 |𝑃𝜁 is𝐺–invariant and 𝐻𝜁–horizontal. It descends to a hyperkähler structure
�̌�𝜁 on 𝑋𝜁 .
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(5) The curvature 𝐹𝐴𝜁
∈ Ω2(𝑃𝜁 , 𝔤) satisfies

⟨𝐹𝐴𝜁
,𝝎 |𝑋𝜁

⟩ = 0.

Proof. (2) is obvious.
(3) and (4) follow from Proposition 5.32.

(5) is [GN, Theorem 1.3]. It can be proved directly as follows. Let 𝑣,𝑤 ∈ Γ(𝐻𝜁 )𝐺 and 𝜉 ∈ 𝔤.
Since ⟨𝑣𝜉 , 𝑣⟩ = ⟨𝑣𝜉 ,𝑤⟩ = 0,L𝑣𝜉 ⟨𝑣,𝑤⟩ = 0, and [𝑣𝜉 , 𝑣] = [𝑣𝜉 ,𝑤] = 0,

⟨𝐹𝐻𝜁
(𝑣,𝑤), 𝜉⟩ = ⟨[𝑣,𝑤], 𝑣𝜉 ⟩

= ⟨∇𝑣𝑤 − ∇𝑤𝑣, 𝑣𝜉 ⟩
= ⟨𝑣,∇𝑤𝑣𝜉 ⟩ − ⟨𝑤,∇𝑣𝑣𝜉 ⟩
= ⟨𝑣,∇𝑣𝜉𝑤⟩ − ⟨𝑤,∇𝑣𝜉 𝑣⟩ = 2⟨𝑣,∇𝑣𝜉𝑤⟩.

Therefore and since I is parallel,

𝐹𝐻𝜁
(𝐼𝜉−, 𝐼𝜉−) = 𝐹𝐻𝜁

. ■

Definition 5.34. The hyperkähler manifold (𝑋𝜁 , �̌�𝜁 ) is the hyperkähler quotient of (𝑆,𝝎) by
𝐺 at level 𝜁 . This is often denoted as

𝑋𝜁 ≔ 𝑆///𝜁𝐺.

If 𝜁 is omitted, then 𝜁 = 0 is assumed. •

Remark 5.35. Here is an important observation. If dim𝑋𝜁 = 4, then 𝐴𝜁 is an ASD instanton on

𝑝𝜁 : 𝑃𝜁 → 𝑋𝜁 . ♣

Example 5.36. Consider the adjoint representation 𝐺 → Sp(H ⊗ 𝔤). Let 𝑇 < 𝐺 be a maximal

torus. Set 𝔱 = Lie(𝑇 ) ⊂ 𝔤. If 𝜇 (𝜉) = 0 then there is a 𝑔 ∈ 𝐺 such that Ad𝑔 (𝜉) ∈ H⊗ 𝔱. If 𝜉 ∈ H⊗ 𝔱
and Ad𝑔 (𝜉) ∈ H ⊗ 𝔱, then 𝑔 is in the normaliser 𝑁 (𝑇 ) and 𝑇 acts trivially. Therefore,

(H ⊗ 𝔤)///𝐺 = (H ⊗ 𝔱)/𝑊

with𝑊 ≔ 𝑁 (𝑇 )/𝑇 denoting the Weyl group. For 𝐺 = U(𝑛), 𝔱 = 𝑖R𝑛 and𝑊 = 𝑆𝑛 . Therefore,

(H ⊗ 𝔲(𝑛))///U(𝑛) = H𝑛/𝑆𝑛 ≕ Sym
𝑛 H,

the 𝑛–fold symmetric product of H. This is, of course, an orbifold, but varying 𝜁 generically

gives smooth hyperkähler manifolds. ♠

As 𝜁 varies in a connected component of Δ, the diffeomorphism type 𝑋𝜁 persists but �̌�𝜁
varies. The question of how to determine this variation (in cohomology) has been considered

by Duistermaat and Heckman [DH82, §2]. [XXX: skip this in class.]
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Proposition 5.37. Set

𝑃 ≔ {(𝑥, 𝜁 ) ∈ 𝑆 × Δ : 𝜇 (𝑥) = 𝜁 } and 𝑋 ≔ 𝑃/𝐺.

The tangent bundle 𝑇𝑃 decomposes as

𝑇(𝑥,𝜁 )𝑃 = 𝐻 ⊕ 𝐾 ⊕ 𝑉

with
𝑉 ≔ ker𝑇𝜋, 𝐻 ≔ ker𝑇 𝜇 ∩𝑉⊥, and 𝐾 ≔ (ker𝑇 𝜇)⊥ = (𝐻 ⊕ 𝑉 )⊥.

(1) The projection 𝜋 : 𝑃 → 𝑋 is a principal 𝐺–bundle. The projection 𝜌 : 𝑋 → Δ is a fiber
bundle.

(2) 𝐻 ⊕ 𝐾 is the horizontal distribution of a 𝐺–principal connection on 𝜋 .

(3) 𝐾 is a 𝐺–invariant Ehresmann connection on 𝜌 ◦ 𝜋 . Hence, it descends to an Ehresmann
connection on ˇ𝐾 on 𝜌 . The vertical tangent bundle of 𝜌 lifts to 𝐻 .

(4) The form (pr
∗
𝑆
𝝎)2,0 is 𝐺–equivariant and (𝐻 ⊕ 𝐾)–horizontal. Therefore, it descends to �̌�

on 𝑋 . It is of bi-degree (0, 2) with respect to �̌� and satisfies

�̌� |𝑋𝜁
= �̌�𝜁 .

(5) Denote by 𝜏 ∈ (ImH)∗ ⊗ 𝔷∗ ⊗ Ω1(Δ) the tautological 1–form on Δ. Denote by 𝜋𝔷𝐹𝐻 ∈
Ω0,2(𝑋, 𝔷) the (0, 2)–form defined by

𝜋𝔷𝐹𝐻 |𝑋𝜁
≔ 𝜋𝔷𝐹𝐻𝜁

.

With respect to ˇ𝐾 ,
d�̌� = d

1,0�̌� = −⟨𝜌∗𝜏 ∧ 𝜋𝔷𝐹𝐻 ⟩.

(6) Suppose that ˇ𝐾 is a complete Ehresmann connection. Let 𝜻 ∈ 𝐶∞( [𝑎, 𝑏],Δ) smooth path.
With tra𝜻 : 𝑋𝜻 (𝑎) → 𝑋𝜻 (𝑏 ) denoting parallel transport along 𝜻 ,

�̌�𝜻 (𝑎) = (tra𝜻 )∗�̌�𝜻 (𝑏 ) −
ˆ 𝑏

𝑎

⟨ ¤𝜻 (𝑡), (tra𝜻 | [𝑎,𝑡 ] )
∗𝜋𝔷𝐹𝐻𝜻 (𝑡 ) ⟩ d𝑡 .

Proof. (1), (2), and (3) hold by construction.

The triple of 2–forms pr
∗
𝑆
𝝎 ∈ (ImH)∗ ⊗ Ω2(𝑃) is closed and 𝐺–invariant. However, it

fails to be (𝐻 ⊕ 𝐾)–horizontal: it has components of bi-digree (2, 0) and a (1, 1). In fact, by

Proposition 5.32 pr
∗
𝑆
𝝎 ∈ (ImH)∗ ⊗ Γ(Λ2𝐻 ∗ ⊕ 𝐾∗ ⊗ 𝑉 ∗). This implies (4).

Since dpr
∗
𝑆
𝝎 = 0,

𝜋∗d�̌� = d
1,0(pr

∗
𝑆𝝎)2,0 = −d

2,−1(pr
∗
𝑆𝝎)1,1 = −(pr

∗
𝑆𝝎𝑆 )1,1(𝐹𝐻⊕𝐾 (·, ·), ·).
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Since 𝝎 |𝑉 = 0, the above is a section of (ImH)∗ ⊗ Λ2(𝐻 ⊕ 𝐾)∗ ⊗ 𝐾∗ with the Λ2(𝐻 ⊕ 𝐾)∗ factor
arising from 𝐹𝐻⊕𝐾 . By (5.27), pr

∗
𝑆
𝝎 (𝑣𝜉 , ·) = ⟨𝑇𝑥𝜇 ◦ pr𝑆 , 𝜉⟩. Moreover, 𝑇𝑥𝜇 ◦ pr𝑆 = (𝜌 ◦ 𝜋)∗𝜏 .

Therefore,

d
1,0(pr

∗
𝑆𝝎)2,0 = −⟨𝜋∗𝜌∗𝜏, 𝐹𝐻⊕𝐾 ⟩ = −⟨𝜋∗𝜌∗𝜏, 𝜋𝔷𝐹𝐻⊕𝐾 ⟩.

It remains to show that 𝜋𝔷𝐹𝐻⊕𝐾 = 𝜋𝔷𝐹𝐻 . Let 𝑣,𝑤 ∈ Γ(𝐻 ⊕ 𝐾)𝐺 and 𝜉 ∈ 𝔷. As in the proof of

Proposition 5.33 (5),

⟨𝐹𝐻𝜁
(𝑣,𝑤), 𝜉⟩ = ⟨[𝑣,𝑤], 𝑣𝜉 ⟩

= ⟨∇𝑣𝑤 − ∇𝑤𝑣, 𝑣𝜉 ⟩
= ⟨𝑣,∇𝑤𝑣𝜉 ⟩ − ⟨𝑤,∇𝑣𝑣𝜉 ⟩
= ⟨𝑣,∇𝑣𝜉𝑤⟩ − ⟨𝑤,∇𝑣𝜉 𝑣⟩ = 2⟨𝑣,∇𝑣𝜉𝑤⟩.

Therefore, for𝑤 = 𝛾 (𝑝)𝑣𝜂 ∈ Γ(𝐾)

⟨𝐹𝐻𝜁
(𝑣,𝑤), 𝜉⟩ = 2⟨𝑣,𝛾 (𝑝)∇𝑣𝜉 𝑣𝜂⟩ = 2⟨𝑣,𝛾 (𝑝)𝑣 [𝜉,𝜂 ]⟩ = 0.

Consequently, 𝜋𝔷𝐹𝐻⊕𝐾 = 𝜋𝔷𝐹𝐻 . Therefore, d�̌� = −⟨𝜌∗𝜏 ∧ 𝜋𝜁 𝐹𝐻 ⟩. Since the latter is of bi-degree
(1, 2), this finishes the proof of (5).

By (5),

d

d𝑡
(tra𝜻 | [𝑎,𝑡 ] )

∗�̌�𝜻 (𝑡 ) =
d

d𝜏

����
𝜏=0

(tra𝜻 | [𝑎,𝑡 ] )
∗(tra𝜻 | [𝑡,𝑡+𝜏 ] )

∗�̌�𝜻 (𝑡+𝜏 )

= −⟨ ¤𝜻 (𝑡), (tra𝜻 | [𝑎,𝑡 ] )
∗𝜋𝔷𝐹𝐻𝜻 (𝑡 ) ⟩.

Integration proves (6). ■

5.6 Aside: The Gibbon–Hawking ansatz

[XXX: The following is a little of an aside and will be discussed in the problem session. It at

least shows that there are a lot of hyperkähler 4–manifolds.]

Let𝑈 be an open subset of R3
. Denote by 𝑔R3 the restriction of the standard metric on R3

to

𝑈 . Let 𝜋 : 𝑋 → 𝑈 be a principal U(1)–bundle. Denote by 𝜕𝛼 ∈ Vect(𝑋 ) the generator of the
U(1)–action. Let 𝑖𝜃 ∈ Ω1(𝑋, 𝑖R) be a U(1)–connection 1–form and let 𝑓 ∈ 𝐶∞(𝑈 , (0,∞)) be a
positive smooth function such that

(5.38) d𝜃 = − ∗3 d𝑓 .

Set

𝑔 ≔ 𝑓 𝜋∗𝑔R3 + 1

𝑓
𝜃 ⊗ 𝜃

and define complex structures 𝐼1, 𝐼2, 𝐼3 by

𝐼𝑖𝜕𝛼 = 𝑓 −1𝜕𝑥𝑖 and 𝐼𝑖𝜕𝑥 𝑗 =

3∑︁
𝑘=1

𝜀𝑖 𝑗𝑘𝜕𝑥𝑘 .
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The corresponding Hermitian forms are

𝜔𝑖 ≔ 𝜃 ∧ d𝑥𝑖 +
1

2

3∑︁
𝑗,𝑘=1

𝜀𝑖 𝑗𝑘 𝑓 d𝑥 𝑗 ∧ d𝑥𝑘 .

Writing (5.54) as

d𝜃 = −1

2

3∑︁
ℓ, 𝑗,𝑘=1

𝜀ℓ 𝑗𝑘𝜕𝑥ℓ 𝑓 d𝑥 𝑗 ∧ d𝑥𝑘 ,

we see that

d𝜔𝑖 = d𝜃 ∧ d𝑥𝑖 +
1

2

3∑︁
𝑗,𝑘=1

𝜀𝑖 𝑗𝑘d𝑓 ∧ d𝑥 𝑗 ∧ d𝑥𝑘 = 0.

Therefore, we have proved the following.

Proposition 5.39. (𝑋,𝑔, 𝐼1, 𝐼2, 𝐼3) is hyperkähler manifold.

This construction is called the Gibbons–Hawking ansatz.

Remark 5.40. By construction, the length of the U(1)–orbit over 𝑥 ∈ 𝑈 is 𝑓 (𝑥)−1/2
. ♣

Remark 5.41. The fact that
𝑖 (𝜕𝛼 )𝜔𝑖 = −d𝑥𝑖

means that the map 𝜋 : 𝑋 → 𝑈 ⊂ R3
is a hyperkähler moment map for the action of U(1) on 𝑋

(with R3
and (𝔲(1) ⊗ ImH)∗ identified suitably. ♣

Remark 5.42. By (5.54),

Δ𝑓 = 0.

Conversely, suppose that 𝑓 : 𝑈 → R is harmonic and the cohomology class of ∗3d𝑓 lies in

im(𝐻 2(𝑈 , 2𝜋Z) → 𝐻 2(𝑈 ,R)), then there is a U(1)–bundle 𝑋 over𝑈 together a connection 𝑖𝜃

satisfying

d𝜃 = − ∗3 d𝑓 .

♣

Example 5.43 (R4
). Let𝑈 = R3\{0} and define 𝑓 : 𝑈 → R by

𝑓 (𝑥) = 1

2|𝑥 | .

This function is harmonic and satisfies

− ∗3 d𝑓 =
1

2

vol𝑆2 .

Since vol(𝑆2) = 4𝜋 , there is a U(1)–bundle 𝑋 over 𝑈 together with a connection 𝑖𝜃 such that

(5.54). Therefore, the Gibbins–Hawking ansatz yields a hyperkähler metric on 𝑋 .
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By Chern–Weil theory the first Chern number of the restriction of 𝑋 to 𝑆2
isˆ

𝑆2

𝑖
𝑖

4𝜋
vol𝑆2 = −1.

Up to is isomorphism, there is only one principal U(1)–bundle over 𝑆2
: the Hopf bundle

𝜋 : 𝑆3 → 𝑆2
and the U(1)–action given by 𝑒𝑖𝛼 · (𝑧0, 𝑧1) = (𝑒−𝑖𝛼𝑧0, 𝑒

−𝑖𝛼𝑧1). If 𝑔𝑆3 denotes the

standard metric on 𝑆3
, then

𝜃 = 𝑔𝑆3 (−𝜕𝛼 , ·)
satisfies

d𝜃 = 𝜋∗vol𝑆2 .

It follows that

𝑋 = 𝑆3 × (0,∞) = R4\{0}
and the Gibbons–Hawking ansatz gives the metric

𝑔 = 2𝑟 𝜃 ⊗ 𝜃 + 1

2𝑟
(d𝑟 ⊗ d𝑟 + 𝑟 2𝑔𝑆2) .

The change of coordinates 𝜌 =
√

2𝑟 rewrites this metric as

𝑔 = d𝜌 ⊗ d𝜌 + 𝜌2(𝜃 ⊗ 𝜃 + 1

4

𝑔𝑆2) = d𝜌 ⊗ d𝜌 + 𝜌2𝑔𝑆3 .

This means that the Gibbons–Hawking ansatz yield the standard metric on R4
. ♠

Example 5.44 (Taub–NUT). Let𝑈 = R3\{0}, let 𝑐 > 0, and define 𝑓𝑐 : 𝑈 → R by

𝑓𝑐 (𝑥) =
1

2|𝑥 | + 𝑐.

This function is harmonic and we have

d𝑓𝑐 = d𝑓 .

By the preceding discussion, 𝑋 = 𝑆3 × (0,∞) and the Gibbons–Hawking ansatz gives the metric

𝑔 =

(
1

2𝑟
+ 𝑐

)−1

𝜃 ⊗ 𝜃 +
(

1

2𝑟
+ 𝑐

)
(d𝑟 ⊗ d𝑟 + 𝑟 2𝑔𝑆2) .

As 𝑟 tends to zero this metric is asymptotic to

𝑐−1𝜃 ⊗ 𝜃 + 𝑔R3 .

Although, the metric appears singular at 𝑟 = 0, the coordinate change 𝜌 =
√

2𝑟 rewrites it as

(1 + 𝑐𝜌2)d𝜌 ⊗ d𝜌 + 𝜌2

(
(1 + 𝑐𝜌2)−1𝜃 ⊗ 𝜃 + (1 + 𝑐𝜌2) 1

4

𝑔𝑆2

)
which is smooth.

This metric is called the Taub–NUT metric. It is non-flat hyperkähler metric on R4
. It was

first discovered by Taub [Tau51] and Newman, Tamburino, and Unti [NTU63]. The Taub–NUT

space is the archetype of an ALF space. ♠
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Remark 5.45. It was observed by LeBrun [LeB91] that the Taub–NUT metric is in fact Kähler

for the standard complex structure on C2
. Thus it yields a non-flat Ricci-flat Kähler metric on

C2
. ♣

Example 5.46 ((R4\{0})/Z𝑘 ). Let 𝑘 ∈ {1, 2, 3, . . .} Let𝑈 = R3\{0} and define 𝑓 : 𝑈 → R by

𝑓 (𝑥) ≔ 𝑘

2|𝑥 | .

This function is harmonic and it satisfies

− ∗3 d𝑓 = 𝑘vol𝑆2 .

Thus, the Gibbons–Hawking ansatz applies. Denote by (𝑋𝑘 , 𝑔𝑘 ) the Riemannian manifold

obtained in this way. If 𝑘 = 1, then this R4
with its standard metric. Let us understand the cases

𝑘 ⩾ 2.

