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Notation

(X,ω) shall denote a symplectic Calabi-Yau 3-fold, i.e., a closed
symplectic manifold of (real) dim 6 with c1(TX,ω) = 0.

Curves should mean simple pseudo-holomorphic curves, defined with
respect to the choice of an ω-compatible almost complex structure
J ∈ J (X,ω).

For such a CY 3-fold (X,ω), g ≥ 0, A ∈ H2(X,Z), the moduli space
Mg(X, J,A) has virtual dimension 0 (by Riemann-Roch). Hence, one can
“count” curves, obtaining Gromov Witten invariants GWA,g(X) ∈ Q,
independent of J .

Because of multiple covers and ghost components (which may have
non-trivial automorphisms) these invariants are generally not Z-valued.
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Taubes’ Gromov invariant

Taubes ’96 defined integer-valued invariants for symplectic 4-manifolds by
counting embedded curves with Z-weights. Using intersection theory in
dim 4, his construction didn’t require virtual techniques, but relied instead
on bifurcation analysis.

For generic perturbations of J , there are only two types of bifurcations.

▶ Birth-death

▶ Degree doubling

iagrams from Wendl’s Amsterdam 2018 talk slides
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Taubes’ Gromov invariant

Just naively (sign) counting all embedded curves for a specific generic J
cannot be expected to be independent of J (because there might be
bifurcations and the parametric moduli space might not be compact).

We need correction terms to keep our count invariant under each
bifurcation. This can be achieved by assigning signs ε(u) = ±1 to each
embedded curve and for genus g = 1, a suitable weight w(u, 2) ∈ Z. And
then defining the Gromov invariant as a sum of signs for curves in class 2A
plus correction weights for curves in class A.

A useful condition in dim 4 is that putting together the index formula with
Riemann Hurwitz & the adjunction formula, one finds that a sequence of
embedded 0-curves can never converge to a nodal curve, and it can
converge to a multiple cover only in very specific situations. Likewise when
the curves have genus 1, they end up converging to an unbranched cover of
an embedded torus.
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Attempt to generalize to dim 6
▶ It has been conjectured that there should be Gromov invariants in dim

6, that give integer-valued counts of embedded curves, together with
contributions from their multiple covers that are determined by
bifurcation analysis.

▶ There’s no adjunction formula in dim 6 and the index relations don’t
give us nice convergence behavior for lower genus curves. One needs
to somehow exclude degenerations of embedded curves to nodal
curves, especially nodal curves that contain constant (“ghost”)
components.

▶ The representation theoretic result (there being only two faithful
representations with K = R of the automorphism group of d-fold torus
covers over all d) still helps us disregard covers of degree > 2, but
doesn’t help rule out nodal degenerations for tori.

▶ [Bai-Swaminathan] explain how to define such invariants in situations
where the multiple covers making contributions have degree at most 2.
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Genericity of embedded curves

Wemb ∶= {J ∈ J (X,ω)
»»»»»»»
∃ a simple & non-embedded curve or 2 simple

curves with distinct but intersecting images
}

It is known that this wall Wemb is of codim 2 in J (X,ω). Thus, along
generic paths γ ⊆ J (X,ω), we may assume that all simple curves are
embedded and pairwise disjoint by appealing to the Sard-Smale theorem
(i.e., paths can be chosen generically to avoid the walls).

We know any non-constant curve u ∶ Σ
′
→ X with smooth Σ

′ factors
uniquely as Σ

′ ϕ−→ Σ
v
−→ X where ϕ is a holomorphic (branched) cover and

v is simple.

The above then implies that we can assume v is embedded while u can be
any arbirary non-constant stable map.
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Genericity of super-rigidity
Definition
J ∈ J (X,ω) is called super-rigid if, for all non-constant J-stable maps
Σ
′ ϕ−→ Σ ⊆ X, we have kerϕ

∗
D
N
Σ,J = 0, where DN

Σ,J is the normal CR
operator of the embedded curve Σ ⊆ X.

▶ If J is super-rigid, then given any sequence of embedded curves
Σn ⊆ X (of bounded genus and ω-area), we can find a subsequence
converging to an embedded curve Σ ⊆ X.

▶ If u is a super-rigid curve, then the only possible sequences that
converge to a nodal branched cover of u consist of other covers of u.
In other words, Mh(d;u) is an open and closed subset of Mh(dA, J).

▶ There are only finitely many embedded curves with fixed genus and
homology class if J is super-rigid.

