Differential Geometry III Gauge Theory Problem Set 1

Prof. Dr. Thomas Walpuski Humboldt-Universität zu Berlin

2021-10-29

1 Fibre bundles over [0, 1] are trivial

Let $p: X \to [0, 1]$ be a fibre bundle. Prove that p is isomorphic to a trivial bundle $\operatorname{pr}_{[0,1]}: [0, 1] \times F \to [0, 1]$.

2 The Gauß–Manin connection

A brief review of de Rham cohomology. Let X be a smooth manifold. The de Rham complex is $(\Omega^{\bullet}(X), d)$. Its cohomology $H^{\bullet}(\Omega^{\bullet}(X), d)$ is the de Rham cohomology of X:

$$\mathrm{H}^{k}_{\mathrm{dR}}(X) \coloneqq \frac{\mathrm{ker}(\mathrm{d} \colon \Omega^{k}(X) \to \Omega^{k+1}(X))}{\mathrm{im}(\mathrm{d} \colon \Omega^{k-1}(X) \to \Omega^{k}(X))}$$

If $f: X \to Y$ is a smooth map, then $f^*: \Omega^*(Y) \to \Omega^*(X)$ descends to

$$f^* \colon \mathrm{H}^k_{\mathrm{dR}}(Y) \to \mathrm{H}^k_{\mathrm{dR}}(X).$$

The latter depends only on the homotopy class of f. If f is a diffeomorphism, then f^* is an isomorphism.

Let $p: X \to B$ be a fibre bundle. Set

$$\mathscr{H}^k_{\mathrm{dR}}(p) \coloneqq \bigsqcup_{b \in B} \mathrm{H}^k_{\mathrm{dR}}(p^{-1}(b))$$

Denote by $q: \mathscr{H}^k_{d\mathbb{R}}(p) \to B$ the canonical projection. This can be given the structure of a vector bundle and equipped with a flat covariant derivative, the **Gauß–Manin connection**.

(1) Using the local trivialisations of *p* construct a smooth structure on $\mathscr{H}^k_{dR}(p)$

- (2) Prove that $q: \mathscr{H}^k_{\mathrm{dR}}(p) \to B$ is a vector bundle.
- (3) Construct a flat covariant derivative ∇ on $q: \mathscr{H}^k_{\mathrm{dR}}(p) \to B$.
- (4) Let *F* be smooth manifold. Let $f \in Diff(F)$. Denote X_f the mapping torus of *f*; that is:

$$X_f := ([0, 1] \times F)/$$

with denoting the equivalence relation generated by $(0, x) \sim (1, f(x))$. X_f is a smooth manifold and the projection map $p: X \to S^1 = \mathbb{R}/\mathbb{Z}$ is a fibre bundle. Compute the monodromy of the ∇ in this example.

3 Connections from Riemannian metrics

Let $p: X \to B$ be a fibre bundle. Let g be a Riemannian manifold. Denote by H the g-orthogonal complement of V_p . This defines a connection A on p. Find a formula for the curvature of A.