The restriction of 𝑋𝑘 to 𝑆2
has Chern number −𝑘 . This U(1)–bundle is 𝑆3/Z𝑘 → 𝑆2

.

Consequently,

𝑋𝑘 = 𝑆3/Z𝑘 × (0,∞) = R4/Z𝑘 .
We can choose the connection 1-form 𝑖𝜃𝑘 on 𝑋𝑘 such that its pullback to 𝑋1 is 𝑖𝑘𝜃1. It follows

that the pullback of 𝑔𝑘 to 𝑋1 can be written as

2𝑘𝑟 𝜃 ⊗ 𝜃 + 𝑘
2𝑟
(d𝑟 ⊗ d𝑟 + 𝑟 2𝑔𝑆2) .

Up to a coordinate change 𝑟 ↦→ 𝑘𝑟 this is the standard metric on R4
. It follows that 𝑔𝑘 is the

metric induced by the standard metric on R4
. ♠

Example 5.47 (Eguchi–Hanson and multi-center Gibbons–Hawking). Let 𝑥1, . . . , 𝑥𝑘 be 𝑘 distinct

points in R3
. Set𝑈 ≔ R3\{𝑥1, . . . , 𝑥𝑘 } and define 𝑓 : 𝑈 → R by

𝑓 (𝑥) =
𝑘∑︁
𝑖=1

1

2|𝑥 − 𝑥𝑖 |
.

From the in discussion Example 5.43 it is clear that the Gibbons–Hawking ansatz for 𝑓 produces

a Riemannian manifold whose apparent singularities over 𝑥1, . . . , 𝑥𝑘 can be removed. Denote

the resulting manifold by (𝑋,𝑔).
Since

𝑓 (𝑥) = 𝑘

2|𝑥 | +𝑂 ( |𝑥 |
−2) as |𝑥 | → ∞,

(𝑋,𝑔) is asymptotic at infinity to R4/Z𝑘 . These spaces are called ALE spaces of type 𝐴𝑘−1. For

𝑘 = 2, this metric was discovered by Eguchi and Hanson [EH79]. The metrics for 𝑘 ⩾ 3 were

discovered by Gibbons and Hawking [GH78].

Let us understand the geometry and topology of these spaces somewhat more. Suppose 𝛾 is

an arc in R3
from 𝑥𝑖 to 𝑥 𝑗 avoiding all the other points 𝑥𝑘 . The pre-image in 𝑋 of any interior

point of 𝛾 is an 𝑆1
while the pre-images of the end points are points. Therefore,

𝜋−1(𝛾) ⊂ 𝑋
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is diffeomorphic to 𝑆2
. Suppose 𝛾 is straight line segment in R3

with unit tangent vector

𝑣 =

3∑︁
𝑖=1

𝑎𝑖𝜕𝑥𝑖

with 𝑎2

1
+ 𝑎2

2
+ 𝑎2

3
= 1. The tangent spaces to 𝜋−1(𝛾) are spanned by 𝜕𝛼 and 𝑣 . In particular, they

are invariant with respect to the complex structure

𝐼𝑣 ≔ 𝑎1𝐼1 + 𝑎2𝐼2 + 𝑎3𝐼3.

Its volume is given by ˆ
𝜋−1 (𝛾 )

𝑎1𝜔1 + 𝑎2𝜔2 + 𝑎3𝜔3.

Therefore,

[𝜋−1(𝛾)] ≠ 0 ∈ 𝐻2(𝑋,Z) .
If necessary we can reorder the points 𝑥𝑖 so that for 𝑖 = 1, . . . , 𝑘 − 1, there is a straight-line

segment 𝛾𝑖 joining 𝑥𝑖 and 𝑥𝑖+1. Set
Σ𝑖 ≔ 𝜋−1(𝛾𝑖) .

It is not difficult to see that [Σ1], . . . , [Σ𝑘−1] generate 𝐻2(𝑀 ;Z). It is an exercise to show that

[Σ𝑖] · [Σ 𝑗 ] =
{
−2 if 𝑖 = 𝑗,

1 if 𝑖 ≠ 𝑗 .

♠

Remark 5.48. Kronheimer [Kro89b] gave an alternative construction of the ALE spaces of type

𝐴𝑘−1 (in fact, all ALE spaces) as hyperkähler quotients. He also classified these spaces completely

[Kro89a]. ♣

Example 5.49. Let 𝑥1, . . . , 𝑥𝑘 be 𝑘 distinct points in R3
and let 𝑐 > 0. Set 𝑈 ≔ R3\{𝑥1, . . . , 𝑥𝑘 }

and define 𝑓 : 𝑈 → R by

𝑓 (𝑥) =
𝑘∑︁
𝑖=1

1

2|𝑥 − 𝑥𝑖 |
+ 𝑐.

The Gibbons–Hawking ansatz for 𝑓 gives rise to the so-called multi-center Taub–NUT metric.

♠

Example 5.50. The following is due to Anderson, Kronheimer, and LeBrun [AKL89]. Let

𝑥1, 𝑥2, . . . be an infinite sequence of distinct points in R3
and denote by 𝑈 the complement of

these points. If

∞∑︁
𝑗=2

1

𝑥1 − 𝑥 𝑗
< ∞,

then

𝑓 (𝑥) ≔
∞∑︁
𝑗=1

1

2|𝑥 − 𝑥 𝑗 |
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defines a harmonic function on𝑈 . The Gibbons–Hawking ansatz gives rise to a hyperkähler

manifold 𝑋 whose second homology 𝐻2(𝑋,Z) is infinitely generated. Anderson, Kronheimer,

and LeBrun prove that the metric 𝑔 is complete. ♠
This is not a complete list of interesting examples of hyperkähler manifold which can be

produced using the Gibbons–Hawking ansatz. The most egregious omission is that of the

Ooguri–Vafa metric.

5.7 Anti-self-duality as a moment map

Let 𝐺 be a compact connecte semi-simple Lie group. Fix 𝑘 ∈ {2, 3, . . .}. (The choice of 𝑘

ultimately turns out to be quite insubstantial. For concreteness one could take 𝑘 = 2.) Set

A ≔𝑊 𝑘,2Ω1(H, 𝔤)

Here the prefix𝑊 𝑘,2
denotes taking the completion with respect to the norm ∥−∥𝑊 𝑘,2 defined

by

∥𝐴∥2
𝑊 𝑘,2 ≔

𝑘∑︁
ℓ=0

ˆ
H
|∇𝑘𝐴|2.

This is a Hilbert manifold (indeed: a Hilbert space). The 𝐿2
–inner product defines a Riemannian

metric on A and, obviously, ImH acts on 𝑇A: for 𝑎 ∈ 𝑇𝐴A and 𝜉 ∈ ImH

𝐼𝜉𝑎 ≔ −𝑎(𝜉 · −) .

(The minus sign is neccessary to preserve 𝐼𝑖𝐼 𝑗 = 𝐼𝑘 .)

Therefore, A is an infinite dimensional hyperkähler manifold.

Set

G0 ≔ exp(𝑊 𝑘+1,2(H, 𝔤)) ≔ {𝑢 = exp(𝜉) : 𝜉 ∈𝑊 𝑘+1,2(H, End(𝔤))}.
The subscript zero indicates that the gauge transformations 𝑢 ∈ G0. G0 acts on the right ofA

via

𝑢∗𝐴 ≔ Ad(𝑢) ◦𝐴 + 𝜇 (𝑢) = ”𝑢−1𝐴𝑢 + 𝑢−1
d𝑢”.

This action preserves the hyperkähler structure onA. The infinitesimal action of 𝜉 ∈ Lie(G0) =
𝑊 𝑘+1,2(H, 𝔤) is

𝑣𝜉 (𝐴) = d𝐴𝜉 .

This is a (Hilbert space) quaternionic representation. Let us compute the distinguished

hyperkähler moment map: for 𝐴 ∈ A, 𝑞 ∈ ImH, and 𝑢 ∈ Lie(G0) =𝑊 𝑘+1,2(H, 𝔤)

⟨𝜇 (𝐴), 𝑞 ⊗ 𝜉⟩ = 1

2

⟨𝐼𝑞d𝐴𝜉, 𝐴⟩.

To digest this expression observe that

d
∗(𝑓 𝜔𝑞) =

4∑︁
𝑎=1

−(𝜕𝑎 𝑓 )𝑖𝜕𝑥𝑎𝜔𝑞 =

4∑︁
𝑎=1

−(𝜕𝑎 𝑓 )⟨𝐼𝑞𝜕𝑥𝑎 ,−⟩ =
4∑︁
𝑎=1

(𝜕𝑎 𝑓 )⟨𝜕𝑥𝑎 , 𝐼𝑞−⟩

=

4∑︁
𝑎=1

(𝜕𝑎 𝑓 )d𝑥𝑎 ◦ 𝐼𝑞 = −𝐼𝑞d𝑓 .
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Therefore,

⟨𝜇 (𝐴), 𝑞 ⊗ 𝜉⟩ = −1

2

⟨d∗𝐴 (𝜉 · 𝜔𝑞), 𝐴⟩ = −
1

2

⟨𝜉 · 𝜔𝑞), d𝐴𝐴⟩ = −
1

2

⟨𝜉 · 𝜔𝑞, 𝐹𝐴⟩ = −
1

2

⟨𝜉 · 𝜔𝑞, 𝐹+𝐴⟩.

Identifying, Lie(G0) and its dual and ImH∗ = ImH = Λ+H via 𝑞∗ ↦→ − 1

2
𝜔𝑞 exhibits

𝜇 (𝐴) = 𝐹+𝐴 .

Therefore, the anti-self-dual part of the curvature is the hyperkähler moment map! (The

phenomenon that an interesting non-linear partial differential equation appears as a moment

maps is suprisingly common.)

Now the hyperkähler reduction of theA byG0 is

Mfr

𝐺 ≔ {𝐴 ∈ A : 𝐹+𝐴 = 0}/G0.

This is the moduli space of framed 𝐺 ASD instantons on H. The adjactive framed has to do

with the fact that the quotient is by gauge transformations which decay to the identity at infinity.

Mfr

𝐺
has an action by𝐺 . The quotient is the actual moduli space (but it does not have the feature

of being hyperkähler).

For every [𝐴] ∈Mfr

𝐺

𝑘 ≔
1

4𝜋2
YM(𝐴) ∈ N0.

This number 𝑘 is the instanton number or charge of 𝐴. It is customary to decompose

Mfr

𝐺 =
∐
𝑘∈N0

Mfr

𝐺,𝑘
.

5.8 Preparation: projections and connections

Let 𝑋 be a smooth manifold. Denote by R𝑛 ≔ R𝑛 × 𝑋 the trivial vector bundle of rank 𝑁 over

𝑋 . Let 𝑃 ∈ Γ(End(R𝑛)) be a projection of constant rank; that is:

𝑃2 = 𝑃 and rk 𝑃 = 𝑟 .

Define the complementary projection by

𝑄 ≔ 1 − 𝑃 .

These define a decomposition

R𝑛 = 𝐸 ⊕ 𝐹 with 𝐸 ≔ im 𝑃 and 𝐹 ≔ im𝑄.

With respect to this decomposition

d =

(
𝑃d 𝑃d𝑄

𝑄d𝑄 𝑄d

)
.
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The diagonal components define covariant derivatives ∇ ≔ 𝑃d on 𝐸 and ∇ ≔ 𝑄d on 𝐹 . Since

the roles of 𝐸 and 𝐹 are interchangable, let us focus on 𝐸. If 𝑃 is an orthogonal projection; that

is: 𝑃∗ = 𝑃 , then ∇ is an orthogonal covariant derivative on 𝐸. (Similarly, if 𝑃 is complex linear,

etc.)

To compute the curvature of ∇ it is convenient to define the covariant derivative
¯∇ on R𝑛 by

¯∇𝑠 ≔ (d +𝐴)𝑠 with 𝐴 ≔ −𝑄d𝑃 = 𝑄d𝑄.

The covariant derivative
¯∇ preserves the subbundle 𝐸 ⊂ R𝑁 and induces ∇. The curvature 𝐹 ¯∇

of
¯∇ is

𝐹 ¯∇ = d𝑄 ∧ d𝑄 = d𝑃 ∧ d𝑃

To see this observe that

𝑄d𝑄 ∧𝑄d𝑄 = 𝑄 (d𝑄 −𝑄d𝑄) ∧ d𝑄 = 0

Therefore,

𝐹∇ = 𝑃 (d𝑃) ∧ (d𝑃)𝑃 .

Henceforth, let us assume that 𝑃 is orthogonal. Suppose that 𝑅 : R𝑛 → R𝑛−𝑟 is a surjective
vector bundle morphism and that

𝐸 = ker𝑅 and 𝐹 = im𝑅∗.

A moment’s thought shows that

𝑃 = 1 −𝑄 and 𝑄 = 𝑅∗(𝑅𝑅∗)−1𝑅

(This becomes particularly simple if 𝑅𝑅∗ = 1.) Since 𝑅𝑃 = 0 and 𝑃𝑅∗ = 0, the above considera-

tions yields

𝐹∇ = 𝑃 (d𝑅∗) ∧ (𝑅𝑅∗)−1(d𝑅)𝑃 .

Remark 5.51. Let 𝑘, 𝑟 ∈ N0.

(1) Denote by Gr𝑟 (R𝑘+𝑟 ) the Grassmannian of 𝑟–planes in R𝑘+𝑟 . There is a tautological vector
bundle 𝑝 : 𝑉 → Gr𝑟 (R𝑘+𝑟 ) (indeed, a subbundle of R𝑘+𝑟 → Gr𝑟 (R𝑘+𝑟 ) defined by

𝑉 ≔
{
(Π, 𝑣) ∈ Gr𝑟 (R𝑘+𝑟 ) × R𝑘+𝑟 : 𝑣 ∈ Π

}
.

𝑉 inherits an Euclidean inner product from R𝑘+𝑟 .

(2) The procedure discussed above defines a covariant derivative ∇ on 𝑉 .

(3) Let 𝑋 is a smooth manifold. If 𝑓 : 𝑋 → Gr𝑟 (R𝑘+𝑟 ) is a smooth map, then 𝑓 ∗𝑝 : 𝑓 ∗𝑉 → 𝑋

is a Euclidean rank 𝑟 vector bundle. Upto isomorphism every Euclidean rank 𝑟 vector

bundle over 𝑋 comes from such a map for some value of 𝑘 . (This is a basic result in the

theory of vector bundles: a baby version of Whitney’s embedding theorem.) Of course,

∇ defines a connection on 𝑓 ∗𝑉 . It turns out that all ASD instantons on H𝑃1 = 𝑆4
can be

obtained in this way.
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(4) Denote by

St
∗
𝑘
(R𝑘+𝑟 ) ≔

{
𝑅 ∈ Hom(R𝑘+𝑟 ,R𝑘 ) : 𝑅 is surjective

}
and

St𝑘 (R𝑘+𝑟 ) ≔
{
𝑅 ∈ St

∗
𝑘
(R𝑘+𝑟 ) : 𝑅𝑅∗ = 1

}
the Stiefel manifold and the orthogonal Stiefel manifold. (To match this with our earlier

definition, observe that 𝑅 and 𝑅∗ are equivalent data.) The maps

ker : St
∗
𝑘
(R𝑘+𝑟 ) → Gr𝑟 (R𝑘+𝑟 ) defined by ker(𝑅) ≔ ker𝑅

makes St
∗
𝑘
(R𝑘+𝑟 ) into a GL𝑘 (R)–principal bundle and St𝑘 (R𝑘+𝑟 ) into a O(𝑘)–principal

bundles. Indeed, they are the frame bundle and the orthogonal frame bundle of 𝑉⊥(=
im𝑅∗) respectively.

(5) The diffeomorphism Gr𝑘 (R𝑘+𝑟 ) � Gr𝑟 (R𝑘+𝑟 ) turns St𝑟 (R𝑘+𝑟 ) into an O(𝑟 )–principal
bundle over Gr𝑟 (R𝑘+𝑟 ). Indeed, it is the orthogonal frame bundle of 𝑉 . Therefore, it

inherits a O(𝑟 )–principal connection 𝐴∇ from the covariant derivative ∇ on 𝑉 .

(6) St𝑟 (R𝑘+𝑟 ) has a canonical O(𝑟 )–invariant Riemannian metric 𝑔; indeed:

𝑔(𝑅1, 𝑅2) = tr(𝑅∗
1
𝑅2).

This equips it with an O(𝑟 )–principal connection 𝐴𝑔. Indeed:

𝐴𝑔 = 𝐴∇!

(7) The Gram–Schmidt process defines a map

GS : St
∗
𝑘
(R𝑘+𝑟 ) → St𝑘 (R𝑘+𝑟 ).

Indeed,

GS(𝑅) = (𝑅𝑅∗)−1/2𝑅.

(8) Finally, the above precedure can be thought of (universally) as computing the the pullback

to St𝑘 (R𝑘+𝑟 ) of the canonical O(𝑟 )–principal connection 𝐴 on St𝑟 (R𝑘+𝑟 ) → Gr𝑟 (R𝑘+𝑟 )
and determining its curvature 𝐹𝐴. The total space of this the pullback bundle is{

(𝑅, 𝑆) ∈ St
∗
𝑘
(R𝑘+𝑟 ) × Hom(R𝑘+𝑟 ,R𝑟 ) : 𝑆∗𝑅 = 0, 𝑆𝑆∗ = 1

}
.

The formulae for the connection and the curvature from above apply immediately. ♣

5.9 The ADHM construction

The ADHM construction due to Atiyah, Drinfeld, Hitchin, and Manin [ADHM78] is one of the

early groundbreaking discoveries in mathematical gauge theory: it gives a concrete description

ofMfr

SU(𝑟 ),𝑘 as a finite-dimensional hyperkähler reduction. This makes use of ideas from many

areas of geometry and has ultimately impacted much of mathematics itself. In the following I

102



will only discuss the construction and not give a complete treatment. If you want to learn more

about this, read [DK90, §3.3], [Ati79], and/or [ADHM78].

The following perspective on the ADHM construction is taken from [Ati79]. Define a

Sp(1)–connection 𝐴 ∈ Ω1(H𝑘 , 𝔰𝔭(1)) by

𝐴 ≔

𝑘∑︁
𝑎=1

Im(𝑞𝑎d𝑞𝑎)
1 + |𝑞 |2 .

This connection satisfies

𝐹𝐴 =

∑𝑘
𝑎=1

𝑟𝑑𝑞𝑎d𝑞𝑎

(1 + |𝑞 |2)2
;

in particular,

⟨𝐹𝐴,𝝎⟩ = 0 ∈ 𝐶∞(H𝑘 , 𝔰𝔭(1) ⊗ ImH∗) .