Theorem (Wendl ’19)

Super-rigid almost complex structures are comeager in J (X,ω) for
dimX ≥ 6.
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Counts of embedded curves of twice the primitive class
Call a homology class A primitive, if ω(A) > 0 and we cannot write
A = kB for any B ∈ H2(X,Z) and integer k ≥ 2. The main result of
[Bai-Swaminathan] is to define a virtual count of embedded curves of twice
the primitive homology class for all genera.

Theorem (†)

Fix primitive A ∈ H2(X,Z) and integer h ≥ 0. For super-rigid
J ∈ J (X,ω), define the virtual count of embedded genus h curves of class
2A to be the integer

Gr2A,h(X,ω, J) = ∑
C ′∶2A,h

sgn(C ′) +∑
g≤h

∑
C∶A,g

sgn(C) ⋅ w2,h(DN
C,J)

The above is, infact, independent of the choice of super-rigid J and defines
a symplectic invariant Gr2A,h(X,ω) of (X,ω).
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Necessary condition for bifurcations
The first key ingredient in the proof of Theorem (†) is a necessary condition for the
occurence of a bifurcation. Fix an even dimensional manifold X2n (n arbitrary). Let
F ∶ V → J (X) be a smooth family of acs on X parametrized by a smooth finite
dimensional manifold V . Given a curve C, denote by Mh(C, k) the moduli space of
genus h stable maps of degree k with target C.

Theorem (‡)
Let xν → x be a convergent sequence in V , with Jν ∶= F(xν) for ν ≥ 0 and J ∶= F(x).
Let h ≥ 0 be an integer and suppose that we have a sequence (Jν , ϕν ∶ Σ

′
ν → X) of

simple Jν-curves of genus h converging, in the Gromov topology, to a stable map
(J,C ′ ϕ−→ C ⊆ X) with C being a smooth embedded J-curve of genus g ≤ h and
ϕ ∶ C ′

→ C being an element of Mh(C, k) for some integer k ≥ 1. Then, exactly one of
the following must be true:
▶ We have g = h, k = 1 and ϕ ∶ C ′

≃ C.
▶ The natural pullback map

ϕ
∗
∶ kerD

N
C,J → kerϕ

∗
D
N
C,J (⋆)

is injective but not surjective.
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Consequence: Ruling out nodal degenerations
Theorem (‡) allows us to exclude the possibility of bifurcations from nodal
curves (possibly with ghost components) into embedded curves once the
path γ is chosen generically. When the homology class represented by
ϕk ∶ Σ

′
k → X is primitive, the degree k is then necessarily equal to 1 and

Theorem (‡) implies that the limit ϕ must be an isomorphism. In
particular, the stable map C ′

ϕ
−→ C ⊆ X does not have any ghost

irreducible component.

The full power of the above is that ultimately we just need to worry about
bifurcations from (branched) double covers in order to check the invariance
of Gr2A,h(X,ω). In particular, if A ∈ H2(X,Z) is primitive, then for any
path γ in

Jemb(X,ω) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
J ∈ J (X,ω)

»»»»»»»»»»»

all simple curves are unobstructed & have index ≥ 0, those with

index < 2n − 4 are embeddings; and any 2 such curves with

combined index < 2n − 4 either have disjoint images or

are related by reparametrization,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
the moduli space Memb

h (X, γ,A) of embedded genus h curves of class A
is compact.
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Theorem (‡) allows us to exclude the possibility of bifurcations from nodal
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′
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Proof idea

▶ The proof is by a careful examination of the infinitesimal deformations
and obstructions of the two moduli spaces

M(Memb
g (X, γ, [C]), d) ⊆Mh(X, γ, d[C])

at the point (t,Σ ϕ
−→ C ⊆ X). Here, the latter is the usual stable map

moduli space along γ while the former consists of those stable maps
which factor through an embedded genus g curve in class [C].

▶ The key assertion to prove is the following. The fibre of the normal
bundle of the above inclusion, after suitably “thickening” both moduli
spaces, at the point (t,Σ ϕ

−→ C ⊆ X) is canonically isomorphic to the
vector space kerϕ

∗
D
N
C,J/ kerD

N
C,J .
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Outline of the argument
Set A = [C] ∈ H2(X,Z) and consider the moduli spaces

Memb
g (X,F , A) ∶= {(y,Σ)

»»»»»»»»»

y ∈ V,Σ ⊆ X is an embedded F(y)-curve
of genus g in class A

} , (♠)

Mh(X,F , kA) ∶= {(y, ϕ′ ∶ Σ
′
→ X)

»»»»»»»»»

y ∈ V,ϕ
′ is a stable F(y)-holomorphic

map in X of genus h and class k[C]
}& (♣)

Mh(Memb
g (X,F , A), k) ∶= {(y,Σ, ψ ∶ Σ

′
→ Σ)

»»»»»»»»»»

