Differential Geometry III Gauge Theory Problem Set *

Prof. Dr. Thomas Walpuski Humboldt-Universität zu Berlin

2022-01-04

(1) Let $n \in \mathbb{N}$. Let G be a Lie group. Set $\mathfrak{g} := \text{Lie}(G)$. Consider the trivial bundle $(p: G \times \mathbb{R}^n, R)$. Let $\xi_1, \dots, \xi_n \in \mathfrak{g}$. A connection on (p, R) is equivalent to a 1-form $A \in \Omega^1(\mathbb{R}^n, \mathfrak{g})$. For

$$A = \sum_{a=1}^{n} \xi_a \mathrm{d} x_a$$

compute the Bianchi identity $d_A F_A = 0$ and the Yang–Mills equation $d_A^* F_A = 0$ in terms of (ξ_1, \ldots, x_n) .

(2) For the BPST instanton

$$A = \frac{\mathrm{Im}(\bar{q}\mathrm{d}q)}{|q|^2 + 1}$$

on H compute YM(A).

(3) Set $S^7 := \{(q_1, q_2) \in \mathbf{H}^2 : |q_1|^2 + |q_2|^2 = 1\}$. Sp $(1) := \{q \in \mathbf{H} : |q|^2 = 1\}$ acts on the right of S^7 by $R((q_1, q_2), q) = (q_1q, q_2q)$. The quotient $\mathbf{H}P^1 := S^7/\mathrm{Sp}(1)$ parametrizes rank 1 left \mathbf{H} -submodules $\ell \subset \mathbf{H}^2$. Define $\theta \in \Omega^1(S^7, \mathfrak{sp}(1))$ by

$$\theta \coloneqq \operatorname{Im}(\bar{q}_1 \mathrm{d} q_1 + \bar{q}_2 \mathrm{d} q_2).$$

Prove that θ is a Sp(1)-principal connection 1-form on $(p: S^7 \to HP^1, R)$.

(4) Define $i: \mathbf{H} \to \mathbf{H}P^1$ by i(q) := [q, 1]. Find a trivialisation of $i^*(p, R)$ such that i^*A corresponds to the BPST instanton.

Remark. Sp(1) also acts on the right of S^7 via $L((q_1, q_2), q) \coloneqq (\bar{q}q_1, \bar{q}q_2)$. The quotient $\overline{HP}^1 \coloneqq$ Sp(7)/Sp(1) parametrizes rank 1 right H–submodules $\ell \subset H^2$. Of course, $\overline{HP}^1 \cong S^4 \cong HP^1$. Therefore, there are two Sp(1)–principal bundles over S^4 with total space S^7 . These bundles are not isomorphic as Sp(1)–principal bundle. They are, however, isomorphic after pulling back one of them via an orientation reversing diffeomorphism of S^4 .