The latter is an higher dimensional analogue of the ASD condition. The idea is to obtain ASD

instantons on H by pulling back 𝐴 with a suitable map 𝑓 : H→ H𝑘 . Of course,

𝑢∗𝐴 =

𝑘∑︁
𝑎=1

Im(𝑢𝑎d𝑢𝑎)
1 + |𝑢 |2 .

Atiyah [Ati79] makes the ansatz
𝑢 (𝑞) = 𝜆(𝐵 − 𝑞)−1

with 𝜆 = (𝜆1, . . . , 𝜆𝑘 ) ∈ H𝑘 (a row vector) and 𝐵 a symmetric 𝑘 × 𝑘–matrix of quaternions.

It turns that this gives a ASD instanton if and only if

𝐵∗𝐵 + 𝜆∗𝜆 is a a real 𝑘 × 𝑘 matrix

and for every 𝑞 ∈ H
ker

(
𝜆𝐵 − 𝑞

)
= 0.

The first condition can be seen to correpond to 𝜇 (𝐵, 𝜆) = 0 for the distinguished hyperkähler

moment map of O(𝑘) acting on

𝑆1,𝑘 ≔ Sym(H𝑘 ) ⊕ H𝑘 .

For 𝑘 = 1 this gives the BPST instantons (after applying a conformal inversion 𝑞 ↦→ 𝑞−1
). If

𝐵 = diag(𝑏1, . . . , 𝑏𝑛) with the entries distinct and 𝜆1, . . . , 𝜆𝑘 > 0, then the above give an type of

ASD instanton discovered by ’t Hooft.

Theorem 5.52 (Atiyah, Drinfeld, Hitchin, and Manin [ADHM78]). Every Sp(1) ASD instanton
with instanton number 𝑘 arises from some choice of (𝜆, 𝐵) as above. Two such ASD instantons are
gauge equivalent if and only if there are 𝑔 ∈ Sp(1) and 𝑇 ∈ O(𝑘) with

𝜆′ = 𝑞𝜆𝑇 and 𝐵′ = 𝑇 −1𝐵𝑇 .
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This can also be phrased as

Mfr

Sp(1),𝑘 = 𝑆◦
1,𝑘
///O(𝑘) .

Here the superscript ◦ indicates imposing the non-degeneracy condition.

A similar story works for Sp(𝑟 ), SU(𝑟 ), O(𝑟 ). For Sp(𝑟 ), 𝜆 is replaced by Λ ∈ H𝑟×𝑘 and 𝑢 is

replaced by

𝑈 (𝑞) = Λ(𝐵 − 𝑥)−1.

The corresponding connection is of the form

(1 +𝑈 ∗𝑈 )−1/2(𝑈 ∗d𝑈 ) (1 +𝑈 ∗𝑈 )−1/2 + (1 +𝑈 ∗𝑈 )1/2d(1 +𝑈 ∗𝑈 )−1/2.

Ultimately,

Mfr

Sp(𝑟 ),𝑘 = 𝑆◦
𝑟,𝑘
///O(𝑘) with 𝑆𝑟,𝑘 ≔ Sym(H𝑘 ) ⊕ H𝑟×𝑘 .

I still owe you an explanation for why the above connections indeed are ASD instantons. It

is not impossible to do this by a brute-force computation, but here is a nicer explanation. Let

𝐶, 𝐷 ∈ HomH(H𝑘+𝑟 ,H𝑘 )

by 𝑘 × (𝑘 + 𝑟 ) matrices of quaternions. The subscript H denotes linearity with respect to the

right H–module structure. For 𝑞 = (𝑞1, 𝑞2) ∈ H2\{0} set

𝑅(𝑞) ≔ 𝑞1𝐶 + 𝑞2𝐷.

Assume that 𝑅(𝑞) is surjective for every 𝑞 ∈ H2\{0}. The H right H–module ker𝑅(𝑞) depends
only on [𝑞] ∈ H𝑃1

(which we take to be the left quotient). This defines a quaternionic vector

bundle

𝐸 ≔ ker𝑅 ⊂ H𝑘+𝑟 .

The curvature of the induced covariant derivative ∇ on 𝐸 can be computed using the technology

from the previous subsection. It suffices to do this over H ↩→ H𝑃1
. Over H,

𝑅(𝑞) = 𝑞𝐶 + 𝐷.

Therefore,

𝐹∇ = 𝑃𝐶∗d𝑞 ∧ (𝑅𝑅∗)−1
d𝑞𝐶𝑃.

If the matrix 𝑅𝑅∗ is always real for every 𝑞 ∈ H, then the above is anti-self-dual. (In fact, this is

an if and only if.)

Now 𝑅 can be brought into the normal form

𝑅 =
(
Λ∗ (𝐵 − 𝑞)∗

)
Therefore,

𝑅𝑅∗ = Λ∗Λ + 𝐵∗𝐵 − (𝐵∗𝑞 + 𝑞𝐵) + |𝑞 |2

is real if and only if

Λ∗Λ + 𝐵∗𝐵 and 𝐵∗𝑞 + 𝑞𝐵
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are real. The latter condition is equivalent to 𝐵 being symmetric. The final ingredient is to

observe that (
−1
𝑈

)
(1 +𝑈 ∗𝑈 )−1/2

parametrises ker𝑅 and the corresponding connection is also

(1 +𝑈 ∗𝑈 )−1/2(𝑈 ∗d𝑈 ) (1 +𝑈 ∗𝑈 )−1/2 + (1 +𝑈 ∗𝑈 )1/2d(1 +𝑈 ∗𝑈 )−1/2.

The following perspective is useful. The Grassmannian Gr
H
𝑘
(H𝑘+𝑟 ) carries a natural Sp(𝑟 )–

bundle with a connection. The data above specifies a map H(→ H𝑃1) → Gr𝑘 (H𝑘+𝑟 ) which
pulls back the standard connection to an ASD instanton.

C

Here is the ADHM description for SU(𝑟 ). Let 𝑟 ∈ N, 𝑘 ∈ N0. Set

𝑆𝑟,𝑘 ≔ HomC(C𝑟 ,H ⊗C C𝑘 ) ⊕ H ⊗R 𝔲(𝑘)

The tensor product ⊗C uses the C right-module structure that arises from right-multiplication

by 𝑖 ∈ H. 𝑇 ∈ H ⊗R 𝔲(𝑘) defines an endomorphism of H ⊗C C𝑘 given by the composition of

multiplication in H and the action of 𝔲(𝑘) on C𝑘 . For (Ψ,𝑇 ) ∈ 𝑆𝑟,𝑘 and 𝑥 ∈ H define

𝑅𝑥 : (H ⊗C C𝑘 ) ⊕ C𝑟 → H ⊗C C𝑘

by

𝑅𝑥 (𝜙, 𝑣) ≔ (𝑇 − 𝑥∗) (𝜙) + Ψ(𝑣).

(Ψ,𝑇 ) is non-degenerate if 𝑅𝑥 is surjective for every 𝑥 ∈ H. In this case,

𝑉 ≔
∐
𝑥∈H

ker𝑅𝑥 ⊂ H × [(H ⊗C C𝑘 ) ⊕ C𝑟 ]

is a Hermitian subbundle of rank

rk𝑉 = 𝑟

and inherits a covariant dervivative ∇ = ∇Ψ,𝑇 : Γ(𝑉 ) → Ω1(H,𝑉 )

∇𝑠 ≔ (d𝑠)⊥

with (−)⊥ denoting the orthogonal projection onto 𝑉 . Set

𝑆◦
𝑟,𝑘

≔
{
(Ψ,𝑇 ) ∈ 𝑆𝑟,𝑘 : (Ψ,𝑇 ) is non-degenerate

}
.

𝐺 ≔ U(𝑘) acts on 𝑆𝑟,𝑘 and 𝑆◦𝑟,𝑘 by the defining representation on C𝑘 and the adjoint representa-

tion on 𝔲(𝑘). Evidently, if (Ψ,𝑇 ) and 𝑔(Ψ,𝑇 ) give rise to gauge equivalent covariant derivatives.
The action of 𝐺 on 𝑆𝑟,𝑘 is a quaternionic representation. It turns out that the vanishing of the

distinguished hyperkähler moment map is precisely the condition for ∇Ψ,𝑇 to have anti-self-dual

curvature (in complete analogy with the∞–dimensional case considered earlier.)
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Again, the data (Ψ,𝑇 ) defines a map to

Gr
C
𝑟 (H ⊗C C𝑘 ⊕ C𝑟 ) = Gr

C
𝑟 (C2𝑘+𝑟 ).

The factor C𝑟 has a particular meaning. To see this, observe that 𝑅 can be extended from H
to H2\{0} as

𝑅(𝑞0, 𝑞1) =
(
𝑞∗

0
𝑇 − 𝑞∗

1
𝑞∗

0
.
)

The kernel of 𝑅 depends only on [𝑞0, 𝑞1] ∈ H𝑃1
. The fiber over∞ = [0, 1] is precisely C𝑟 .

5.10 Dimensional reduction

Let 𝐺 be a Lie group. Let 𝑋 be an oriented Riemannian manifold. Let 𝑑 ∈ N. Let 𝑝 : 𝑃 → 𝑋 be

a 𝐺–principal bundle. Denote by pr𝑋 : 𝑋 × R𝑑 → 𝑋 the canonical projection map. Consider

pr
∗
𝑌
𝑝 : pr

∗
𝑌
𝑃 = 𝑃 × R𝑑 → R × 𝑌 . Let A ∈ A(pr

∗
𝑌
𝑝) ⊂ Ω1(𝑃 × R𝑑 , 𝔤)Ad

. A can be decomposed as

A = 𝐴 +
𝑑∑︁
𝑎=1

𝜉𝑎d𝑡𝑎 .

with 𝐴 ∈ Ω1(𝑃 × R𝑑 , 𝔤)Ad
satisfying 𝑖𝜕𝑡𝑎𝐴 = 0 and 𝜉𝑎 ∈ 𝐶∞(𝑃 × R𝑑 , 𝔤)Ad

(𝑎 ∈ {1, . . . , 𝑑}). It is
useful to think:

𝐴 ∈ 𝐶∞(R𝑑 ,A(𝑝)) and 𝜉𝑎 ∈ 𝐶∞(R𝑑 , Γ(Ad(𝑃)))
The curvature of A is

𝐹A = 𝐹𝐴 −
𝑑∑︁
𝑎=1

(
𝜕𝑡𝑎𝐴 − d𝐴𝜉𝑎

)
∧ d𝑡𝑎 +

1

2

𝑑∑︁
𝑎,𝑏=1

(
𝜕𝑡𝑎𝜉𝑏 − 𝜕𝑡𝑎𝜉𝑏 + [𝜉𝑎, 𝜉𝑏]

)
d𝑡𝑎 ∧ d𝑡𝑏 .

Here 𝐹𝐴 denotes the curvature of 𝐴 restricted to the slices {𝑡} × 𝑌 .
Dimensional reduction is to impose

𝜕𝑡𝑎𝐴 = 0 and 𝜕𝑡𝑎𝜉𝑏 = 0 (𝑎, 𝑏 ∈ {1, . . . , 𝑑}).

In this case, the above expression for 𝐹A simplifies to

𝐹A = 𝐹𝐴 +
𝑑∑︁
𝑎=1

d𝐴𝜉𝑎 ∧ d𝑡𝑎 +
1

2

𝑑∑︁
𝑎,𝑏=1

[𝜉𝑎, 𝜉𝑏]d𝑡𝑎 ∧ d𝑡𝑏 .

The dimensional reduction of the Yang–Mills functional yields the following Yang–Mills–Higgs
functional

YMH(𝐴, 𝜉) ≔ 1

2

ˆ
𝑋

|𝐹𝐴 |2 +
𝑑∑︁
𝑎=1

|d𝐴𝜉𝑎 |2 +
1

4

𝑑∑︁
𝑎,𝑏=1

| [𝜉𝑎, 𝜉𝑏] |2.

More generally, for any representation 𝜌 : 𝐺 → O(𝑉 ) and 𝐺–invariant function 𝑄 : 𝑉 → R
one can consider the Yang–Mills–Higgs functional

YMH(𝐴,𝜙) ≔ 1

2

ˆ
𝑋

|𝐹𝐴 |2 + |d𝐴𝜙 |2 +𝑄 (𝜙)
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for 𝐴 ∈ A(𝑝) and 𝜙 ∈ Γ(𝑃 ×𝜌 𝑉 ).
The dimensional reductions of the anti-self-duality equation to dimensions 3, 2, 1 give rise

to the Bogomolny equation (monopoles), the Hitchin equation (Higgs bundles), and Nahm’s

equation. Let us derive these equations. I’ll give you a little survey of these equations afterwards.

Proposition 5.53. Let (𝑌,𝑔) be an oriented Riemannian 3–manifold. Let (𝑝 : 𝑃 → 𝑌, 𝑅) be a
𝐺–principal bundle. Let 𝐴 ∈ A(𝑝, 𝑅) and 𝜉 ∈ Γ(Ad(𝑃)). The 𝐺–principal connection

A ≔ 𝐴 + 𝜉d𝑡 ∈ A(pr
∗
𝑌 (𝑝, 𝑅))

is anti-self-dual on 𝑌 × R if and only if the Bogomolny equation

(5.54) 𝐹𝐴 = − ∗ d𝐴𝜉

holds.

Proof. To prove this, one needs to understand how the Hodge-∗-operator on 𝑋 ≔ 𝑌 × R and 𝑌

are related. The orientation on𝑋 is so that vol𝑋 = vol𝑌 ∧d𝑡 . As a consequence for 𝛼, 𝛽 ∈ Ω2(𝑌 ),

𝛼 ∧ ∗𝑋 𝛽 = ⟨𝛼, 𝛽⟩vol𝑋 = ⟨𝛼, 𝛽⟩vol𝑌 ∧ d𝑡 = 𝛼 ∧ ∗𝑌 𝛽 ∧ d𝑡 .

Therefore,

∗𝑋 𝛽 = ∗𝑌 𝛽 ∧ d𝑡

Similarly, for 𝛼 ∈ Ω1(𝑌 )
∗𝑋 (𝛼 ∧ d𝑡) = ∗𝑌𝛼.

Therefore,

∗𝑋 𝐹A = (∗𝑌 𝐹𝐴) ∧ d𝑡 + ∗𝑌 (d𝐴𝜉) .
∗𝑋 𝐹A = −𝐹A thus amounts to the above equation. ■

Proposition 5.55. Let (Σ, 𝑔) be an oriented Riemann surface Let (𝑝 : 𝑃 → Σ, 𝑅) be a 𝐺–principal
bundle. Let 𝐴 ∈ A(𝑝, 𝑅) and 𝜉1, 𝜉2 ∈ Γ(Ad(𝑃)). The 𝐺–principal connection

A ≔ 𝐴 + 𝜉1d𝑡1 + 𝜉2d𝑡2 ∈ A(pr
∗
𝑌 (𝑝, 𝑅))

is anti-self-dual if and only if Hitchin’s equation

𝐹𝐴 + [𝜉1, 𝜉2] = 0,

d𝐴𝜉1 + ∗d𝐴𝜉2 = 0.
(5.56)

holds.

Proof. By the above,

𝐹A = 𝐹𝐴 + d𝐴𝜉1 ∧ d𝑡1 + d𝐴𝜉2 ∧ d𝑡2 + [𝜉1, 𝜉2]d𝑡1 ∧ d𝑡2.

The orientation on 𝑋 = R2 × 𝑌 is vol𝑋 = d𝑡1 ∧ d𝑡2 ∧ volΣ. Therefore,

∗𝑋 (d𝑡1 ∧ d𝑡2) = volΣ

and for 𝛼 ∈ Ω1(Σ)

∗𝑋 (𝛼 ∧ d𝑡1) = −(∗Σ𝛼) ∧ d𝑡2 and ∗𝑋 (𝛼 ∧ d𝑡2) = (∗Σ𝛼) ∧ d𝑡1. ■
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Proposition 5.57. Let 𝐼 be an interval. Let 𝜉0, 𝜉1, 𝜉2, 𝜉3 ∈ 𝐶∞(𝐼 , 𝔤) The 𝐺–principal connection

A ≔ 𝜉0d𝑡0 + 𝜉1d𝑡1 + 𝜉2d𝑡2 + 𝜉3d𝑡3

is anti-self-dual if and only if Nahm’s equation

¤𝜉1 + [𝜉0, 𝜉1] + [𝜉2, 𝜉3] = 0,

¤𝜉2 + [𝜉0, 𝜉2] + [𝜉3, 𝜉1] = 0,

¤𝜉3 + [𝜉0, 𝜉3] + [𝜉1, 𝜉2] = 0

(5.58)

holds.

Proof. By the above,

𝐹A =

3∑︁
𝑎=1

( ¤𝜉𝑎 + [𝜉0, 𝜉𝑎])d𝑡0 ∧ d𝑡𝑎 +
1

2

3∑︁
𝑎,𝑏=1

[𝜉𝑎, 𝜉𝑏]d𝑡𝑎 ∧ d𝑡𝑏 .

Of course,

∗(d𝑡0 ∧ d𝑡𝑎) =
1

2

3∑︁
𝑏,𝑐=1

𝜀𝑎𝑏𝑐d𝑡𝑏 ∧ d𝑡𝑐

This implies the assertion directly. ■

5.11 The Bogomolny equation

Bogomolny [Bog76] Prasad and Sommerfield [PS75]

Proposition 5.59. Let (𝑌,𝑔) be an oriented Riemannian 3–manifold. Let (𝑝 : 𝑃 → 𝑌, 𝑅) be a
𝐺–principal bundle. If 𝐴 ∈ A(𝑝, 𝑅) and 𝜉 ∈ Γ(Ad(𝑃)) is a solution of the Bogomolny equation
(5.54), then

d𝐴 ∗ d𝐴𝜉 = 0.

If 𝑌 is closed, then
d𝐴𝜉 = 0 and 𝐹𝐴 = 0.

Proof. The Bianchi identity d𝐴𝐹𝐴 = 0 immediately implies that d
∗
𝐴

d𝐴𝜉 = 0. Therefore,

ˆ
𝑌

|d𝐴𝜉 |2 =
ˆ
𝑌

⟨𝜉, d∗𝐴d𝐴𝜉⟩. ■

A consequence of the above on typically studies the Bogomolny equation on a non-compact

𝑌 or admits 𝐴 and 𝜉 to have singularities. In fact, the study of the Bogomolny equation has

largely focused on R3
.
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Examples. Here are two important examples.

