Differential Geometry III Gauge Theory Problem Set 2

Prof. Dr. Thomas Walpuski Humboldt-Universität zu Berlin

2021-11-07

- (1) Prove that the Hopf bundle $p: S^{2n+1} \to \mathbb{C}P^n$ does not admit a flat Ehresmann connection.
- (2) The following is from [MS74, Appendix C].
 - (a) Denote by $SL_2(\mathbf{R})$ the 2 × 2 real matrices A with det A = 1. Denote by $PSL_2(\mathbf{R})$ the equivalence classes of the involution $A \mapsto -A$ on $SL_2(\mathbf{R})$. $PSL_2(\mathbf{R})$ acts on $H := \{z \in \mathbf{C} : \operatorname{Im} z > 0\}$ by Möbius transformations.

$$\lambda_g(z) \coloneqq \frac{az+b}{cz+d}$$
 for $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

Define $P: STH \to H \times (\mathbf{R} \cup \{\infty\})$ by

$$P(z,v) \coloneqq \lim_{t \to \infty} \exp_x(tv)$$

Here \exp_x is computed with respect to the hyperbolic metric g_{-1} on H. (This is the projection to "the sphere at infinity".) $PSL_2(\mathbf{R})$ acts on SH by

$$\Lambda_q(z,v) \coloneqq (\lambda_q(z), T_z \lambda_q(v))$$

and on $\mathbf{R} \cup \{\infty\}$ by Möbius transformations:

$$\lambda_g^{\infty}(x) \coloneqq \frac{ax+b}{cx+d}$$
 for $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

Prove that *P* is $PSL_2(\mathbf{R})$ -equivariant; that is:

$$P \circ \Lambda_q = (\lambda_q \times \lambda_a^{\infty}) \circ P.$$

- (b) Let Σ be a Riemann surface of genus g ≥ 2. By the uniformization theorem there is a Γ < PSL(2, R) such that Σ = Γ\H. Set STΣ := {(z, v) ∈ TΣ : |v| = 1}. Denote by p: STΣ → Σ the canonical projection. Denote by q: Γ\STH → Γ\H = Σ the canonical projection. Prove that p and q are isomorphic.</p>
- (c) Prove that q admits a flat Ehresmann connection.
- (d) Prove that the vector bundle $T\Sigma$ does not admit a flat covariant derivative. (Hint: Chern–Gauß–Bonnet.)