(y,Σ) lies in (♠) and

(Σ′
, ψ) lies in Mh(Σ, k)

} . (♦)

There is a natural inclusion of (♦) inside (♣), given by

(y,Σ, ψ ∶ Σ
′
→ Σ)↦ (y,Σ′ ψ−→ Σ ⊆ X),

and the proof of Theorem (‡) will follow by showing that codimension of
(♦) inside (♣) at the point (x,C ′ ϕ−→ C ⊆ X) is given by the dimension of
the cokernel of (⋆).
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Thickened moduli spaces
However, both (♣) and (♦) are not smooth in general, therefore the
notion of codimension is not well-defined. To remedy the situation, we will
need to thicken the moduli spaces (in the sense of [Pardon, 16])
compatibly so that the last inclusion becomes an inclusion of manifolds, at
least near the point (x, ϕ), whose codimension can then be computed.

▶ First the parameter space F is thickened to ensure that
Memb

g (X,F , A) is cut out transversally, and is hence a manifold of
suitable dimension.

▶ Then suitable auxiliary data (like a Riemannian metric on X
identifying a tubular neighborhood of it in X with a unit disc
subbundle of NC and marked points making the curve C stable) are
chosen, to construct charts for the manifold structure on (♣) and
(♦).

▶ The approach involves an analysis of λ-thickened Cauchy-Riemann
equations and applying implicit function theorem to them.
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Concluding proof of Theorem (‡)

Proof by contradiction. Assume that dim kerϕ
∗
D
N
C,J = dim kerD

N
C,J .

Then the map of compatibility of thickenings (Lemma 3.7) is an injective
continuous map between topological manifolds of the same dimension and
thus, by Brouwer’s Invariance of Domain, its image must cover an open
neighborhood of our target base point. Restricting this over
V × 0 × 0 ⊆ V

′ × E × E ′ (V, V ′ are domains of parametrization, E,E ′ are
domain vector spaces of thickening data), we conclude that

Mh(Memb
g (X,F , A), k) =Mh(X,F , kA)

in a neighborhood of (x, ϕ ∶ C ′ → C ⊆ X). This is a contradiction to the
existence of the sequence of simple curves (Jν , ϕν ∶ Σ

′
ν → X) unless h = g

and k = 1 (in which case ϕ must also be an isomorphism).
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Ruling out nodal degenerations

Consider a subset of J (X,ω) of codim ≥ 3 (Lemma 5.20), involving

J ′
A,g ∶= {J ∈ J (X,ω)

»»»»»»»»
there exists an embedded curve, a point z ∈ C &

0 ≠ σ ∈ kerD
N
C,J with σ(z) = 0.

} ,&

Ww,h(JA,g) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

J ∈ J (X,ω)

»»»»»»»»»»»»»»»»»»

there exists an embedded curve, a holomorphic branched double

cover ϕ ∶ C ′ → C & 0 ≠ σ ∈ kerD
N
C,J

−

ϕ
such that the

corresponding J
DN

C,J
-holomorphic map σ̂ ∶ C ′ →NC defined

using Lemma 5.9 (association of CRR-ops with acs on

total space of N) is not an embedding.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.

Away from the above subset and away from walls (generically), for paths
joining acs J± and 0 ≤ g ≤ h, the following holds.
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Ruling out nodal degenerations

Lemma
▶ Among the tuples of data (t,Σ, ϕ ∶ Σ

′ 2∶1
−−→ Σ), the ones with

dim kerD
N
Σ,γ(t) = 0, dim kerϕ

∗
D
N
Σ,γ(t) = 1

form a finite set.

▶ Let tn → t and suppose Σ
′
n ⊆ X is a sequence of embedded γ(tn)-curves of genus

h in class 2A which converge to a γ(t)-holomorphic stable map ϕ ∶ Σ
′
→ Σ ⊆ X in

the Gromov topology with Σ being an embedded γ(t)-curve of genus g in class
2A/d for some d ∈ {1, 2} and Σ

′
, ϕ) ∈Mh(Σ, d).

Then Σ
′ is necessarily smooth. If d = 1, then ϕ is an isomorphism. If d = 2, then

the operator DN
Σ,γ(t) is an isomorphism and we have dim kerϕ

∗
D
N
Σ,γ(t) = 1.

The proof takes a section in cokernel of (⋆) and considers it’s associated
JDNΣ,γ(t)

-holomorphic map. Then one looks at the irreducible components

of Σ
′ on which ϕ is non-constant and behavior of sections in kerD

N
Σ,γ(t) on

these components. One then enforces the desired degenerations by ruling
out exceptional behavior as generically avoidable.
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THE END.
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