Example 5.60. Denote by (𝑝 : 𝑆3 → 𝑆2, 𝑅) the Hopf bundle. The adjoint bundle Ad(𝑆3) is trivial
bundle 𝑖R. The U(1)–principal connection 𝐵 induced by the standard Riemannian metric on 𝑆3

satisfies

𝐹𝐵 = − 𝑖
2

vol𝑆2 .

For 𝑘 ∈ Z define 𝜆𝑘 : U(1) → U(1) by 𝜆𝑘 (𝑧) ≔ 𝑧𝑘 and denote by 𝑝𝑘 : 𝑃𝑘 ≔ 𝑆3 ×𝜆𝑘 U(1) → 𝑆2

the corresponding U(1)–principal bundle. 𝐵 induced a U(1)–principal connection 𝐵𝑘 on 𝑝𝑘
satisfying

𝐹𝐵𝑘 = −𝑖𝑘
2

vol𝑆2 .

Denote by 𝜋 : R3\{0} → 𝑆2
the projection map. Let𝑚 ∈ R. The Dirac monopole of mass𝑚

and charge 𝑘 defined by

𝐴Dirac

𝑘
≔ 𝜋∗𝐵𝑘 and 𝜉Dirac

𝑚,𝑘
≔

(
𝑚 − 𝑘

𝑟

)
𝑖

2

satisfies (5.54). ♠

Remark 5.61 (Scaling monopoles). Let 𝜆 > 0. Define 𝑠𝜆 : R3 → R3
by 𝑠𝜆 (𝑥) ≔ 𝜆𝑥 . If (𝐴, 𝜉) is a

solution to (5.54), the so is

(𝑠∗
𝜆
𝐴, 𝜆𝑠∗

𝜆
𝜉) .

The mass parameter can be varied by scaling. ♣

Example 5.62. Let𝑚 ∈ R. Let 𝑘 ∈ N. Let 𝑥1, . . . , 𝑥𝑘 ∈ R3
. Set

𝜉 ≔

(
𝑚 −

𝑘∑︁
𝑎=1

1

|𝑥 − 𝑥𝑎 |

)
𝑖

2

.

There is a U(1)–principal bundle (𝑝 : 𝑃 → R3\{𝑥1, . . . , 𝑥𝑘 }, 𝑅) and a connection 𝐴 ∈ A(𝑝, 𝑅)
which together with 𝜉 satisfies (5.54). ♠

Example 5.63. Bogomolny [Bog76] and Prasad and Sommerfield [PS75] discovered the BPS
monopole, a particular solution of (5.54). Identify R3 = 𝔰𝔭(1). In particular, 𝑆2 ⊂ 𝔰𝔭(1). Denote
by 𝜏 ∈ 𝐶∞(𝑆2, 𝔰𝔭(1)) the inclusion map. A brief computation shows that

d𝜏 =
1

2

[𝜏, ∗𝑆2d𝜏],

∗𝑆2d𝜏 = −1

2

[𝜏, d𝜏],

[d𝜏 ∧ d𝜏] = 4𝜏vol𝑆2,

[(∗𝑆2d𝜏) ∧ (∗𝑆2d𝜏)] = 4𝜏vol𝑆2 .

Therefore, the ansatz
𝐴 = 𝑓 (𝑟 ) ∗𝑆2 d𝜏 and 𝜉 = 𝑔(𝑟 )𝜏
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leads to

𝐹𝐴 = 𝑓 ′d𝑟 ∧ ∗𝑆2d𝜏 + 2(−𝑓 + 𝑓 2)𝜏vol𝑆2 and

d𝐴𝜉 = 𝑔
′𝜏d𝑟 + (𝑔 − 2𝑓 𝑔)d𝜏 .

Since ∗d𝑟 = 𝑟 2
vol

2

𝑆 , the Bogomolny equation therefore amounts to the ODE

𝑓 ′ = 𝑔 − 2𝑓 𝑔 and

𝑟 2𝑔′ = 2(𝑓 − 𝑓 2) .

Here is a family of solutions (𝑚 > 0) to this equation

𝑓𝑚 (𝑟 ) = −
1

2

( 𝑚𝑟

sinh𝑚𝑟
− 1

)
and 𝑔𝑚 (𝑟 ) =

𝑚

2

(
1

tanh𝑚𝑟
− 1

𝑚𝑟

)
.

Observe that

𝑓𝑚 =
1

2

+𝑂 (𝑚𝑟𝑒−2𝑚𝑟 ) . and 𝑔𝑚 =

(
𝑚

2

− 1

2𝑟

)
+𝑂 (𝑒−2𝑚𝑟 ).

This gives the 1–parameter family of solutions

(𝐴BPS

𝑚 , 𝜉BPS

𝑚 ) 𝑚 > 0

of (5.54). ♠

Remark 5.64.

(1) Let 𝑋 be a manifold of dimension at most 3. Let 𝐿 → 𝑋 be a Hermitian line bundle. Set

𝐸 ≔ 𝐿 ⊕ 𝐿∗ → 𝑋 . Eventhough, 𝐿 might not be trivial, 𝐸 always is. Here is why. Since

3 < 4, a generic section 𝑠 of 𝐸 is nowhere-vanishing. Since 𝐸 inherits a complex structure

𝑖 from 𝐿, 𝐸 has at two linearly independent sections: 𝑠 , 𝑖𝑠 . The Hermitian inner product,

defines an 𝑖–anti-linear map 𝑗 : 𝐿 → 𝐿∗ that can be extended to a futher almost complex

structure 𝑗 on 𝐸 satifying 𝑖 𝑗 = − 𝑗𝑖 . Consequently, 𝐸 is a quaternionic line bundle and

𝑠, 𝑖𝑠, 𝑗𝑠, 𝑖 𝑗𝑠 are linearly independent.

(2) As a concrete instantance of the above but in setting of U(1)– and Sp(1)–principal bundles.
The Hopf bundle 𝑝 : 𝑃 ≔ 𝑆3 → 𝑆2

is non-trivial. Define 𝜌 : U(1) → Sp(1) by

𝜌 (𝑒𝑖𝛼 ) = 𝑒𝑖𝛼 .

The associated Sp(1)–principal bundle 𝑞 : 𝑄 ≔ 𝑆3 ×𝜌 Sp(1) → 𝑆2
is trivial. Indeed, the

section 𝑠 : 𝑆2 = 𝑆3/U(1) → 𝑄 defined by

𝑠 ( [𝑥]) ≔ [𝑥, 𝑥∗]

trivialises 𝑄 . Here 𝑆3 = Sp(1).
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(3) The Dirac monopole is built from the standard U(1)–principal connection 1–form 𝜃 ∈
Ω1(𝑆3, 𝑖R) and the constant U(1)–equivariant map 𝑖 ∈ 𝐶∞(𝑃, 𝑖R)Ad

. The latter induces

the Sp(1)–equivariant map 𝜉 ∈ 𝐶∞(𝑄, 𝔰𝔭(1))Ad
by

𝜉 ( [𝑥,𝑔]) ≔ Ad(𝑔)−1(Lie 𝜌) (𝑖) = 𝑔∗𝑖𝑔.
The pullback via 𝑠 satisfies

𝑠∗𝜂 ( [𝑥]) = 𝑥𝑖𝑥∗.
This is the map 𝜏 : 𝑆2 = 𝑆3/U(1) → 𝔰𝔭(1). This shows that the Higgs field of the BPS

monopole is (exponentially) asymptotic to the Higgs field of the Dirac monopole.

The same is true for the connection. The connection 1–form 𝜃 on 𝑃 can be written as

𝜃 = 𝑖 Re(d𝑥∗𝑥𝑖) = 1

2

(𝑖d𝑥∗𝑥𝑖 + 𝑥∗d𝑥) .

The induced connection on 𝑄 descends from

1

2

Ad(𝑔)−1(𝑖d𝑥∗𝑥𝑖 + 𝑥∗d𝑥) + 𝑔−1
d𝑔.

with 𝑥 ∈ 𝑃 and 𝑔 ∈ Sp(1). The pullback via 𝑠 is

1

2

𝑥 (𝑖d𝑥∗𝑥𝑖 + 𝑥∗d𝑥)𝑥∗ + 𝑥d𝑥∗ =
1

2

(𝑥𝑖d𝑥∗𝑥𝑖𝑥∗ + 𝑥d𝑥∗) .

Therefore, for 𝜏 (𝑥) = 𝑥𝑖𝑥∗,

−1

4

[𝜏, d𝜏] = −1

4

[𝑥𝑖𝑥∗, d𝑥𝑖𝑥∗ + 𝑥𝑖d𝑥∗]

= −1

4

(𝑥𝑖𝑥∗d𝑥𝑖𝑥∗ − 𝑥d𝑥∗ + d𝑥𝑥∗ − 𝑥𝑖d𝑥∗𝑥𝑖𝑥∗)

= 𝜃 .

This proves the statement about the connection. ♣

Energy and charge. Henceforth, we restrict to 𝐺 = SU(2) = Sp(1) and, in fact, shortly to

𝑌 = R3
. Consider the Yang–Mills–Higgs functional

YMH(𝐴, 𝜉) = 1

2

ˆ
𝑌

|𝐹𝐴 |2 + |d𝐴𝜉 |2.

Obviously,

YMH(𝐴, 𝜉) = 1

2

ˆ
𝑌

|𝐹𝐴 ± ∗d𝐴𝜉 |2 ∓ 4𝜋𝑁 with 𝑁 ≔
1

4𝜋

ˆ
𝑌

⟨𝐹𝐴 ∧ d𝐴𝜉⟩.

For 𝑌 = R3
, by Stokes’ theorem

𝑁 =
1

4𝜋
lim

𝑟→∞

ˆ
𝜕𝐵𝑟 (0)

⟨𝐹𝐴, 𝜉⟩

Under suitable boundary conditions this limit exits and indeed agrees with the degree of

𝜉 : 𝑆2

∞ → 𝑆2 ⊂ 𝔰𝔭(1). In particular,

𝑁 ∈ Z.
This is the anlogue of the energy identity for the (anti-)self-duality equation.
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Moduli spaces. It is customary study (5.54) on the trivial Sp(2)–bundle over R3
with the

following boundary condition that, with respect to the isomorphism Sp(1) × (R3\{0}) � 𝑄
discussed above,

(𝐴, 𝜉) = (𝐴Dirac

𝑘
, 𝜉Dirac

1,𝑘
) + lower order terms at infinity.

(The mass parameter can be adjusted by scaling.) Denote the corresponding space of configura-

tions of (𝐴, 𝜉) by C𝑘 . The relevant group of gauge transformationsG0 is required to decay to

the identity at infinity. The framed moduli space of charge 𝑘 monopoles is then

N𝑘 ≔ {(𝐴, 𝜉) ∈ C𝑘 : (5.54)}/G0.

Theorem 5.65. N𝑘 is a hyperkähler manifold of dimension 4𝑘 . 𝑆1 × R3 acts freely on N𝑘 .

The strongly centred framed monopole moduli space of charge 𝑘 is

˜N0

𝑘
≔

�N𝑘

𝑆1 × R3
.

˜N0

2
is Atiyah–Hitchin manifold, already a tantalising geometric object.

The fact thatN𝑘 is always non-empty is one of the first major mathematical achievments

of Taubes. His idea is to start with a Dirac monopole with 𝑘 (well-separated) singularities and

to repair the singularities by gluing in BPS monopoles. Using cut-off functions this can be

done approximately. To make these approximate solutions actual solutions requires a delicate

analysis; cf. Jaffe and Taubes [JT80].

Theorem 5.66 (Donaldson [Don84]). A choice of isometry R3 = R × C defines a bijection between
N𝑘 and the space of rational maps 𝑓 : C𝑃1 → C𝑃1 of degree 𝑘 satisfying 𝑓 ( [1 : 0]) = [0 : 1].

This theorem was the first to give a global uniform understanding of N𝑘 for all 𝑘 . This was

conjectured in Murray [Mur83, Appendix B]. Donaldson’s proof is rather roundabout. Jarvis

[Jar00] gave a direct and geometric proof (of an extension of Theorem 5.66.

the cyclic group 𝐶𝑘 acts on ˜N0

𝑘
. Denote by 𝜇𝑘 the 𝑘–th roots of unity. There are canonical

maps 𝜆ℓ : 𝐶𝑘 → 𝜇𝑘 which sends the generator of 𝐶𝑘 to 𝑒
2𝜋𝑖ℓ/𝑘

. Therefore, it also acts on the

cohomology H
𝑖 ( ˜N0

𝑘
,C). Denote by

H
𝑖
ℓ ( ˜N0

𝑘
,C)

the subspace in which the action of 𝐶𝑘 agrees with 𝜆ℓ . There is an analoge of the above spaces

cohomology replaced by 𝐿2
harmonic formsH. Sen’s conjecture [Sen94] asserts that

(1) If 𝑘, ℓ are coprime, thenH2𝑘−2

ℓ ( ˜N0

𝑘
,C) � C and vanishes otherwise.

(2) If 𝑘, ℓ are not coprime, thenH𝑖
ℓ ( ˜N0

𝑘
,C) vanishes.

This conjecture was a main driving force in the study of the geometry of moduli spacee
˜N0

𝑘
.

The cohomological version of theses statements are have been proved by Segal and Selby [SS96]

The first part of these conjectures has now been proved by Fritzsch, Kottke, and Singer [FKS18]

(modulo the appearance of part 2 of that paper?).
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Monopoles and scattering. Let 𝐼 be an interval. Let Σ be a Riemann surface. Let 𝐸 → Σ be a

Hermitian vector bundle with det𝐸 = C. Let d𝐴 be a compatible covariant derivative on 𝐸 and

let 𝜉 ∈ Γ(𝔰𝔲(𝐸)). The covariant derivative d𝐴 splits as

d𝐴 = 𝜕𝐴 + 𝜕𝐴 + d𝑡 ∧ ∇𝐴,𝜕𝑡 .
Therefore,

𝐹𝐴 = d
2

𝐴 = 𝜕𝐴𝜕𝐴 + 𝜕𝐴𝜕𝐴 + d𝑡 ∧ ([∇𝐴,𝜕𝑡 , 𝜕𝐴] + [∇𝐴,𝜕𝑡 , 𝜕𝐴]) .
and

∗d𝐴𝜉 = ∇𝐴,𝜕𝑡 𝜉 · volΣ + 𝑖d𝑡 ∧ 𝜕𝐴𝜉 − 𝑖d𝑡 ∧ 𝜕𝐴𝜉
By direct inspection, (5.54) is equivalent to

[∇𝐴,𝜕𝑡 + 𝑖𝜉, 𝜕𝐴] = 0 and

𝜕𝐴𝜕𝐴 + 𝜕𝐴𝜕𝐴 = ∇𝐴,𝜕𝑡 𝜉volΣ .

Suppose now that 𝐼 = [0, 1]. Restriction to 𝑡 defines a holomorphic structure 𝜕𝐴,𝑡 on 𝐸

for every 𝑡 ∈ [0, 1]. Consider parallel transport 𝑇𝑡 : 𝐸 → 𝐸 from 𝑡 = 0 to 𝑡 associated with

the covariant derivative ∇𝐴 + 𝑖𝜉 . The first of the above equations shows that 𝑇𝑡 defines an

isomorphism of holomorphic vector bundles E0 ≔ (𝐸, 𝜕𝐴,0) → E𝑡 ≔ (𝐸, 𝜕𝐴,𝑡 ). This map is

(sometimes) called the scattering map. Under suitable boundary conditions/stability conditions,

upto suitable equivalences, etc., given 𝜕𝐴 and ∇𝐴,𝜕𝑡 +𝑖𝜉 satisfying the first of the above equations,
(𝐴, 𝜉) can be recovered so that the second equation also holds. This is usually studied when

(𝐴, 𝜉) has singularities. In this case the scattering map is not an isomorphism, but a Hecke

modification (an isomorphism in the complement of a bunch of points). See Norbury [Nor11]

and Charbonneau and Hurtubise [CH11] to learn more about this. Hurtubise [Hur85] gave an

explanation of Theorem 5.66 via scattering maps.

5.12 Hitchin’s equation

[ This will be discussed in the problem session ]

[Hit87]

5.13 The moduli space of ASD instantons

Let (𝑋,𝑔) be an closed oriented Riemannian 4–manifold. Let 𝐺 be a compact semi-simple Lie

group. Let (𝑝 : 𝑃 → 𝑋, 𝑅) be a𝐺–principal bundle. The moduli space of ASD instantons on
(𝑝, 𝑅) is

M ≔ {𝐴 ∈ A : 𝐹+𝐴 = 0}/G.
At this stage, M is a topological space. The purpose of this section is to equip M with more

structure and understand its geometry better. (Here and throughout, to ease notation, (𝑝, 𝑅) is
dropped from the notation.)

It turns out to be benificial to construct the quotient

B ≔ A/G
and then construct M. A useful framework to proceed in is that of Banach manifolds. This

requires us to enlargeA andG.
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5.13.1 Sobolev spaces

Let𝑈 ⊂ R𝑛 be a bounded open subset (with smooth boundary).

[ Review definition of𝑊 𝑘,𝑝 (𝑈 ); check what is known: 𝐿𝑝? distributions? weak derivatives?;
mention scaling weight 𝑘 − 𝑛/𝑝 ]

Theorem 5.67 (Sobolev inequality/Sobolev embedding theorem). Let 𝑘, ℓ ∈ N0, 𝑝, 𝑞 ∈ [1,∞). If

𝑘 > ℓ, and 𝑘 − 𝑛
𝑝
⩾ ℓ − 𝑛

𝑞
,

then𝑊 𝑘,𝑝 (𝑈 ) ⊂𝑊 ℓ,𝑞 (𝑈 ) and the inclusion map is continuous.

Theorem 5.68 (Rellich–Kondrachov). Let 𝑘, ℓ ∈ N0, 𝑝, 𝑞 ∈ [1,∞). If

𝑘 > ℓ, and 𝑘 − 𝑛
𝑝
> ℓ − 𝑛

𝑞
,

then the inclusion map𝑊 𝑘,𝑝 (𝑈 ) ⊂𝑊 ℓ,𝑞 (𝑈 ) is compact.

Theorem 5.69 (Morrey inequality). Let 𝑘, 𝑟 ∈ N0, 𝑝 ∈ [1,∞), and 𝛼 ∈ (0, 1). If

𝑟 + 𝛼 = 𝑘 − 𝑛
𝑝
,

then every𝑊 𝑘,𝑝 function on𝑈 is (representable) by a 𝐶𝑟,𝛼 function on ¯𝑈 and the map

𝑊 𝑘,𝑝 (𝑈 ) → 𝐶𝑟,𝛼 ( ¯𝑈 )

is continuous. ■

Theorem 5.70 (Sobolev multiplication). Let 𝑘 ∈ N0, 𝑝 ∈ [1,∞). If

𝑘 − 𝑛
𝑝
> 0,

then the multiplication map

𝑊 𝑘,𝑝 (𝑈 ) ×𝑊 𝑘,𝑝 (𝑈 ) →𝑊 𝑘,𝑝 (𝑈 )

is continuous. ■

If (𝑋,𝑔) is a Riemannian manifold, 𝑉 is an Euclidean vector space, 𝐸 → 𝑋 is an Euclidean

vector bundle equipped with a covariant derivative ∇, then we define Sobolev spaces𝑊 𝑘,𝑝 (𝑋,𝑉 ),
𝑊 𝑘,𝑝Ω•(𝑋,𝑉 ),𝑊 𝑘,𝑝Γ(𝐸),𝑊 𝑘,𝑝Ω•(𝑋, 𝐸), etc. with norms

∥𝑠 ∥𝑊 𝑘,𝑝 ≔

𝑘∑︁
ℓ=0

(ˆ
𝑋

|∇𝑘𝑠 |𝑝vol𝑔

)
1/𝑝
.

These are Banach spaces. Of course, there are analogous definitions of with𝐶𝑟,𝛼 instead of𝑊 𝑘,𝑝
.

These are Banach spaces too. The results mentioned above carry over mutatis mutandis.
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5.13.2 Sobolev connections and gauge transformations

Let (𝑋,𝑔) be a closed connected oriented Riemannian manifold of dimension 𝑛. Let 𝐺 be a

compact semi-simple Lie group. Let (𝑝 : 𝑃 → 𝑋, 𝑅) be a 𝐺–principal bundle. The theory of

connections developed in the smooth case largely carries over to the Sobolev setting. Throughout,

let 𝑘 ∈ N0, 𝑝 ∈ (1,∞) with
𝑘 + 2 − 𝑛

𝑝
> 0.

(The significance of this restriction shall be explained shortly.)

Definition 5.71.

(1) A𝑊 𝑘+1,𝑝 connection on (𝑝, 𝑅) is a𝑊 𝑘+1,𝑝
1–form

𝜃𝐴 ∈𝑊 𝑘+1,𝑝Ω1(𝑃, 𝔤)

such that for almost every 𝑥 ∈ 𝑃 and 𝜉 ∈ 𝔤

𝜃𝐴 (𝑣𝜉 (𝑥)) = 𝜉

and for every 𝑔 ∈ 𝐺
𝑅∗𝑔𝜃𝐴 = Ad(𝑔)−1𝜃𝐴 .

Denote the set of𝑊 𝑘+1,𝑝
connections by𝑊 𝑘+1,𝑝A(𝑝, 𝑅).

(2) A𝑊 𝑘+2,𝑝 gauge transformation of (𝑝, 𝑅) is a𝑊 𝑘+2,𝑝
map

𝑢 : 𝑊 𝑘+2,𝑝 (𝑃,𝐺)𝐶

with the super-script 𝐶 indicating that for every 𝑔 ∈ 𝐺

𝑢 ◦ 𝑅𝑔 = 𝐶−1

𝑔 𝑢.

Denote the set of𝑊 𝑘+2,𝑝
gauge transformations by𝑊 𝑘+2,𝑝G(𝑝, 𝑅). •

The theory developed in the smooth case carries over to the Sobolev setting (provided the

regularity suffices to write the formulae.) Here are some facts (and consequences of the theory

of Sobolev spaces):

(1) 𝑊 𝑘+1,𝑝A(𝑝, 𝑅) is an affine space modelled on

𝑊 𝑘+1,𝑝Ω1(𝑋,Ad(𝑃)).

(2) Every 𝐴 ∈𝑊 𝑘+1,𝑝A(𝑝, 𝑅) ∩ 𝐿2𝑝A(𝑝, 𝑅) has a curvature

𝐹𝐴 ∈𝑊 𝑘,𝑝Ω2(𝑋,Ad(𝑃)) .

Indeed, the curvature map

𝐹 : 𝑊 𝑘+1,𝑝A(𝑝, 𝑅) ∩ 𝐿2𝑝A(𝑝, 𝑅) →𝑊 𝑘,𝑝Ω2(𝑋,Ad(𝑃))

is analytic.
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(3) 𝑊 𝑘+2,𝑝G(𝑝, 𝑅) is a Banach Lie group with Lie algebra

𝑊 𝑘+2,𝑝Γ(Ad(𝑃)),

and it acts smoothly on (the right of)𝑊 𝑘+1,𝑝A(𝑝, 𝑅):

𝜃𝑢∗𝐴 = Ad(𝑢)−1𝜃𝐴 + 𝑢∗𝜇𝐺 .

with 𝜇𝐺 ∈ Ω1(𝐺, 𝔤) denoting the Maurer–Cartan form on 𝐺 .

Only the last point requires any justification. Ultimately, this fact follows from the Sobolev

multiplication theorem. Naively, applything that theorem suggest that we should have imposed

the much stronger condition

𝑘 + 2 − 𝑛 + dim𝐺

𝑝
> 0.

The crucial point is that gauge transformations are 𝐺–equivariant and, therefore, the Sobolev

multiplication theorem in dimension 𝑛 can be used.

5.13.3 A slice theorem

Continue with the situation of the previous subsection, but we drop the pre-scripts𝑊 𝑘+1,𝑝
and

𝑊 𝑘+2,𝑝
ofA andG (in an attempt to not go insane). Our goal is to understand the quotient

B ≔ A/G.

This is a task for the slice theorem.

Proposition 5.72. The action ofG on A is proper.

Proof sketch. Let (𝑢𝑛) be a sequence G and (𝐴𝑛) a sequence in A. We have to prove that if

(𝐴𝑛) converges to 𝐴 in𝑊 𝑘+1,𝑝
and 𝑢∗𝑛𝐴𝑛 converges to 𝐵 in𝑊 𝑘+1,𝑝

, then (𝑢𝑛) has a convergent
subsequence in𝑊 𝑘+2,𝑝

. To do this one has to meditate over the identity

𝜃𝑢∗𝑛𝐴𝑛
= Ad(𝑢𝑛)−1𝜃𝐴𝑛

+ 𝑢∗𝑛𝜇𝐺 = 𝑢−1

𝑛 𝜃𝐴𝑛
𝑢𝑛 + 𝑢−1

𝑛 d𝑢𝑛

and use the idea of bootstrapping.

By hypothesis, 𝜃𝑢∗𝑛𝐴𝑛
and 𝜃𝐴𝑛

converge in𝑊 𝑘+1,𝑝
. Moreover, since 𝐺 is compact, ∥𝑢𝑛 ∥𝐿∞ is

bounded.

By the hypothesis ∥Ad(𝑢𝑛)−1𝜃𝐴𝑛
∥𝐿𝑝 is bounded. But then ∥𝑢∗𝑛𝜇𝐺 ∥𝐿𝑝 is bounded. This implies

that ∥d𝑢𝑛 ∥𝐿𝑝 is bounded. That is ∥𝑢𝑛 ∥𝑊 1,𝑝 is bounded. Using Sobolev embedding, Hölder’s

inequality etc. this argument can be iterated to obtain that ∥𝑢𝑛 ∥𝑊 𝑘+2,𝑝 is bounded. (The details

of this are not hard, but a little fiddly.)

Using Rellich–Kondrachov one sees that a subsequence of 𝑢𝑛 converges in𝑊
𝑘+1,𝑞

. This is

not quite enough. We wanted convergence in𝑊 𝑘+2,𝑝
. The last missing point is to use the above

identity to see that in this case d𝑢𝑛 must also converge in𝑊 𝑘+2,𝑝
. ■

The discussion from Section 3.3 extends to proper actions and Banach manifolds. The action

ofG onA however is not free.
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Definition 5.73. Let 𝐴 ∈ A. The isotropy group of 𝐴 is defined by

Γ𝐴 ≔ {𝑢 ∈ G : 𝑢∗𝐴 = 𝐴}. •

Henceforth, fix 𝑥0 ∈ 𝑃 . Recall the holonomy group Hol𝑥0
(𝐴) from Definition 4.36.

Proposition 5.74.

(1) The evaluation map ev = ev𝑥0
: G → 𝐺 defined by ev(𝑢) = 𝑢 (𝑥0) defines an injection

ev : Γ𝐴 ↩→ 𝐺 .

(2) The image of Γ𝐴 in 𝐺 is precisely the 𝐶𝐺 (Hol𝑥0
(𝐴)) the centraliser of the holonomy group.

Proof. By equivariance, 𝑢 (𝑥0) determines 𝑢 on 𝑝−1(𝑝 (𝑥0)). If 𝑢 preserves 𝐴, then 𝑢 commutes

with the 𝐴–parallel transport. Since 𝑋 is connected, this completely determines 𝑢. This proves

(1).

The fact that𝑢 commutes with𝐴–parallel transport also implies that ev(Γ𝐴) ⊂ 𝐶𝐺 (Hol𝑥0
(𝐴)).

To prove the reverse conclusion observe that if 𝑔 ∈ 𝐶𝐺 (Hol𝑥0
(𝐴)) then it can be extended a

𝐺–equivariant map 𝑝−1(𝑝 (𝑥0)) → 𝐺 and to a 𝐺–equivariant map 𝑢 : 𝑃 → 𝐺 by 𝐴–parallel

transport. Since 𝑢 is was constructed to commute with 𝐴–parallel transport, it preserves 𝐴. ■

As a consequence of the above, Γ𝐴 always contains 𝑍 (𝐺), the center of 𝐺 .

Definition 5.75. A connection𝐴 is irreducible if ev(Γ𝐴) = 𝑍 (𝐺). Denote the subset of irreducible
connections inA by

A∗.

𝐴 is reducible if it is not irreducible. •

Remark 5.76. The terminology “irreducible” is common but not ideal. Hol𝑥𝐴 (𝐴) < 𝐺 might very

well be a proper subgroup with centralizer 𝐶 (𝐺). ♣
The slice theorem now constructs the quotient

B∗ ≔ A∗/(G/𝑍 (𝐺)) = A∗/G

as a Banach manifold. If 𝐴0 ∈ A∗ and 𝜀 > 0 is sufficiently small, then a chart ofA∗/G around

[𝐴0] can be constructed as follows. Consider the local slice

𝑈𝐴0,𝜀 ≔ {𝐴 + 𝑎 : d
∗
𝐴0

𝑎 = 0, ∥𝑎∥𝑊 𝑘+1,𝑝 < 𝜀}.

The map 𝑈𝐴0,𝜀 → A∗/G is (the inverse of) a chart. Because every 𝑢 ∈ Γ𝐴 takes values in the

center 𝐶 (𝐺) it acts trivially on𝑈𝐴0,𝜀 . The slice condition

d
∗
𝐴0

𝑎 = 0

is precisely the condition to be 𝐿2
orthogonal to the action of infinitesimal gauge transformations

of 𝐴0:

d𝐴0
: 𝑊 𝑘+2,𝑝Γ(Ad(𝑃)) →𝑊 𝑘+1,𝑝Ω1(𝑋,Ad(𝑃)) .
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C

The above gives us a very useful description within which to understand the moduli space of

irreducible ASD instantons. The application we have in mind requires a description of reducible

ASD instantons.

Let Γ < G be any subgroup such that ev : Γ → 𝐺 is injective. Set

A(Γ) ≔ {𝐴 ∈ A : Γ𝐴 is conjugate to Γ},
AΓ ≔ {𝐴 ∈ A : Γ𝐴 = Γ}, and

𝑊G (Γ) ≔ 𝑁G (Γ)/Γ.

A moment’s thought shows that the inclusion map induces a homeomorphism

AΓ/𝑊G (Γ) � A(Γ)/G ≕ B(Γ) .

This former quotient can again be constructed as a Banach manifold using the slice theorem.

Here is how to understand the charts. Let 𝐴0 ∈ AΓ . The tangent space

𝑇𝐴0
A = Ω1(𝑋,Ad(𝑃))

decomposes into a Γ–invariant part and its 𝐿2
orthogonal complement. A local slice of the

quotient AΓ/𝑊G (Γ) is

𝑈 Γ
𝐴0,𝜀

≔ {𝐴0 + 𝑎 : 𝑎 is Γ–invariant, d∗𝐴0

𝑎 = 0, ∥𝑎∥𝑊 𝑘+1,𝑝 < 𝜀}.

Γ acts trivially on𝑈 Γ
𝐴0,𝜀

and the map𝑈 Γ
𝐴0,𝜀
→ AΓ/𝑊G (Γ) is (the inverse of) a chart.

Remark 5.77. A gauge tranformation 𝑢 ∈ G = 𝐶∞(𝑃,𝐺)𝐶 acts on 𝑎 ∈ 𝑇𝐴A = Ω1

hor
(𝑃, 𝔤)Ad

by

𝑢∗𝑎 = Ad(𝑢)−1𝑎.

Decompose

𝔤 = 𝔎 ⊕ 𝔪 with 𝔨 = 𝔤Γ𝐴 = {𝜉 ∈ 𝔤 : Ad(𝑔)𝜉 = 𝜉 for every 𝑔 ∈ Γ𝐴} and 𝔪 = 𝔨⊥.

𝔨 ⊂ 𝔤 is a Lie subalgebra. It contains the holonomy Lie algebra hol but might be larger. Denote

by 𝐾 < 𝐺 the corresponding Lie subgroup containing Hol. The bundle 𝑃 admits a reduction 𝑄

of structure group to 𝐾 . 𝑇𝐴AΓ is Ω
1(𝑋,Ad(𝑄)). In fact,AΓ (𝑃) = A∗(𝑄). ♣

The upshot of the discussion so far is that

B = B∗ ⨿
∐

Γ≠𝑍 (𝐺 )
B(Γ)

with all of the pieces being Banach manifolds.

Here is description of a neigborhood of 𝐴0 inB.
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Proposition 5.78. Let 𝜀 > 0 be sufficiently small. Set

𝑈𝐴0,𝜀 ≔ {𝐴0 + 𝑎 : d
∗
𝐴0

𝑎 = 0, ∥𝑎∥𝑊 𝑘+1,𝑝 < 𝜀}.

The map 𝜙 : 𝑈𝐴0,𝜀/Γ → B is an open embedding. Moreover, the stabliser of 𝑎 in Γ is precisely
Γ𝐴0+𝑎 .

More globally, there is a vector bundle V → B(Γ) obtained as the decend of the vector

bundle over AΓ whose fiber over 𝐴0 is

ker d𝐴0
∩

[
𝑊 𝑘+1,𝑝Ω1(𝑋,Ad(𝑃))Γ

]⊥
.

Γ acts on V and the structure ofB normal toB(Γ) is modelled on V/Γ.

C

In our application, we specialise to 𝐺 = Sp(1). In this case the only options for Γ are

{±1} = 𝑍 (Sp(1)), 𝑆1, and Sp(1) .

(This is not a completely trivialy fact.) Γ = Sp(1) corresponds to connections 𝐴 with holonomy

in {±1}. In particular, 𝐴 must be flat. These, will cannot appear in the spaces we are interested

in. If Γ = 𝑆1 = {exp 𝑡𝜉 : 𝑡 ∈ R} 𝜉 ∈ 𝑆2 ⊂ ImH, then the holonomy is among the following

a finite subgroup of 𝑆1
and 𝑆1

Again, the former correspond to flat connections and cannot appear. In both cases, the rank 2

Hermitian vector bundle 𝐸 corresponding to 𝑃 splits as 𝐸 = 𝐿 ⊕ 𝐿∗. In this case,

Ad(𝑃) = 𝑖R ⊕ 𝐿2

and

Ω1(𝑋,Ad(𝑃)) = Ω1(𝑋 ) ⊕ Ω1(𝑋, 𝐿2) .

The former summand is Γ invariant and Γ acts on the later by multiplication with unit complex

numbers (squared). Therefore,

B(𝑆1 ) � {𝐴0 + 𝑎 ∈ Ω1(𝑋, 𝑖R) : d
∗𝑎 = 0}.

(This means: there is a global slice for B(𝑆1 ) . This is true in all abelian gauge theories.) The

normal structure of B(𝑆1 ) at 𝐴0 is modelled on

{𝑎 ∈ Ω1(𝑋, 𝐿2) : d
∗
𝐴0

𝑎}/𝑆1.

Somewhat informally, the latter is

C∞/𝑆1 = the cone on C𝑃∞.

Exercise 5.79. What is the local model around the trivial connection?
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5.13.4 Kuranishi models for the moduli space

We are now in an excellent position to understand

M ≔ {𝐴 ∈ A : 𝐹+𝐴 = 0}/G.

We continue with dropping the Sobolev prescripts. I will explain at the end why this is ultimately

justified if one only cares aboutM.

OverA there is a trivial Banach space bundle

˜E ≔ A ×𝑊 𝑘,𝑝Ω+(𝑋,Ad(𝑃)) .

The anti-self dual part of the curvature defines a section of
˜E:

𝐴 ↦→ 𝐹+𝐴 .

˜E descends to a Banach space bundleE →B and 𝑠 defines as section ofE. By definition:

M = 𝑠−1(0) ⊂ B.

Proposition 5.80. Let 𝐴 be an ASD instanton. Set

𝑉𝐴,𝜀 ≔
{
𝐴 + 𝑎 : ∥𝑎∥𝑊 𝑘+1,𝑝 < 𝜀, d∗𝐴𝑎 = 0, 𝐹+𝐴+𝑎 = d

+
𝐴𝑎 + 1

2
[𝑎 ∧ 𝑎]+ = 0

}
.

The map 𝑉𝐴,𝜀/Γ𝐴 →M is an open embedding. Moreover, the stabiliser of 𝑎 in Γ𝐴 is Γ𝐴+𝑎 .

The term
1

2
[𝑎∧𝑎]+ can be treated a small perturbation (as we will see shortly). It is therefore

crucial to understand the linearised operator

𝛿𝐴 ≔ (d∗𝐴, d+𝐴) : 𝑊 𝑘+1,𝑝Ω1(𝑋,Ad(𝑃)) →𝑊 𝑘,𝑝Ω0(𝑋,Ad(𝑃)) ⊕𝑊 𝑘,𝑝Ω+(𝑋,Ad(𝑃)) .

Proposition 5.81. 𝛿𝐴 is an elliptic operator and, therefore, Fredholm; that is:

dim ker𝛿𝐴 < ∞ and dim coker𝛿𝐴 < ∞.

Moreover,

index𝛿𝐴 = dim ker𝛿𝐴 − dim coker𝛿𝐴 = −2𝑝1(Ad(𝑃)) + dim𝐺 · (𝑏1(𝑋 ) − 1 − 𝑏+(𝑋 )) .

It is an easy exercise to compute the symbol of 𝛿𝐴 and verify ellipticity. The index can be

computed using the Atyiah–Singer index theorem [see Atiyah–Hitchin–Singer].

Proposition 5.82. Let 𝑋,𝑌 be Banach spaces. Let𝑈 ⊂ 𝑋 be an open neighborhood of 0 ∈ 𝑋 . Let
𝑓 : 𝑈 → 𝑌 be a smooth map with 𝑓 (0) = 0. Suppose that 𝑇0 𝑓 : 𝑋 → 𝑌 is Fredholm. Choose
decompositions

𝑋 = ker𝑇0 𝑓 ⊕ coim𝑇0 𝑓 and 𝑌 = coker𝑇0 𝑓 ⊕ im𝑇0 𝑓 .

There is an open neighborhood 𝑉 of 0 in 𝑋 and a diffeomorphism 𝜙 : 𝑉 → 𝑈 and a linear
isomorphism 𝐼 : coim𝑇0 𝑓 → im𝑇0 𝑓 such that

(𝑓 ◦ 𝜙) (𝑥,𝑦) = (𝑔(𝑥,𝑦), 𝐼 (𝑦)) .
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Apply this with

𝑈 ⊂ ker(d∗𝐴 : 𝑊 𝑘+1,𝑝Ω1(𝑋,Ad) →𝑊 𝑘,𝑝Ω0(𝑋,Ad)), 𝑌 ≔𝑊 𝑘+1,𝑝Ω2(𝑋,Ad(𝑃))

and 𝑎 ≔ 𝐹+
𝐴+𝑎 . It follows that a neighborhood of [𝐴] ∈M is modelled on

𝑓 −1(0)/Γ𝐴

for some Γ𝐴–equivariant smooth map

𝑓 : ker𝛿𝐴 → coker d
+
𝐴 .

5.13.5 Digression: the deformation complex

[ possibly skip this ]

If 𝐴 is an ASD instanton, then

0→ Ω0(𝑋,Ad(𝑃)) d𝐴−−→ Ω1(𝑋,Ad(𝑃))
d
+
𝐴−−→ Ω+(𝑋,Ad(𝑃)) → 0

is an elliptic complex. Its cohomology groups 𝐻 0

𝐴
, 𝐻 1

𝐴
, 𝐻 2

𝐴
correpond to infinitesimal gauge

transformations, infinitesimal deformations, and infinitesimal obstructions. In fact,

𝐻 1

𝐴 � ker𝛿𝐴 and 𝐻 2

𝐴 � coker d
+
𝐴 .

This encodes the infinitesimal deformation somewhat more naturally. The above map 𝑓 can be

understood as map 𝑓 : 𝐻 1

𝐴
→ 𝐻 2

𝐴
.

5.13.6 Freed–Uhlenbeck transversality theorem

Theorem 5.83 (Freed–Uhlenbeck). If 𝐺 = SU(2) or SO(3), then for a generic Riemannian metric
𝑔 and every irreducible ASD instanton 𝐴, coker d

+
𝐴
= 0.

As a consequence, in the situation of the Freed–Uhlenbeck theorem M∗
, the moduli space

of irreducible ASD instantons, is a smooth manifold of dimension

−2𝑝1(Ad(𝑃)) + dim𝐺 · (𝑏1(𝑋 ) − 1 − 𝑏+(𝑋 )) .

5.14 Uhlenbeck compactness

The moduli spaceM is very rarely compact. Most applications of ASD instantons require either

some understanding of how compactness fails or even a suitable compactificationM. If you

want to understand this issue in detail, then [Weh04] is an excellent reference. Let me begin by

discussing what can possibly go wrong:

121



(1) If 𝐴 is a connection over R𝑛 , 𝑠𝜆 (𝑥) = 𝜆−1𝑥 , then 𝐴𝜆 ≔ 𝑠∗
𝜆
𝐴 satisfies

YM(𝐴𝜆) =
1

2

ˆ
R𝑛
|𝐹𝐴𝜆
|2(𝑥)d𝑥

=
1

2

ˆ
R𝑛
𝜆−4 |𝐹𝐴 |2(𝜆−1𝑥)𝜆𝑛d(𝜆−1𝑥)

= 𝜆𝑛−4
YM(𝐴) .

That is the scaling-weight is 𝑛 − 4. As a conseqeunce: if 𝑛 ⩽ 3, then for a connection

to minimise its Yang–Mills energy it is not beneficial to “scale down”; if 𝑛 ⩾ 5, then

for a connection to minimise its Yang–Mills energy it is beneficial to “scale down”; and

𝑛 = 4 is the boarder line. Therefore, one should expect that: the compactness problem

for Yang–Mills connections in dimension 𝑛 ⩽ 3 should be quite easy (“sub-critical”); for

𝑛 ⩾ 5 it should be very hard (“super-critical”), and for 𝑛 = 4 it is something in between

(“critical”).

(2) In dimension 4, the Yang–Mills functional is not just scaling invariant. It is in fact invariant

under conformal changes: 𝑔 ↦→ 𝜆2𝑔 for 𝜆 ∈ 𝐶∞(𝑋, (0,∞)). This means that the conformal

group acts on Yang–Mills solutions. Since the conformal group is non-compact, this might

be a source of non-compactness.

(3) We already have examples of the failure of compactness. The curvature of the BPST

instanton 𝐴𝜇,𝑏 on H is given satisfies

|𝐹𝐴𝜇,𝑏
| = 192

1/2𝜇2

(𝜇2 |𝑞 − 𝑏 |2 + 1)2 .

As 𝜇 tends to∞, this fails to converge at 𝑞 = 𝑏. Away from 𝑞 = 𝑏, however, this converges

to zero and so does the 𝐴𝜇,𝑏 . That is: 𝐴𝑛 = 𝐴𝜇𝑛,𝑏 converges on almost all of R4
, but there

is one point at which something goes wrong. This point is identifiable by the fact that

the Yang–Mills energy in a small (𝑛–independent) ball around 𝑥 stays quite large:

lim inf

𝑟→0

lim inf

𝑛→∞
YM(𝐴𝑛 |𝐵𝑟 (𝑥 ) ) > 0.

The Yang–Mills energy concentrates at 𝑥 .

Another further issue that complicates the compactness analysis in Yang–Mills theory is

that because the gauge groupG is severely non-compact one cannot expect any sequence (𝐴𝑛)
of connections to converge without pasing to a gauge transformed seqeunce (𝑢∗𝑛𝐴𝑛). (Of course,
since M ⊂ A/G this is not an actuall issue, but it means that one has to be carefull about what

to expect.)

The following discussion focuses on dimension 𝑛 = 4 and ASD instantons. In a sense this is

ideal, because it gives us a topological energy bound

YM(𝐴) = − 1

4𝜋2
𝑝1(Ad(𝑝))
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to get started. The theory in dimension 𝑛 ⩽ 3 is much simpler (and can easily be derived

from that in dimension 𝑛 = 4). The theory in dimension 𝑛 ⩾ 5 is quite a bit more complicated

(and indeed not fully understood). Some extra ideas and observations are needed for 𝑛 ⩾ 5,

in particular: the monotonicity formula due to Price [Pri83] and a more delicate 𝜀–regularity

theorem.

5.14.1 Uhlenbeck gauge fixing

The upcoming discussion is local. Let 𝐺 < O(𝑁 ) be a Lie group. On 𝐵1(0) ⊂ R𝑛 consider the
trivial 𝐺–principal bundle (𝑝 : 𝐺 × 𝐵1(0) → 𝐵1(0), 𝑅). A gauge is a section of 𝑝 . The trivial

gauge is 𝑥 ↦→ (1, 𝑥). Of course, any other gauge be identified with a map 𝑢 : 𝐵1(0) → 𝐺 . By

comparison with the trivial gauge it can be identified with a gauge transformation. We regard

connection on (𝑝, 𝑅) as 1–forms on 𝐵1(0) with value in 𝔤.

Theorem 5.84 (Uhlenbeck [Uhl82a, Theorem 2.1]). Let 𝑛/2 < 𝑝 . There are constants 𝜀 = 𝜀 (𝑝,𝐺)
and 𝑐 = 𝑐 (𝑝,𝐺) such that the following holds. If 𝐴 ∈ A(𝑝, 𝑅) satisfies

∥𝐹𝐴∥𝐿𝑝 ⩽ 𝜀,

then there is a𝑊 2,𝑝 gauge 𝑢 such that 𝑢∗𝐴 satisfies the gauge fixing conditions

d
∗(𝑢∗𝐴) = 0,

𝑖 (𝜕𝑟 ) (𝑢∗𝐴) = 0 on 𝜕𝐵1(0)
(5.85)

and

(5.86) ∥𝑢∗𝐴∥𝑊 1,𝑝 ⩽ 𝑐 ∥𝐹𝐴∥𝐿𝑝 .

Remark 5.87. Uhlenbeck [Uhl82a, Theorem 2.1] is somewhat stronger than Theorem 5.84 (the

smallness condition is on ∥𝐹𝐴∥𝐿𝑛/2 ). Uhlenbeck [Uhl82a, Theorem 1.3] proved an even more

delicate result at the Sobolev border line 𝑝 = 𝑛/2. (In this case𝑢 might not be even be continuous.)

It turns out that one can get away with the above result, by working a little harder later. ♣
Remark 5.88. The restriction 𝑝 < 𝑛 might appear somewhat strange. It has to do with wanting

to avoid the borderline Sobolev embedding at𝑊 1,𝑛
. ♣

Sketch of proof of Theorem 5.84. The proof is based on the continuity method. The set

A𝜀 ≔ {𝐴 ∈𝑊 1,𝑝A : ∥𝐹𝐴∥𝐿𝑝 ⩽ 𝜀}.

is connected. Indeed, [0, 1] ∋ 𝜆 ↦→ 𝑠∗
𝜆
𝐴 with 𝑠𝜆 (𝑥) = 𝜆𝑥 joins any connection in A𝜀 to the

connection 0. (The scaling weight of the 𝐿𝑝 norm of a 2–form is 𝜆 (𝑛−2𝑝 )/𝑝
.)xs The strategy is to

prove that

A★
𝜀 ≔ {𝐴 ∈ A𝜀 : ∃𝑢 ∈𝑊 2,𝑝G : d(𝑢∗𝐴) = 0, 𝑖 (𝜕𝑟 ) (𝑢∗𝐴) = 0 on 𝜕𝐵1(0), ∥𝑢∗𝐴∥𝑊 1,𝑝 ⩽ 𝑐 ∥𝐹𝐴∥𝐿𝑝 .}

is open and closed.
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Evidently,A∗𝜀 is𝑊 2,𝑝G–invariant. The conditions

d
∗(𝑢∗𝐴) = 0,

𝑖 (𝜕𝑟 ) (𝑢∗𝐴) = 0,

∥𝑢∗𝐴∥𝑊 1,𝑝 ⩽ 𝑐 ∥𝐹𝐴∥𝐿𝑝

are closed.

To see thatA★
𝜀 is closed, let (𝐴𝑛) be a sequence inA★

𝜀 which converges to𝐴 ∈ A. Denote by

𝑢𝑛 the gauge transformations such that 𝑢∗𝑛𝐴𝑛 satisfies the gauge fixing condition. The sequence

𝑢∗𝑛𝐴𝑛 has a weak limit in𝑊 1,𝑝
. The argument from the proof that the action ofG onA is proper

shows that 𝑢𝑛 converges weakly in𝑊 2,𝑝
to a limit 𝑢. This suffices to obtain the gauge fixing

conditions on 𝑢∗𝐴. Therefore, 𝐴 ∈ A★
𝜀 . This explains whyA

★
𝜀 is closed (regardless of the choice

of 𝑐)

To prove openness of A★
𝜀 it suffices (by G–invariance) to show that if 𝐴 satisfies the

gauge fixing condition and ∥𝐴∥𝑊 1,𝑝 ⩽ 𝑐 ∥𝐹𝐴∥𝐿𝑝 ⩽ 𝑐𝜀, then for 𝑎 with ∥𝑎∥𝑊 1,𝑝 < 𝛿 ≪ 1

there is a gauge transformation 𝑢 such that 𝑢∗(𝐴 + 𝑎) satisfies the gauge fixing condition

and ∥𝑢∗(𝐴 + 𝑎)∥𝑊 1,𝑝 ⩽ 𝑐 ∥𝐹𝐴∥𝐿𝑝 . Here is an assertion proving that the last condition will be

automatic.

Proposition 5.89. There are constant 𝑐 = 𝑐 (𝑛,𝐺) and 𝜀0 = 𝜀0(𝑛,𝐺) such that the following holds.
If 𝐴 ∈ A𝜀 satisfies (5.85) and ∥𝐴∥𝑊 1,𝑝 < 𝑐𝑠𝜀0, then

∥𝐴∥𝑊 1,𝑝 ⩽ 𝑐 ∥𝐹𝐴∥𝐿𝑝 .

Proof. If (5.85) holds, then

(d ⊕ d
∗)𝐴 = 𝐹𝐴 −

1

2

[𝐴 ∧𝐴]

𝑖 (𝜕𝑟 )𝐴 = 0.

[An integration by parts argument proves thatˆ
𝐵1 (0)
|∇𝐴|2 +

ˆ
𝜕𝐵1 (0)

|𝐴|2 =
ˆ
𝐵1 (0)
|d𝐴|2

This shows that the operator on the LHS is well-behaved on𝑊 1,2
. This is also the case for𝑊 1,𝑝

.]

The linear operator on the left-hand side of the above equations is an elliptic operator with

trivial kernel. (See [Weh04] for a discussion of such operators.) Therefore, there is a constant

𝑐 = 𝑐 (𝑛,𝐺) > 0 such that

∥𝐴∥𝑊 1,𝑝 ⩽ 𝑐 ∥𝐹𝐴 −
1

2

[𝐴 ∧𝐴] ∥𝐿𝑝 ⩽ 𝑐 ∥𝐹𝐴∥𝐿𝑝 + 𝑐 ∥𝐴∥2𝐿2𝑝 .

Hölder’s inequality and Sobolev embedding gives

∥𝐴∥2
𝐿2𝑝 ⩽ 𝑐𝑆 ∥𝐴∥2𝑊 1,𝑝 .

(This is exactly the condition 𝑝 > 𝑛/2). For 𝜀 ≪ 1, the term 𝑐𝑆 ∥𝐴∥𝑊 1,𝑝 is at most
1

2
and can be

absorbed into the left-hand side. ■
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To prove thatA★
𝜀 with 𝑐 = 𝑐 (𝑛,𝐺) from above is an now application of the implicit function

theorem (to find the gauge transformation, because the condition ∥𝐴∥𝐿𝑛 < 𝑐𝑐𝑠𝜀0 is open). We

omit details of the proof, but here is the crucial point. If 𝐴 is in Uhlenbeck gauge and 𝑎 is small,

then 𝑢 = exp(𝜉) puts 𝐴 + 𝑎 in Uhlenbeck gauge if and only if

d
∗
d𝜉 = d

∗(𝑒−𝜉 (𝐴 + 𝑎)𝑒𝜉 )
𝜕𝑟𝜉 = 0 on the boundary.

The linearisation of the equation at 𝑎 = 0, 𝜉 = 0 is the LHS. By elliptic theory this is surjective,

so one can apply the IFT. ■

Let 𝜀 as above.

Proposition 5.90. There are constants 𝑐𝑘 > 0 such that the following holds. If 𝐴 ∈ A on 𝐵1(0)
satisfies

𝐹+𝐴 = 0,

∥𝐹𝐴∥𝐿𝑝 ⩽ 𝜀,

then there is a (smooth) gauge transformation 𝑢 such that

∥𝑢∗𝐴∥𝑊 𝑘,𝑝 ⩽ 𝑐𝑘

for all 𝑘 .

Proof sketch. Theorem 5.84, we can assume that 𝐴 is already in Uhlenbeck gauge (i.e. 𝑢 = 1).
The result then follows from elliptic theory applied to𝐴 ↦→ (d+𝐴, d∗𝐴, 𝑖 (𝜕𝑟 )𝐴) and a little elliptic
bootstrapping. ■

By Rellich–Kondrachov, these𝑊 𝑘,𝑝
–bounds will give smooth convergence (on compact

subsets). The question is now: where do we get the bound ∥𝐹𝐴∥𝐿𝑝 ⩽ 𝜀 from? At this stage we

can only assume a global 𝐿2
bound: ∥𝐹𝐴∥𝐿2 = − 1

2

√︁
𝑝1(Ad(𝑃)).

5.14.2 𝜀–regularity

We continue with the situation on 𝐵1(0). The following result is essentially due to Uhlenbeck

[Uhl82b, Theorem 3.5]

Theorem 5.91. There are constants 𝑐R, 𝜀 > 0 such that the following holds. Let𝐴 be an anti-self-dual
instanton on 𝐵1(0). If

∥𝐹𝐴∥𝐿2 (𝐵1 (0) ) ⩽ 𝜀,

then

∥𝐹𝐴∥𝐿∞ (𝐵1 (0) ) ⩽ 𝑐R∥𝐹𝐴∥𝐿2 (𝐵1 (0) ) .
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Proof. By the Weitzenböck formula implies that

∇∗𝐴∇𝐴𝐹𝐴 = (d∗𝐴 + d𝐴)2𝐹𝐴 + {𝐹𝐴, 𝐹𝐴} = {𝐹𝐴, 𝐹𝐴}

with {−,−} denoting a universal bilinear form. Therefore,

Δ|𝐹𝐴 |2 = 2⟨∇∗𝐴∇𝐴𝐹𝐴, 𝐹𝐴⟩ − 2|∇𝐴𝐹𝐴 |2 ⩽ 𝑐 |𝐹𝐴 |3.

This implies

Δ|𝐹𝐴 | ⩽ 𝑐 |𝐹𝐴 |2.

It turns out that such an inequality automatically implies the above assertion. [This is discussed

next.] ■

Theorem 5.92 (𝜀–regularity). Consider 𝐵1(0) ⊂ R4. There are constants 𝑐, 𝜀 > 0 such that the
following holds. If 𝑓 ∈𝑊 1,2(𝐵1(0)) ∩ 𝐿∞(𝐵1(0)), 𝑓 ⩾ 0,

Δ𝑓 ⩽ 𝑓 2

holds weakly, and
∥ 𝑓 ∥𝐿2 (𝐵1 (0) ) ⩽ 𝜀,

then
∥ 𝑓 ∥𝐿∞ (𝐵

1/2 (0) ) ⩽ 𝑐 ∥ 𝑓 ∥𝐿2 (𝐵1 (0) .

Proof using the mean value inequality. Themean value inequality implies that if 𝑓 ∈ 𝐶∞(𝐵𝑟 (0), [0,∞))
satisfies

Δ𝑓 ⩽ Λ,

then

𝑓 (0) ⩽ 𝑐
(
𝑟−2∥ 𝑓 ∥𝐿2 (𝐵𝑟 (0) ) + Λ𝑟

2
)
.

(The mean value inequality is very easy for R𝑛 . For non-flat backgrounds a proof is contained
in [GT01, Theorem 9.20]; but see below.)

Define the auxiliary function 𝜙 : 𝐵1(0) → [0,∞) by

𝜙 (𝑥) ≔ (1 − |𝑥 |)2 𝑓 (𝑥).

It suffices to prove that

∥𝜙 ∥𝐿∞ ⩽ 𝑐𝜀 with 𝜀 = ∥ 𝑓 ∥𝐿2,

provided 𝜀 ≪ 1.

Since 𝜙 vanishes on 𝜕𝐵1(0), it achieves a maximum at some point 𝑥0 ∈ 𝐵1(0). Set

𝑟0 ≔
1

2

(1 − |𝑥0 |) and 𝑎0 ≔ 𝑓 (𝑥0) .

The task is then to prove that

𝑟 2

0
𝑎0 ⩽ 𝑐𝜀.
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For every 𝑥 ∈ 𝐵𝑟0
(𝑥0),

1 − |𝑥 | ⩾ 1 − |𝑥0 | − 𝑟0 = 𝑟0.

[ draw a picture of this ] Therefore, since 𝜙 (𝑥) ⩽ 𝜙 (𝑥0),

𝑓 (𝑥) = (1 − |𝑥 |)−2𝜙 (𝑥) ⩽ (1 − |𝑥 |)−2𝜙 (𝑥0) =
(
1 − |𝑥0 |
1 − |𝑥 |

)
2

𝑓 (𝑥0) ⩽ 4𝑎0.

Therefore, by the mean value inequality for every 0 ⩽ 𝑟 ⩽ 𝑟0

𝑎0 ⩽ 𝑐0

(
𝑟−2𝜀 + 𝑟 2𝑎2

0

)
,

or, equivalently,

𝑟 2𝑎0 ⩽ 𝑐0

(
𝜀 + 𝑟 4𝑎2

0

)
.

That is for 𝑡 (𝑟 ) ≔ 𝑟 2𝑎0:

𝑡 (1 − 𝑐0𝑡) − 𝑐0𝜀 ⩽ 0.

This inequality holds for every 𝑟 ∈ [0, 𝑟0] and 𝑡 is non-negative. An inspection of the graph

of the polynomial on the left-hand side shows that, provided 𝜀 ≪ 1, 𝑡 ⩽ 2𝑐0𝜀. For 𝑟 = 𝑟0 this

proves the assertion. ■

0.2 0.4 0.6 0.8 1

−0.1

−5 · 10
−2

5 · 10
−2

0.1

𝑡

Remark 5.93. The polynomial

𝑝 (𝑡) = 𝑡 (1 − 𝑐𝑡) − 𝜀

has the roots

𝑡0 =
1

2𝑐

(
1 −
√

1 − 4𝑐𝜀

)
and 𝑡1 =

1

2𝑐

(√
1 − 4𝑐𝜀 + 1

)
.

As long as 𝜀 ⩽ 1/4𝑐 , the roots are both real and positive. As long as 𝜀 ≪𝑐 1,

𝑡0 ⩽ 2𝜀

♣
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5.14.3 Convergence away from finitely many points

Theorem 5.94. Let (𝑋,𝑔) be a closed oriented Riemannian 4–manifold. Let 𝐺 < O(𝑁 ) be a Lie
group (such that the embedding is compatible with minus the Killing form). Let (𝑝 : 𝑃 : 𝑋, 𝑅) be
a principal 𝐺–bundle. Let (𝐴𝑛) be a sequence in of ASD instantons on (𝑝, 𝑅). After passing to a
subsequence the following holds. There are

(1) finitely many points 𝑥1, . . . , 𝑥𝑘 ∈ 𝑋 and numbers𝑚1, . . . ,𝑚𝑘 ∈ N,

(2) an ASD instanton 𝐴 on (𝑝, 𝑅) |𝑋\{𝑥1,...,𝑥𝑘 } , and

(3) a sequence of gauge transformations 𝑢𝑘 ∈ G((𝑝, 𝑅) |𝑋\{𝑥1,...,𝑥𝑘 })

such that

(4) The sequence of measures |𝐹𝐴𝑛
|2vol weakly converges to

|𝐹𝐴 |2vol +
𝑘∑︁
𝑎=1

8𝜋2𝑚𝑎𝛿𝑥𝑘 .

(5) For every compact subset𝐾 ⊂ 𝑋\{𝑥1, . . . , 𝑥𝑘 },𝑢∗𝑛𝐴𝑛 |𝐾 converges to𝐴|𝐾 (in the𝐶∞ topology).

Proof sketch. Conisder the sequence of measures 𝜇𝑛 ≔ |𝐹𝐴𝑛
|2vol. The total mass of thesse

measures is

𝑐YM ≔ −2𝜋2𝑝1(Ad(𝑃));

in particular: it is uniformly bounded. Therefore, after passing to a subsequence 𝜇𝑛 weakly

converges to a measure 𝜇.

Let 𝑥 ∈ 𝑋 . Let 𝜀 be as in the 𝜀–regularity theorem. If there exisits an 𝑟 > 0 such that

lim inf

𝑛→∞

ˆ
𝐵𝑟 (𝑥 )
|𝐹𝐴𝑛
|2 < 𝜀2,

then on 𝐵𝑟 (𝑥) a subsequence of𝐴𝑛 converges after gauge transformation. Therefore, it is crucial

to understand the points for which this fails; that is: points with

lim

𝑟→0

lim inf

𝑛→∞

ˆ
𝐵𝑟 (𝑥 )
|𝐹𝐴𝑛
|2 ⩾ 𝜀2,

If there are at least 𝑘 points with this property, then

𝑘𝜀2 ⩽ lim

𝑟→0

lim inf

𝑛→∞

𝑘∑︁
𝑎=1

ˆ
𝐵𝑟 (𝑥𝑎 )

|𝐹𝐴𝑛
|2 ⩽ 𝑐YM.

This yields an apriori bound 𝑘 ⩽ 𝑐YM/𝜀2
.

This identifies the points {𝑥1, . . . , 𝑥𝑘 }. After passing to a subsequence, away from these

points, (𝐴𝑛) converges locally upto gauge transformations. These local gauge transformations
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can be patched together. (This is not trivial; see Donaldson and Kronheimer [DK90, §4.4.2] and

Waldron [Wal19, §2.5].) This proves the convergence statement for 𝐴𝑛 .

By Fatou’s lemma

𝛿 = 𝜇 − |𝐹𝐴 |2vol

is a non-negative measure. It must be supported on {𝑥1, . . . , 𝑥𝑘 }. This proves the convergence
statement for the measures with𝑚𝑎 non-necessarily integers.

To prove that𝑚𝑎 is an integer one first has to prove that 𝐴 extends to all of 𝑋 but a bundle

which might be different from (𝑝, 𝑅). [ This *might* be proved in the next section. ] Then, by

construction for 𝑟 ≪ 1

𝑚𝑎 =
1

8𝜋2
lim

𝑛→∞

ˆ
𝐵𝑟 (𝑥𝑎 )

|𝐹𝐴𝑛
|2 − |𝐹𝐴 |2

=
1

8𝜋2
lim

𝑛→∞

ˆ
𝐵𝑟 (𝑥𝑎 )

⟨𝐹𝐴𝑛
∧ 𝐹𝐴𝑛

⟩ − ⟨𝐹𝐴 ∧ 𝐹𝐴⟩.

The last term can be rewritten as a Chern–Simons term and is known to be an integer. [The

details are omitted.] ■

5.14.4 Uhlenbeck’s removable singularities theorem

[ discussed in problem session ] sketch

(1) decay [Otway’s unpublished argument]

(2) go to cylinder

(3) prove asymptotically flat

(4) gauge transform

(5) go back to ball

5.15 Digression: H±(𝑋,𝑔) and product connections

Let (𝑋,𝑔) be a closed oriented Riemannian 𝑛–manifold. Consider the differential operator

d + d
∗

: Ω•(𝑋 ) → Ω•(𝑋 ) .

Denote by

H𝑘 (𝑋,𝑔) ≔ ker(d + d
∗) ∩ Ω𝑘 (𝑋 )

the space of harmonic 𝑘–forms on 𝑋 . By Hodge theory,

H𝑘 (𝑋,𝑔) � H
𝑘
dR
(𝑋 ) .

The Hodge–∗–operator induces an isomorphism

∗ : H𝑘 (𝑋,𝑔) →H𝑛−𝑘 (𝑋,𝑔).
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If 𝑛 = 4𝑘 , then ∗ has eigenvalues ±1 onH2𝑘 (𝑋,𝑔). The eigenspaces are denoted by

H±(𝑋,𝑔) ⊂H2𝑘 (𝑋,𝑔).

Under the Hodge isomorphism, these correspond to the positive and negative definite subspace

of the intersection form

𝑄 : 𝑆2
H

2𝑘
dR
(𝑋 ) → R

defined by

𝑄 ( [𝛼], [𝛽]) ≔
ˆ
𝑋

𝛼 ∧ 𝛽.

The refined Betti number
𝑏±(𝑋 ) ≔ dimH±(𝑋,𝑔)

is independent of 𝑔.

Let us now specialise to 𝑛 = 4. Consider the trivial bundle (𝑝 : 𝑃 ≔ 𝑋 ×𝐺 → 𝑋, 𝑅) with the

product (or trivial) connection𝐴0. According to Section 5.13, we can understand a neighborhood

of [𝐴0] ∈M as follows:

(1) If 𝑢 ∈ G = 𝐶∞(𝑋,𝐺) fixes 𝐴0, then 𝑢 must be constant. Therefore, the isotropy group of

𝐴0 is

Γ𝐴0
= 𝐺.

(2) The operator

𝛿𝐴0
= (d∗𝐴0

, d+𝐴0

) : Ω1(𝑋, 𝔤) → Ω0(𝑋, 𝔤) ⊕ Ω+(𝑋, 𝔤)
is simply 𝛿 ⊗ id𝔤 with

𝛿 ≔ (d∗, d+) : Ω1(𝑋 ) → Ω0(𝑋 ) ⊕ Ω+(𝑋 ) .

Evidently,H1(𝑋,𝑔) ⊂ ker𝛿 . In fact, if 𝛿𝛼 = 0, then d
∗𝛼 = 0 and

0 =

ˆ
𝑋

2⟨d+𝛼, d𝛼⟩ =
ˆ
𝑋

2⟨d∗d+𝛼, 𝛼⟩ =
ˆ
𝑋

⟨d∗d𝛼, 𝛼⟩ =
ˆ
𝑋

|d𝛼 |2.

Therefore, d𝛼 = 0. This shows that

ker𝛿𝐴0
= H1(𝑋,𝑔) ⊗ 𝔤.

Moreover,

coker d
+
𝐴0

= H+(𝑋,𝑔) ⊗ 𝔤.

(3) Therefore, a neighborhood of [𝐴0] is modelled on

𝑓 −1(0)/𝐺

for smooth map

𝑓 : H1(𝑋,𝑔) ⊗ 𝔤 ⊃ 𝑈 →H+(𝑋,𝑔) ⊗ 𝔤.
In fact, 𝑓 = 0. Thus the model is(

H1(𝑋,𝑔) ⊗ 𝔤
)
/𝐺 =

(
H1(𝑋,𝑔) ⊗ 𝔱

)
/𝑊

with 𝔱 denoting a maximal abelian subalgebra and𝑊 denoting the Weyl group.
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5.16 A sketch of Taubes’ gluing theorem

Uhlenbeck’s compactness theorem suggests that ASD instantons can degenerate by concentrat-

ing at points. At these points one might expect BPST instantons to “bubble off”. Taubes’ gluing

theorem is concerned with the question of whether one can construct such degenerating ASD

instantons. The idea is to glue BPST instantons into a product (trivial) connection.

Throughout, suppose that (𝑋,𝑔) is an closed oriented Riemannian 4–manifold with

𝑏+(𝑋 ) = 0.

Denote by 𝐴0 the product connection on the trivial Sp(1)–principal bundle over 𝑋 . Recall that
the BPST instanton is given by

𝐴𝐵𝑃𝑆𝑇 ≔
Im(𝑞d𝑞)
|𝑞 |2 + 1

on the on the trivial Sp(1)–principal bundle over H = R4
. The first task is to scale 𝐴𝐵𝑃𝑆𝑇 down

by 0 < 𝜆 ≪ 1 and glue it into 𝐴0 to obtain an almost ASD instanton
˜𝐴𝜆 .

Identify a neighborhood of 𝑥0 with 𝐵2𝜀 (0). To simply our live, we will also assume that the

metric 𝑔 is the Euclidean metric on 𝐵𝜀 (0). The local connection 1–form of 𝐴0 simply vanishes.

We would like to “glue” the scaled down version of 𝐴𝐵𝑃𝑆𝑇 with 𝐴0 over the annulus

𝐵2𝜀 (0)\ ¯𝐵𝜀 (0) .

If 𝑠𝜆 (𝑞) ≔ 𝑞/𝜆, then
𝑠∗
𝜆
𝐴𝐵𝑃𝑆𝑇 ≔

Im(𝑞d𝑞)
|𝑞 |2 + 𝜆2

Unfortunately, the restriction of this to 𝐵2𝜀 (0)\ ¯𝐵𝜀 (0) is not at all small. (This not unexpected:

because otherwise we might be on our way to construct a non-flat ASD instanton on the trivial

bundle—which is impossible.) Consider the gauge transformation 𝑢 (𝑞) = 𝑞/|𝑞 | defined on

H\{0}. A computation reveals that

𝑢∗𝐴𝐵𝑃𝑆𝑇 = − Im(d𝑞𝑞)
|𝑞 |2(1 + |𝑞 |2)

and

𝑠∗
𝜆
(𝑢∗𝐴𝐵𝑃𝑆𝑇 ) = −𝜆2

Im(d𝑞𝑞)
|𝑞 |2(𝜆2 + |𝑞 |2)

The restriction of this to 𝐵2𝜀 (0)\𝐵𝜀 (0) is small if 𝜆 ≪ 1.

Define a Sp(1)–principal bundle over 𝑋 by gluing the trivial Sp(1)–principal bundles over
𝑋\ ¯𝐵𝜀 (0) and 𝐵2𝜀 (0) over 𝐵2𝜀 (0)\ ¯𝐵𝜀 (0) via the gauge transformation 𝑢 (𝑞) = 𝑞/|𝑞 |. Choose a
cut-off function 𝜒 : [0, 2) → [0, 1] which is equal to one on [0, 1] and has compact support.

Define a connection
˜𝐴𝜆 to agree with

𝜒 ( |𝑞 |/𝜀)𝑠∗
𝜆
𝐴𝐵𝑃𝑆𝑇

on 𝐵2𝜀 (0) and with 𝐴0 on 𝑋\ ¯𝐵2𝜀 (0). Since

𝑢∗(𝜒 ( |𝑞 |/𝜀)𝑠∗
𝜆
𝐴𝐵𝑃𝑆𝑇 ) = −𝜒 ( |𝑞 |/𝜀)𝜆2

Im(d𝑞𝑞)
|𝑞 |2(𝜆2 + |𝑞 |2) ,
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this gives us the desired interpolation.

How small is 𝐹+
�̃�𝜆

? Certainly, 𝐹+
�̃�𝜆

vanishes outside of the annulus 𝐵2𝜀 (0)\ ¯𝐵𝜀 (0). To simplify

notation, set

𝑎𝜆 ≔ −𝜆2
Im(d𝑞𝑞)

|𝑞 |2(𝜆2 + |𝑞 |2) .

Observe that for 𝜀 ⩽ |𝑞 | ⩽ 2𝜀,

|𝑎𝜆 | ⩽ 𝑐 (𝜀) · 𝜆2

[Note: while 𝜀 should be thought of as small, it is also fixed and 𝜆 is much smaller than 𝜀.]

We compute

𝐹 ˜𝐴𝜆
= 𝜒 ( |𝑞 |/𝜀)𝐹𝑢∗𝑠∗

𝜆
𝐴𝐵𝑃𝑆𝑇 + 𝜀−1𝜒 ′( |𝑞 |/𝜀)d|𝑞 | ∧ 𝑎𝜆 −

1

2

(𝜒 ( |𝑞 |/𝜀)2 − 𝜒 ( |𝑞 |/𝜀)) [𝑎𝜆 ∧ 𝑎𝜆]

The first term is anti-self-dual. Therefore, it suffices to estimate the last two terms. Therefore,𝐹+
�̃�𝜆


𝐿∞
⩽ 𝑐 (𝜀, 𝜒) · 𝜆2.

The task at hand is now to find 𝑎 = 𝑎(𝜆) such that

𝐹+
˜𝐴𝜆+𝑎

= 𝐹+
˜𝐴𝜆
+ d
+
˜𝐴𝜆
𝑎 + 1

2

[𝑎 ∧ 𝑎]+ = 0.

To break the gauge symmetry it is customary to supplement this equation with

d
∗
�̃�𝜆
𝑎 = 0.

The full system of equations is then

𝛿�̃�Λ
𝑎 + 1

2

[𝛼 ∧ 𝑎]+ + 𝐹+
˜𝐴𝜆
= 0.

Remark 5.95. Schematically, this is of the form

𝐿𝑥 +N(𝑥) + 𝐸 = 0.

with 𝐿 linear,N non-linear, and 𝐸 denoting the initial (pre-gluing) error. There is a standard

approach towards solving such equations. Let us pretend thatN = 0 and that the problem is

finite-dimensional. In this case, we can certainly always solve the equation provided that 𝐿 is

surjective. Indeed, if 𝑅 is a right-inverse of 𝐿 (that is: 𝐿𝑅 = 1), then

𝑥 = −𝑅𝐸

is the desired solution.

IfN does not vanish, then the equation can still be rewritten as follows by setting 𝑥 = 𝑅𝑦

𝑦 = −(N(𝑅𝑦) + 𝐸).

This is a fixed-point equation. It can be solved in 𝐵𝜌 (0) (uniquely) using Banach’s fixed-point
theorem provided 𝑦 ↦→ −(N(𝑅𝑦) + 𝐸) is a contraction for |𝑦 | ⩽ 𝜌 ≪ 1. ♣
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The above scheme can be carried out in the situation at hand with

𝐿𝜆 ≔ 𝛿�̃�𝜆
: 𝑊 1,𝑝Ω1(𝑋,Ad(𝑃)) → 𝐿𝑝Ω0(𝑋,Ad(𝑃)) ⊕ 𝐿𝑝Ω+(𝑋,Ad(𝑃))

and 𝑝 > 2 (so that𝑊 1,𝑝 ↩→ 𝐿2𝑝
with a constant independent of 𝜆 by Kato). The hard part is to

construct a right-inverse 𝑅𝜆 : 𝐿𝑝 →𝑊 1,𝑝
of 𝐿𝜆 with

∥𝑅𝜆 ∥L ⩽ 𝑐1𝜆
−𝛼

with 0 ⩽ 𝛼 < 1. (Here ∥−∥L denotes the operator norm.) (IMHO the best way to do this is

to patch right-inverses for the models. For the trivial connection the right-inverse is easy to

obtain. For the BPST instanton one has to think a bit.) The easy part is to observe that𝐹+
˜𝐴𝜆


𝐿𝑝
⩽ 𝑐2𝜆

2

and that N(𝑎) ≔ 1

2
[𝑎 ∧ 𝑎]+ satisfies

∥N(𝑎1) −N(𝑎2)∥𝐿𝑝 ⩽ 𝑐3(∥𝑎1∥𝑊 1,𝑝 + ∥𝑎2∥𝑊 1,𝑝 )∥𝑎1 − 𝑎2∥𝑊 1,𝑝 .

Therefore,

𝑎 ↦→ −
(
1

2

[𝑅𝜆𝑎 ∧ 𝑅𝜆𝑎]+ + 𝐹+�̃�𝜆

)
is a contraction on

¯𝐵𝜌 (0) ⊂ 𝐿𝑝 provided

𝑐3𝑐
2

2
𝜆−2𝛼𝜌 < 1 and 𝑐3𝑐

2

2
𝜆−2𝛼𝜌2 + 𝑐2𝜆

2 ⩽ 𝜌.

Since 𝛼 < 1, a suitable 𝜌 can be found.

The upshot of all of this is that if 𝑏+(𝑋 ) = 0, then for every 𝑥 ∈ 𝑋 and every 0 < 𝜆 ≪ 1 we

can construct an ASD instanton 𝐴𝜆,𝑥 which is modelled (very closely) on a 𝜆–scaled down BPST

instanton in a neighborhood of 𝑥 .

5.17 Donaldson’s diagonalisation theorem

Theorem 5.96 (Donaldson [Don83, Theorem 1]). Let 𝑋 be a closed oriented smooth 4–manifold
with 𝜋1(𝑋 ) = 1. If the intersection form 𝑄 : H

2(𝑋,Z) ⊗ H
2(𝑋,Z) → Z is positive or negative

definite, then it is diagonalisable over Z.

This is a remarkable theorem. Over Z it is far from true that every symmetric bilinear form

is diagonalisable. The quadratic form given by the matrix

𝐸8 =

©«

2 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 2 −1 −1

−1 2 −1

−1 2

−1 2

ª®®®®®®®®®®®¬
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is positive definite. However, 𝐸8 is not diagonalisable over Z. It is possible to construct a closed

oriented topological 4–manifold 𝑋 with 𝜋1(𝑋 ) = 1 with 𝑄 = 𝐸8 (the “𝐸8 manifold”). 𝑄 is even

and its signature 𝜎 (𝑋 ) = 8. If 𝑋 were smooth, then it would admit a spin structure Rohklin’s

theorem would imply that 𝜎 (𝑋 ) is divisible by 16. Therefore, 𝑋 cannot be equipped with a

smooth structure. Donaldson’s theorem yields the same conclusion, of course.

The above theorem should be contrasted with the following.

Theorem 5.97 (Freedman [Fre82, Theorem 1.5]). Let 𝑄 be an integral unimodular quadratic form.
There is a closed topological 4–manifold 𝑋 with 𝜋1(𝑋 ) realising 𝑄 as its intersection form.

Donaldson’s theorem shows that many of Freedman’s manifolds cannot be equipped with

smooth structures.

Sketch of proof of Theorem 5.96. There is no loss in assuming that 𝑄 is negative definite; i.e.:

𝑏+(𝑋 ) = 0. Denote by (𝑝 : 𝑃 → 𝑋, 𝑅) the SU(2)–principal bundle with 𝑐2(𝑃) = 1. (By a

Theorem of Dold and Whitney 𝑐2 specifies (𝑝, 𝑅) up to isomorphism.) Choose a generic metric

on 𝑔 in the sense of Freed–Uhlenbeck. Denote by
¯M the Uhlenbeck compactification of the

moduli space of ASD instantons on (𝑝, 𝑅) with respect to 𝑔. The proof is based on a detailed

understanding ofM.

By the Freed–Uhlenbeck theorem, the subset M∗
of irreducible ASD instantons carries the

structure of a smooth manifold of dimension

dimM∗ = 8𝑐2 + 3(𝑏1 − 1 − 𝑏+) = 5.

We need to understand:

(1) The locus of reducible ASD instantonsMred ≔ M\M∗
and how it fits withM∗

.

(2) The locus of ideal ASD instantons 𝜕M ≔ M\M and how it fits withM∗
.

The first part is by far the easier given the discussion in Section 5.13. The isotropy group

Γ𝐴 of a reducible ASD instanton 𝐴 on (𝑝, 𝑅) is either 1 or 𝑆1
. If Γ𝐴 = 1, then 𝐴 is flat; but (𝑝, 𝑅)

carries not flat connections (by Chern–Weil theory). If Γ𝐴 = 𝑆1
, then as we already discussed,

the Hermitian rank 2 vector bundle 𝐸 associated with (𝑝, 𝑅) splits as

𝐸 = 𝐿 ⊕ 𝐿∗

and𝐴 arises from an ASD instanton on 𝐿. Since 𝑏1(𝑋 ) = 0 and 𝑏+(𝑋 ) = 0, 𝐿 admits unique ASD

instanton up to gauge transformations. The bundle 𝐿 must satisfy

1 = 𝑐2(𝐸) = −𝑐1(𝐿)2.

Indeed, the elements of Mred
precisely corresponds to the pairs ±𝑥 ∈ H

2(𝑋,Z) of solutions of

𝑄 (𝑥, 𝑥) = −1.

Denote the number of those solutions by

𝑛(𝑄).
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Describes Mred
as a finite set. How does it fit the rest of M∗

? The discussion in Section 5.13

says that a neigborhood of [𝐴] ∈Mred
is modelled on

𝑓 −1(0)/Γ𝐴

with 𝑓 : ker𝛿𝐴 ⊃ 𝑈 → coker d
+
𝐴
a smooth map with 𝑓 (0) = 0 and 𝑇0 𝑓 = 0. Here we restrict

𝛿𝐴 = (d∗
𝐴
, d+
𝐴
) to Ω1(𝑋, 𝐿2) → Ω0(𝑋, 𝐿2) ⊕ Ω+(𝑋, 𝐿2) Therefore, 𝛿𝐴 and d

+
𝐴
are complex vector

spaces and 𝑆1
acts by multiplication with the square unit complex numbers. An application of

the index theorem proves that

dimC ker𝛿𝐴 − dimC coker d
+
𝐴 = 3.

It follows ultimately from the Freed–Uhlenbeck theorem, that coker d
+
𝐴

= 0. Therefore, a

neighborhood of 𝐴 is modelled on

C3/𝑆1 = cone(C𝑃2).

[ DRAW PICTURE OF WHAT IS KNOWN SO FAR. ]

The next task is to identify 𝜕M. By the energy identity, every [𝐴] ∈M has YM(𝐴) = 8𝜋2
.

Therefore, if [𝐴𝑛] inM converges to [𝐴0,
∑𝑘
𝑎=1

𝑚𝑎𝑥𝑎] ∈ 𝜕M, then 𝐴0 must be flat, 𝑘 = 1, and

𝑚1 = 1 by the convergence statement about the measures. Since 𝜋1(𝑋 ) = 1, 𝐴0 must be trivial.

Therefore, 𝜕M ⊂ 𝑋 . Taubes’ theorem proves that 𝜕M = 𝑋 . This suggests that M\Mred
is a

smooth manifold with boundary. While this is true, but requires some actual work to construct

the charts on the boundary. (This is Donaldson’s collar theorem.)

[ UPDATE PICTURE. ]

The upshot of the above analysis is thatM furnishes us with a compact cobordism between

𝑋 and 𝑛(𝑄) copies C𝑃2
. The proof can now be completed as follows.

Lemma 5.98. If 𝑄 is a negative definite quadratic form over Z, then 𝑛(𝑄) ⩽ rk𝑄 . Equality holds
if and only if 𝑄 is diagonal.

Proof. This proved by induction on 𝑟 ≔ rk𝑄 . If 𝑄 (𝑥) = −1, then Z𝑟 = Z𝛼 ⊥ (Z𝛼)⊥ via

𝑦 ↦→ (⟨𝑦, 𝑥⟩ · 𝑥,𝑦 − ⟨𝑦, 𝑥⟩ · 𝑥) .

Of course, the new intersection form 𝑄 ′ on (Z𝛼)⊥ has 𝑛(𝑄 ′) = 𝑛(𝑄) − 1 and rk(𝑄 ′) = rk(𝑄) −
1. ■

Since𝑄 is negative definite, rk(𝑄) = 𝜎 (𝑄). The signature is invariant of oriented cobordisms.

Therefore,

rk(𝑄) = 𝜎 (𝑄) =
𝑛 (𝑄 )∑︁
𝑎=1

𝜀𝑎𝜎 (C𝑃2) =
𝑛 (𝑄 )∑︁
𝑎=1

𝜀𝑎 ⩽ 𝑛(𝑄)

with 𝜀𝑎 ∈ {±1} according to the orientation the corresponding of C𝑃2
. It follows that

𝑛(𝑄) = rk𝑄

and, therefore, 𝑄 is diagonalisable. ■
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(𝜌–)solder form, 76

(left) action, 40

adjoint bundle, 78

adjoint representation, 43

ALE spaces of type 𝐴𝑘−1, 97

ALF space, 96

Ambrose–Singer Theorem, 66

ansatz, 103

anti-self-dual (ASD), 81

Atiyah–Hitchin manifold, 112

Bianchi identity, 33, 56

Bogomolny equation, 107

bouquet of circles, 16

BPS monopole, 109

BPST instanton, 84

center of 𝐺 , 53

characteristic class, 69

characteristic subgroup, 8

charge, 100

Chern character, 73

total, 73

Chern class, 72

total, 72

Chern–Weil homomorphism, 71

Chevalley–Eilenberg cochain complex, 49

classifying space, 69

cocycle condition, 67

cohomology class

integral, 73

complete

Ehresmann connection, 24

concatenation, 6

connected, 17

connection 1–form of 𝐴, 21

connects, 16

covering map, 3

covering space, 3

curvature, 56

of an Ehresmann connection, 25, 26

cycle, 16

de Rham cohomology, 28

de Rham complex, 28

deck transformation, 11

deck transformation group, 11

degree

of a covering map, 4

density, 63

Dirac monopole, 109

distinguished hyperkähler moment map, 90

edges, 16

Ehresmann connection, 20

Ehresmann connection induced by 𝐴, 62

elementary symmetric polynomial, 72

Euler class, 39, 75

exponential map, 45

extension, 64

fibre bundle, 17

fibre bundle associated with (𝑝, 𝑅) and 𝐿,
60

fibre integration, 39

fibre of 𝑝 over 𝑏, 17

fibre orientation, 38

first Čech cohomology of 𝐵 with values in

𝐶∞(·,𝐺), 68
flat, 26

forest, 17

formal power series, 70

frame bundle of 𝑉 , 18, 51

framed moduli space of charge 𝑘

monopoles, 112

Fredholm, 120

free, 16, 40

free group on 𝑆 , 16

Fröhlicher–Nijenhuis bracket, 32

fundamental group, 7

gauge, 123

gauge group, 52

gauge transformation, 52

Gauss curvature, 75

Gauß–Manin connection, 29

Gibbons–Hawking ansatz, 95

graded derivation of degree 𝑘 , 30
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graded Leibniz rule, 30

graph, 16

Grassmannian of 𝑟–planes in 𝑉 , 18

Gysin sequence, 39

Haar volume form, 46

Heisenberg group, 40

Hirzebruch surface, 61

Hitchin’s equation, 107

holonomy group, 57

holonomy group of 𝐴 based at 𝑏0, 24

holonomy Lie algebra, 66

homogeneous space, 42

homotopy lifting property, 6

Hopf algebra, 50

Hopf bundle, 18

horizontal, 22

horizontal subbundle of 𝐴, 21

Hurewicz fibration, 6

hypercomplex structure, 89

hyperkähler form, 89

hyperkähler manifold, 89

hyperkähler moment map, 90

hyperkähler quotient of (𝑆,𝝎) by𝐺 at level

𝜁 , 92

hyperkähler structure, 89

hypersymplectic action, 89

infinitesimal action, 45

instanton number, 100

intrinsic torsion, 77

irreducible, 66, 117

isomorphic, 10

principal 𝐺–covering maps, 14

isotropy group, 117

Killing form, 46, 78

left action, 4

lens space, 3

Lie algebra

of a Lie group, 43

Lie algebra cohomology, 49

Lie group, 40

Lie group homomorphism, 40

lift

of a map along a continuous map, 5

lift of 𝑓 along 𝑝 , 20

local system, 30

locally path connected, 9

mapping torus, 29

Maurer–Cartan equation, 44

Maurer–Cartan form, 44

modular function, 46

moduli space of ASD instantons, 113

moduli space of framed 𝐺 ASD instantons

on H, 100
monodromy representation, 8, 14

morphism, 52

morphism of fibre bundles, 18

morphism of fibre bundles over 𝐵, 18

multi-center Taub–NUT, 98

Nahm’s equation, 108

Newton identities, 74

Nijenhuis tensor, 32

non-degenerate, 105

normal, 12

normal core, 8

normalised, 46

normaliser, 11

orbit, 40

parallel transport along 𝛾 , 24

path, 16

Pfaffian, 75

polynomial, 70

Pontryagin class, 74

power sum, 73

product connection, 21

projectivisation, 61

proper, 40

properly discontinuous, 4

pullback

of 𝐺–principal fibre bundle, 53

of an Ehresmann connection, 23

pullback of 𝑝 via 𝑓 , 20

141



quaternionic Hermitian vector space, 90

quaternionic Hopf bundle, 51

quaternionic representation, 90

quotient, 41

quotient of 𝑋 by 𝐿, 4

rank, 16

reducible, 66, 117

reduction, 64

refined Betti number, 130

relative Lie algebra cohomology, 49

restricted holonomy group, 57

reverse, 7

right action, 40

scattering map, 113

section of 𝑝 , 20

semi-locally simply-connected, 10

semisimple, 46

Sen’s conjecture, 112

sphere bundle, 18

spin structure, 76

stabiliser, 40

Stiefel manifold, 51

strongly centred framed monopole moduli

space of charge 𝑘 , 112

structure group, 50

subgraph, 16

tangent group, 59

Taub–NUT metric, 96

topological realisation, 16

torsion, 77

torsion-free, 77

total space

of a fiber bundle, 17

transgression form, 71

tree, 17

trivial 𝐺–principal bundle, 51

trivial fibre bundle, 18

twisted de Rham complex, 30

unimodular, 46

unitary symplectic group, 90

universal, 12

vector bundle associated with (𝑝, 𝑅) and 𝜌 ,
62

vertical tangent bundle

of a fibre bundle, 20

vertices, 16

Yang–Mills equation, 79

Yang–Mills functional, 79

Yang–Mills–Higgs functional, 106

142


	1 Covering theory
	1.1 Covering maps
	1.2 Quotients and covering maps
	1.3 Lifting along covering maps, I
	1.4 The monodromy representation
	1.5 Lifting along covering maps, II
	1.6 The classification of covering maps
	1.7 Deck transformations
	1.8 Universal covering maps
	1.9 The classification of G–principal covering maps
	1.10 The Seifert–van Kampen theorem
	1.11 The topological proof of the Nielsen–Schreier Theorem

	2 Fibre bundles
	2.1 Definition and examples
	2.2 Constructions: Product, disjoint union, pullback
	2.3 Ehresmann connections
	2.4 Parallel transport
	2.5 Curvature
	2.6 Digression: Ehresmann connections and Riemannian metrics
	2.7 The Gauß–Manin connection
	2.8 Graded derivations of the exterior algebra
	2.9 Differential forms on fibre bundles
	2.10 Fibre integration

	3 Lie groups
	3.1 Definition
	3.2 Lie group actions
	3.3 The slice theorem
	3.4 Lie algebra
	3.5 Exponential map
	3.6 Haar volume form
	3.7 The Killing form
	3.8 de Rham cohomology of manifolds with G–actions

	4 Principal bundles
	4.1 Definition and examples
	4.2 G–principal connections
	4.3 The tangent group
	4.4 Associated fibre bundles
	4.5 Extension and reduction of the structure group
	4.6 Ambrose–Singer Theorem
	4.7 The cocycle perspective
	4.8 Chern–Weil theory
	4.9 G–structures on smooth manifolds

	5 Aspects of Yang–Mills theory
	5.1 The Yang–Mills functional
	5.2 Maxwell's equations
	5.3 Anti-self-duality
	5.4 The BPST instanton
	5.4.1 The BPST instanton on S4
	5.4.2 The BPST instanton on RS3

	5.5 Hyperkähler manifolds and hyperkähler reduction
	5.6 Aside: The Gibbon–Hawking ansatz
	5.7 Anti-self-duality as a moment map
	5.8 Preparation: projections and connections
	5.9 The ADHM construction
	5.10 Dimensional reduction
	5.11 The Bogomolny equation
	5.12 Hitchin's equation
	5.13 The moduli space of ASD instantons
	5.13.1 Sobolev spaces
	5.13.2 Sobolev connections and gauge transformations
	5.13.3 A slice theorem
	5.13.4 Kuranishi models for the moduli space
	5.13.5 Digression: the deformation complex
	5.13.6 Freed–Uhlenbeck transversality theorem

	5.14 Uhlenbeck compactness
	5.14.1 Uhlenbeck gauge fixing
	5.14.2 –regularity
	5.14.3 Convergence away from finitely many points
	5.14.4 Uhlenbeck's removable singularities theorem

	5.15 Digression: H(X,g) and product connections
	5.16 A sketch of Taubes' gluing theorem
	5.17 Donaldson's diagonalisation theorem

	References
	Index

